

Practical Identity Management With
MidPoint

Radovan Seman!ík et al.

Version 2.1, 2020-11-25

Colophon
Practical Identity Management With MidPoint
by Radovan Seman!ík et al.
Evolveum

Book revision: 2.1
Publication date: 2020-11-25
Corresponding midPoint version: 4.0

© 2015-2020 Radovan Seman!ík and Evolveum, s.r.o. All rights reserved.

This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License .

Major sponsoring for this book was provided by:

1

http://creativecommons.org/licenses/by-nc-nd/4.0/

Table of Contents
Colophon . Ê1

Introduction . Ê6

1. Understanding Identity and Access Management . Ê10

Directory Services and Other User Databases . Ê10

Directory Servers are Databases . Ê13

Access Management . Ê14

Identity Management . Ê25

Identity Governance and Compliance . Ê44

Complete Identity and Access Management Solution . Ê48

IAM and Security . Ê49

Building Identity and Access Management Solution . Ê51

2. MidPoint Overview . Ê52

How MidPoint Works . Ê52

Case Study . Ê55

Connectors and Resources . Ê56

User and Accounts . Ê59

Initial Import . Ê61

Assignments and Projections . Ê64

Roles . Ê67

There Is Much More . Ê70

What MidPoint Is Not . Ê70

3. Installation and Configuration Principles . Ê72

Requirements . Ê72

Installation . Ê72

MidPoint User Interface . Ê73

User Interface Areas . Ê74

User Interface Concepts . Ê75

Object Details Page . Ê76

MidPoint Configuration Basics . Ê79

Configuration Objects . Ê80

XML, JSON and YAML . Ê81

Maintaining MidPoint Configuration . Ê83

Looking Around MidPoint Installation . Ê84

Logging . Ê84

4. Resources and Mappings . Ê86

Resource Definitions . Ê86

Connectors . Ê88

Bundled and Deployed Connectors . Ê89

2

Connector Configuration Properties . Ê90

Testing the Resource . Ê92

Resource Schema Basics . Ê93

Hub and Spoke . Ê94

Schema Handling . Ê98

Attribute Handling . Ê99

Mappings . Ê101

Expressions . Ê106

Script Expressions . Ê107

Activation . Ê109

Credentials . Ê110

Complete Provisioning Example . Ê110

Shadows . Ê117

5. Synchronization . Ê120

Synchronization in MidPoint . Ê121

Sources, Targets And Other Creatures . Ê122

Inbound and Outbound Mappings . Ê123

Correlation . Ê126

Synchronization Situations and Reactions . Ê127

Synchronization Tasks . Ê131

Synchronization Example: HR Feed . Ê133

HR Feed Recommendations . Ê141

Synchronization and Provisioning . Ê142

Synchronization Strategies . Ê144

Mapping and Expression Tips and Tricks . Ê145

Expression Functions . Ê147

6. Schema . Ê164

MidPoint Schema . Ê164

Data Unification . Ê165

Basic User Schema . Ê165

Operational, Experimental and Deprecated Items . Ê171

Activation . Ê172

Schema Definition . Ê177

Schema Extensibility . Ê179

PolyString and Protected String . Ê182

Advanced Schema Concepts . Ê186

Type Hierarchy . Ê186

Item Path . Ê190

Conclusion . Ê193

7. Role-Based Access Control . Ê194

Reality, Policy and Assignments . Ê194

3

Roles . Ê197

Provisioning Roles . Ê198

Roles, Accounts and Attributes . Ê201

Role Hierarchy . Ê202

Role Universality . Ê206

Role Hierarchy Structure . Ê207

Assignment Gets Complicated . Ê208

Dynamic Roles . Ê209

Metaroles . Ê212

RBAC, ABAC And The Wildlife . Ê214

8. Object Templates . Ê217

Object Templates . Ê217

Item Definitions In Object Template . Ê219

Automatic Role Assignment in Object Template . Ê223

Autoassignment in Roles . Ê229

Iteration . Ê231

Includes . Ê237

Combining the Ingredients . Ê238

Complete Deployment Example . Ê239

Conclusion . Ê255

9. Organizational Structures . Ê256

Organizational Units . Ê256

Organizational Structure Hierarchy . Ê259

Orgs in the Database . Ê263

Orgs and Roles . Ê264

Managers . Ê266

Relation . Ê270

Multiple Organizational Structures . Ê273

Beyond Users . Ê275

Organizational Structure Synchronization . Ê276

Provisioning Organizational Structure . Ê287

Focus and Projection . Ê294

Conclusion . Ê297

10. Troubleshooting . Ê298

Designed for Visibility . Ê298

Systematic Approach . Ê299

Error Messages and Operation Results . Ê300

Logging . Ê302

Auditing . Ê308

Troubleshooting Clockwork and Projector . Ê310

Troubleshooting Mappings and Expressions . Ê316

4

Troubleshooting Connectors . Ê319

Troubleshooting Authorizations . Ê322

Reporting a Bug . Ê325

Useful Troubleshooting Tips . Ê328

11. MidPoint Development, Maintenance and Support . Ê330

Professional Development . Ê330

Open Source . Ê330

MidPoint Release Cycle . Ê331

MidPoint Support and Subscriptions . Ê331

MidPoint Community . Ê332

12. Additional Information . Ê334

MidPoint Wiki . Ê334

Samples . Ê334

Book Samples . Ê334

Story Tests . Ê335

MidPoint Mailing List . Ê335

Evolveum Blog . Ê336

To Be Continued . Ê337

Conclusion . Ê341

5

Introduction
ItÕs a dangerous business, Frodo, going out your door. You step onto the
road, and if you donÕt keep your feet, thereÕs no knowing where you might
be swept off to.

Ñ Bilbo Baggins, The Lord of the Rings by J.R.R. Tolkien

Many years ago we started a project. Because we had to. Back then we didnÕt think too much about
business and markets and things like that. We were focused on the technology. Then the project
simply went on. It had its ups and downs Ð but all the time there was pure engineering passion. The
effort brought fruits and now there is a product like no other: midPoint.

MidPoint is an identity management and governance platform. We built it from scratch. It is a
comprehensive and feature-rich system. MidPoint can handle complete identity lifecycle
management and some parts of identity governance and compliance. It can speed up the process
that create accounts for new employee, student or customer. MidPoint can automatically disable
accounts after the relation to the person has expired. MidPoint manages assignment of roles and
privileges to employees, partners, agents, contractors, customers or students. MidPoint keeps an eye
that the policies are continually maintained and enforced. It governs the processes of access
reviews (attestations). It provides auditing and reporting based on the identity data.

MidPoint is a comprehensive system, and there are not that many products that can do what
midPoint does. Yet, midPoint has one critical advantage over the competing products: midPoint is
completely open source platform. Open source is the fundamental philosophy of midPoint. We
believe that open source is a critical aspect in the development of modern quality software. Open
source principle is a guiding principle of midPoint community: partners, contributors supporters
and in fact all the engineers that work with midPoint. Open source character means that any
engineer can completely understand how midPoint works. It also means that midPoint can be
modified as needed, that issues can be fixed quickly and especially to ensure the continuity of
midPoint development. After all these years with midPoint, we simply cannot imagine using any
identity technology which is not open source.

There are few engineers in our team who have been dealing with identity management
deployments since early 2000s. The term "Identity and Access Management" (IAM) was not even
invented at that time. We have seen a lot of IAM solutions during our careers. The IDM system was
the core of vast majority of these solutions. Whether it is given by our point of view or whether that
is the generic rule we do not know for sure. All we know is that midPoint is a really useful tool.
When it is used by the right hands, midPoint can do miracles. This is exactly what this book is all
about: the right use of midPoint to build a practical Identity Management solutions. This book will
tell you how to build and deploy a practical IDM solution. It will also tell you why to do it in the first
place. The book will explain not just the features and configuration options. It will also describe the
motivation and the underlying principles of identity management. Understanding the principles is
as at least as important as knowing the mechanics of an IDM product. The book usually describes
how the things work when they work. It also tries to describe the limitations, drawbacks and
pitfalls. The limitations are often much more important than the features, especially when
designing a new solution on a green field.

6

The first chapter is an introduction to the basic concepts of Identity and Access Management (IAM).
It is very general and does not deal with midPoint at all. Therefore, if you are familiar with Identity
and Access Management feel free to skip the first chapter. However, according to our experience,
this chapter has many some things to tell even to an exprienced IAM engineers. If you are impatient
and want to start directly with midPoint then skip the chapter (you would do that anyway, wouldnÕt
you?). Just please try to find the time to return to the first chapter later. This chapter contains
important information to put midPoint in broader context. You will need that information to build
a complete IAM solution.

The second chapter describes the midPoint big picture. It shows how midPoint looks like from the
outside. It describes how midPoint is usually used and how it behaves. The purpose of this chapter
is to familiarize the reader with midPoint workings and basic principles. It describes how midPoint
is used.

The third chapter describes the basic concepts of midPoint deployment and configuration. It guides
the reader through midPoint installation. It describes how midPoint is customized to suit the needs
of a particular deployment. However, midPoint customization is a very complex matter, and
chapter describes just the basic principles. It will take most of the book to fill in the details.

The fourth chapter describes the concepts of resource and mappings. This is the bread-and-butter
of an identity management. This chapter will tell you how to create very basic midPoint
deployment, how to connect target systems and how to map and transform the data.

The fifth chapter is all about synchronization. Primary purpose of synchronization is to get the data
from the source systems such as HR system to midPoint. Yet, midPoint synchronization is much
more powerful than that. This chapter also expands the explanation of underlying midPoint
principles such as mappings and deltas.

The sixth chapter talks about midPoint schema. MidPoint has a built-in identity data model. Even
though this data model is quite rich, it is usually not sufficient to cover all the real-world use cases.
Therefore the data model is designed to be extensible. This chapter describes the methods how a
new data items can be defined in midPoint schema.

The seventh chapter is all about role-based access control (RBAC). MidPoint role-based model is a
very powerful tool to set up complex structures describing job roles, responsibilities, privileges and
so on. The role model, and especially the concept of assignment, are generic mechanisms that are
used in almost every part of midPoint. Organizational structure management and many identity
governance features are built on the foundations described in this chapter.

The eighth chapter is an introduction to object templates. Those templates form a basis of an
internal data consistency in midPoint. They can be used to set up simple policies and automation
rules. Object templates are a basic workhorse that is used in almost all midPoint deployments.

The ninth chapter describes organizational structures. MidPoint organizational structure
mechanisms are generic and very powerful. They can be used to model traditional organizational
hierarchies, tree, and even structures that are not exactly trees. The same mechanism can be used
to set up projects, teams, workgroups, classes or almost any conceivable grouping concept. This
chapter describes how organizational structrures are synchronized with the outer world. The
concept of generic synchronization can be applied to synchronize midPoint objects with almost any
external data structure.

7

The tenth chapter is about troubleshooting. To err is human. Given all the flexibility of midPoint
mechanisms configuration mistakes just happen, and it may not be easy to figure out the root cause
of problems. Therefore, this chapter provides an overview of midPoint diagnostic facilities and
recommendations for their use.

The eleventh chapter provides overview of midPoint development process and overall approach. It
is also explained how midPoint development is funded and how midPoint subscriptions work.

The twelfth chapter is a collection of pointers to additional information. This includes a pointer to
sample files that accompany this book.

The next chapters are not written yet. The description of policies, entitlements, authorizations,
archetypes and all the other advanced topics is missing. This book is not finished yet. Just like
midPoint itself this book is written in an incremental and iterative way. Writing a good book is a
huge task in itself, and it takes a lot of time. We cannot dedicate that much time to writing the book
in one huge chunk. Obviously, a book like this is needed for midPoint community. Therefore we
have decided not to wait until the book is complete. We will be continuously publishing those
chapters that are reasonably well finished. It is better to have something than to have nothing, isnÕt
it? Please be patient. The whole book will be finished eventually. As always Ð your support,
contributions and sponsoring may considerably speed up things here.

We would like to thank all the midPoint developers, contributors and supporters. There was a lot of
people involved in midPoint during all these years. All these people pushed midPoint forward. Most
of all, we would like to thank the people that were there when the midPoint project was young and
that are still there until this day. We would like to thank Katka Stanovská, Katka Bolemant (née
Valaliková), Igor Farini!, Ivan Noris, Vilo Repá", Pavol Mederly and Radovan Seman!ík. Those were
the people that were there when midPoint was young. And they are still the people who are the
force that drives midPoint into the future.

Anything that is stated in this book are the opinions of the authors. We have tried really hard to
remain objective. However, as hard as we might try, some points of view are difficult to change. We
work for Evolveum Ð a company that is also an independent software vendor. Therefore, our
opinions may be slightly biased. We have honestly tried to avoid any biases and follow proper
engineering practices. You are the judge and the jury in this matter. You, the reader, will decide
whether we have succeeded or not. You have free access to all the necessary information to do that:
this book is freely available as is all the midPoint documentation and the source code. We are not
hiding anything. Unlike many other vendors we do not want or need to hide any aspect of the
software we are producing.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0
International License (CCÊBY-NC-ND). This essentially means that you can freely use this book for a
personal use. You can retrieve and distribute it at no cost. However, you are not allowed to sell it,
modify it or use any parts of this book in commercial projects. There is no direct profit that we
make from this book. The primary reason for writing this book is to spread knowledge about
midPoint. However, even open source projects such as midPoint need funding. If you use midPoint
in a commercial project that is a source of profit we think it is only fair if you share part of that
profit with midPoint authors. Therefore, we have chosen the CCÊBY-NC-ND license for this book. You
can use this book freely to learn about midPoint. However, this license does not give you right to
take parts of this book and include it in your project documentation. You can point to this book by

8

URL, but you are not allowed to pass this book to the customer as a part of product documentation
in a commercial project. You are not allowed to use this book as material during commercial
training. You are not allowed use the book in any way that generates profit. If you need to use this
book in such a way, please contact Evolveum, and you can obtain special license to do this. The
license fees collected in this way will be used to improve midPoint and especially midPoint
documentation. You know as well as we do that this is needed.

Following people have worked on the words and pictures that make up this book:

¥ Radovan Seman!ík (author and maintainer)

¥ Veronika Kolpa#!iková (illustrations, corrections)

Yet there is much more people whose work was needed to make this work happen: midPoint
developers, contributors, analysts and deployment engineers, specialists and generalists,
theoretical scientists and practical engineers, technical staff and business people, people of
Evolveum and the people that work for our partners, our families, friends and all the engineers and
scientists for generations and generations past. We indeed stand on the shoulders of giants.

9

Chapter 1. Understanding Identity and
Access Management

The beginning of knowledge is the discovery of something we do not
understand.

Ñ Frank Herbert

What is identity and access management? Answer to that question is both easy and very complex.
The easy part is: Identity and access management (IAM) is a set of information technologies that
deal with identities in the cyberspace. The complex part of the answer takes the rest of this book.

This book deals mostly with Enterprise Identity and Access Management . That is identity and access
management applied to larger organizations such as enterprises, financial institutions, government
agencies, universities, health care, etc. The focus is on managing employees, contractors, customers,
partners, students and other people that cooperate with the organization. However, many of the
mechanisms and principles described in this book can be applied to non-enterprise environments.

The story of identity and access management starts with information security. The security
requirements dictate the need for authentication and authorization of the users. Authentication is a
mechanism by which the computer checks that the user is really the one he pretends to be. And
authorization is a related mechanism by which the computer determines whether to allow of deny
specific action to a user. Almost every computer system has some means of authentication and
authorization.

Perhaps the most widespread form of authentication is a password-based "log in" procedure. The
user presents an identifier and a password. The computer checks whether the password is valid.
For this procedure to work the computer needs an access to the database of all valid users and
passwords. Early stand-alone information systems had their own databases that were isolated from
the rest of the cyberspace. The data were maintained manually. But the advent of computer
networking changed everything. Users were able to access many systems and the systems
themselves were connected to each other. Maintaining an isolated user database in each system no
longer made much sense. And thatÕs where the real story of digital identity begins.

Directory Services and Other User Databases
The central concept of identity management is a data record that contains information about a
person. This concept has many names: user profile, persona, user record, digital identity and many
more. The most common name in the context of identity management is user account . Accounts
usually hold the information that describes the real-world person using a set of attributes such as
given name and family name. But probably the most important part is the technical information
that relates to operation of an information system for which the account is created. This includes
operational parameters such as location of users home directory, wide variety of permission
information such as group and role membership, system resource limits and so on. User accounts
are represented in a wide variety of forms ranging from relational database records through
structured data files to semi-structured text files. But regardless of the specific method used to store

10

and process the records the account is undoubtedly one of the most important concepts of IAM
field. And so are the databases where the accounts are stored as accounts, being data records, have
to be stored somewhere.

The account databases are as varied as are the account types. Most account databases in the past
were implemented as an integral part of the monolithic information system using the same
database technology as the system itself used. This is an obvious choice and it remains very popular
even today. Therefore many accounts are stored in relational database tables and similar
application data stores.

Application data stores are usually tightly bound to the application. Therefore accounts stored in
such databases are difficult to share with other applications. However, sharing account data across
the organization is more than desirable. It makes very little sense to maintain account data in each
database separately Ð especially if most the accounts are the same in each application. Therefore
there is a strong motivation to deploy account databases that can be shared by many applications.

Directory servers are built with the primary purpose to provide shared data storage to applications.
While application databases usually use their own proprietary protocol, directory servers
implement standardized protocols. While databases are built for application-specific data model,
directory servers usually extend standardized data model which improves interoperability. While
databases may be heavyweight and expensive to scale, directory servers are designed to be
lightweight and provide massive scalability. That makes directory servers almost ideal candidates
for shared account database.

11

Shared identity store is making user management easier. An account needs to be created and
managed in one place only. Authentication still happens in each application separately. Yet, as the
applications use the same credentials from the shared store, the user may use the same password
for all the connected applications. This is an improvement over setting the password for each
application separately.

Identity management solutions based on shared directory servers are simple and quite cost-
efficient. Therefore we have been giving the same advice for many years: if you can connect all
your applications to an LDAP server, do not think too much about it and just do it. The problem is
that this usually works only for very simple systems.

Lightweight Directory Access Protocol (LDAP)

Lightweight Directory Access Protocol (LDAP) is a standard protocol for accessing directory
services. It is an old protocol when judging by Internet age standards. LDAP roots are going as far
back as 1980s to a family of telecommunication protocols known as X.500. Even though LDAP may
be old it is widely used. It is a very efficient binary protocol that was designed to support massively
distributed shared databases. It has small set of well-defined simple operations. The operations and
the data meta-model implied by the protocol allow very efficient data replication and horizontal
scalability of directory servers. This simplicity contributes to low latencies and high throughput for
read operations. The horizontal scalability and relative autonomy of directory server instances is
supposed to increase the availability of the directory system. These benefits often come at the
expense of slow write operations. As identity data are often read but seldom modified, slower
writes are usually a perfectly acceptable trade-off. Therefore, LDAP-based directory servers were
and in many places still remain, the most popular databases for identity data.

LDAP is one of the precious few established standards in the IAM field. However, it is far from
being perfect. LDAP was created in 1990s, with roots going back to 1980s. There are some problems
in original LDAP design, such as grouping mechanisms and some details of search and modify
operations. Also, LDAP schema has a distinctive feel of 80s and 90s. LDAP would deserve a major
review, to correct the problems and bring the protocol to 21 st century. Sadly, there was no major
update to LDAP specifications in decades.

Even though LDAP has its problems, it still remains a useful tool. Most LDAP server vendors
provide proprietary solutions to LDAP problems. Many organizations store identities in LDAP-
enabled data stores. There are many applications that support LDAP, mostly for centralization of

12

password-based authentication. LDAP still remains a major protocol in Identity and Access
Management field. Therefore we will be getting back to the LDAP protocol many times in this book.

Directory Servers are Databases
Directory servers are just databases that store information. Nothing more. The protocols and APIs
used to access directory servers are designed as database interfaces. It means that they are good for
storing, searching and retrieving data. While the user account data often contain entitlement
information (permissions, groups, roles, etc.), identity stores are not well suited to evaluate them.
I.e. directory server can provide information what permissions an account has, but it is not
designed to make a decision whether to allow or deny a specific operation. And that is not all.
Directory servers do not contain data about user sessions. It means that directory servers do not
know whether user is currently logged in or not. Many directory servers are used for basic
authentication and even authorization. Yet, the directory servers were not designed to do this.
Directory servers provide only the very basic capabilities. There are plug-ins and extensions that
provide partial capabilities to support authentication and authorization. But that does not change
the fundamental design principles. Directory servers are databases, not authentication or
authorization servers. They should be used as such.

However, many applications use directory servers to centralize password authentication. In fact,
this is a good and cost-efficient way to centralize password-based authentication, especially if you
are just starting with identity and access management. However, you should be aware this a
temporary solution. It has many limitations. The right way to do it is to use authentication server
instead of directory server. Access Management (AM) technologies can provide that.

Single Directory Server Myth

Shared directory server makes user management easier. HOwever, this is not a complete solution
and there are serious limitations to this approach. The heterogeneity of information systems makes
it nearly impossible to put all required data into a single directory system.

The obvious problem is the lack of a single, coherent source of information. There are usually
several sources of information for a single user. For example a human resources (HR) system is
authoritative for the existence of a user in the enterprise. But the HR system is usually not
authoritative for assignment of employee identifier such as username . There needs to be an
algorithm that ensures uniqueness of the username, possibly including uniqueness across all the
current and past employees, contractors and partners. Moreover, there may be additional sources
of information. For example Management information system may be responsible for
determination of userÕs roles (e.g. in project-oriented organizational structure). Inventory
management system may be responsible for assigning telephone number to the user. The
groupware system may be an authoritative source of the userÕs e-mail address and other electronic
contact data. There are usually 2 to 20 systems that provide authoritative information for a single
user. Therefore, there is no simple way how to feed and maintain the data in the directory system.

And then there are spacial and technological barriers. Many complex applications need local user
database. They must store the copies of user records in their own databases to operate efficiently.
For example, large billing systems cannot work efficiently with external data (e.g. because of a need
to make relational database join). Therefore, even if directory server is deployed, these applications

13

still need to maintain a local copy of identity data. Keeping the copy synchronized with the
directory data may seem like a simple task. But it is not. Additionaly, there are legacy systems which
usually cannot access the external data at all (e.g. they do not support LDAP protocol at all).

Some services need to keep even more state than just a simple database record. For example file
servers usually create home directories for users. While the account creation can usually be done
in on-demand fashion (e.g. create user directory at first user log-on), the modification and deletion
of the account is much more difficult. Directory server will not do that.

Perhaps the most painful problem is the complexity of access control policies. Role names and
access control attributes may not have the same meaning in all systems. Different systems usually
have different authorization algorithms that are not mutually compatible. While this issue can be
solved with per-application access control attributes, the maintenance of these attributes is seldom
trivial. If every application has its own set of attributes to control access control policies then the
centralized directory provides only a negligible advantage. The attributes may as well reside in the
applications themselves. And thatÕs exactly how most deployments end up. Directory servers
contain only the groups, groups that usually roughly approximate RBAC roles. Even LDAP
standards themselves create a significant obstacle to interoperability in this case. There are at least
three or four different and incompatible specifications for group definition in LDAP directories.
The standard to manage LDAP groups is not ideal at all. It is especially problematic when managing
big groups. Therefore, many directory servers provide their own non-standard improvements,
which further complicates interoperability. Yet even these server-specific improvements usually
cannot support complex access control policies. Therefore, access control policies and fine-grained
authorizations are usually not centralized, they are maintained directly in the application
databases.

The single directory approach is feasible only in very simple environments or in almost entirely
homogeneous environments. In all other cases there is a need to supplement the solution by other
identity management technologies.

This does not mean that the directory servers or other shared databases are useless. Quite the
contrary. They are very useful if they are used correctly. They just cannot be used alone. More
components are needed to build a complete solution.

Access Management
While directory systems are not designed to handle complex authentication, access management
(AM) systems are built to handle just that. Access management systems handle all the flavors of
authentication, and even some authorization aspects. The principle of all access management
systems is basically the same:

1. Access management system gets between the user and the target application. This can be done
by a variety of mechanisms, the most common method is that the applications themselves
redirect the user to the AM system if they do not have existing session.

2. Access management system prompts user for the username and password, interacts with
authentication token, creates a challenge and prompts for the response or in any other way
initiates the authentication procedure.

3. User enters the credentials.

14

4. Access management system checks the validity of credentials and evaluates access policies.

5. If access is allowed then the AM system redirects user back to the application. The redirection
usually contains an access token: a small piece of information that tells the application that the
user is authenticated.

6. Application validates the token, creates a local session and allows the access.

After that procedure, the user works with the application normally. Only the first access goes
through the AM server. This is important for AM system performance and sizing, and it impacts
session management functionality.

The applications only need to provide the code that integrates with the AM system. Except for that
small integration code, applications do not need to provide any authentication code at all. It is the
AM system that prompts for the password, not the application. This is a fundamental difference
when compared to LDAP-based authentication mechanisms. In the LDAP case, it is the application
that prompts for the password. In the AM case, the Access Management server does everything.
Many applications do not even care how the user was authenticated. All they need to know is that
he was authenticated and that the authentication was strong enough. This feature brings a very
desirable flexibility to the entire application infrastructure. The authentication mechanism can be
changed at any time without disrupting the applications. We live in an era when passwords are
migrated to a stronger authentication mechanisms. The flexibility that the AM-based approach
brings may play a key part in that migration.

15

Web Single Sign-On

Single Sign-On (SSO) systems allow user to authenticate once, and access number of different
system after that. There are many SSO systems for web applications, however it looks like these
systems are all using the same basic principle of operation. This general access management flow is
described below:

1. Application A redirects the user to the access management server (SSO server).

2. The access management server authenticates the user.

3. The access management server establishes session (SSO session) with the user browser. This is
the crucial part of the SSO mechanism.

4. User is redirected back to the application A. Application A usually establishes a local session with
the user.

5. User interacts with application A.

6. When user tries to access application B, the application B redirects user to the access
management server.

7. The access management server checks for existence of SSO session. As the user authenticated
with the access management server before, there is a valid SSO session.

8. Access management server does not need to authenticate the user again and immediately
redirects user back to application B.

9. Application B establishes a local session with the user and proceeds normally.

The user usually does not even realize that he was redirected when accessing application B. There is
no interaction between the redirects and the redirects and the processing on the access
management server is usually very fast. It looks like the user was logged into the application B all
the time.

16

Authorization in Access Management

The request of a user accessing an application is directly or indirectly passed through the access
management server. Therefore, the access management server can analyze the request and
evaluate whether the user request is authorized or not. That is a theory. Unfortunately, the situation
is much more complicated in practice.

The AM server usually intercepts only the first request to access the application because it would be
a performance impact to intercept all the requests. After the first request, the application
established a local session and proceeds with the operation without any communication with the
AM server. Therefore the AM server can only evaluate authorization during the first request. This
means it can only evaluate a very rough-grained authorization decisions. In practice, it usually
means that the AM server can make only all-or-nothing authorization decisions: whether a
particular user can access all parts of a particular application or that he cannot access the
application at all. The AM server usually cannot make any finer-grain decisions just by itself.

Some AM systems provide agents that can be deployed to applications and that enforce a finer-
grain authorization decisions. Such agents often rely on HTTP communication, they are making
decisions based on the URLs that the user is accessing. This approach might have worked well in
the 1990s, but it has only very limited applicability in the age of single-page web applications and

17

mobile applications. In such cases the authorization is usually applied to services rather than
applications .

However, even applying the authorization to service front-ends does not solve the problem entirely.
Sophisticated applications often need to make authorization decisions based on context which is
simply not available in the request or user profile at all. E.g. an e-banking application may allow or
deny a transaction based on the sum of previous transactions that were made earlier that day.
While it may be possible to synchronize all the authorization information into the user profile, it is
usually not desirable. It would be a major burden to keep such information updated and consistent,
not to mention security concerns. Many authorization schemes rely on a specific business logic,
which is very difficult to centralize in an authorization server.

Then there are implementation constraints. In theory, the authorization system should make only
allow/deny decisions. However, this is not enough to implement an efficient application. The
application cannot afford to list all the objects in the database, pass them to authorization server,
and the realize that the authorization server denied access to almost all of them. Authorization has
to be processes before the search operation and additional search filters have to be applied. Which
means that authorization mechanisms need to be integrated deep into the application logic. This
significantly limits the applicability of centralized authorization mechanisms.

AM systems often come with a promise to unify authorization across all the applications and to
centralize management of organization-wide security policies. Unfortunately, such broad promises
are seldom fulfilled. The AM system can theoretically evaluate and enforce some authorization
statements. This may work well during demonstrations and even in very simple deployments. Yet in
complex practical deployments, this capability is extremely limited. The vast majority of the
authorization decisions is carried out by each individual application and is completely outside of
the reach of an AM system.

SAML and OpenID Connect

Some access management systems use proprietary protocols to communicate with the applications
and agents. This is obviously an interoperability issue Ð especially when the AM principles are used
in the Internet environment. Indeed, it is the Internet that motivated standardization in this field.

The first widespread standardized protocol in this field was Security Assertion Markup Language
(SAML). The original intent of SAML was to allow cross-domain sign-on and identity data sharing
across organizations on the Internet. SAML is both an access management protocol and a security
token format. SAML is quite complex, heavily based on XML standards. Its specifications are long,
divided into several profiles, there are many optional elements and features and overall SAML is a
set of very rich and flexible mechanisms.

Primary purpose of SAML is transfer of identity information between organizations. There are big
SAML-based federations with hundreds of participating organizations. Many e-government
solutions are based on SAML, there are big partner networks running on SAML, and overall it looks
like SAML is a success. Yet, SAML was a victim of its own flexibility and complexity. The latest
fashion trends are not very favorable to SAML. XML and SOAP-based web service mechanisms are
getting out of fashion, which impacts popularity of SAML. That has probably motivated the
inception of other access management protocols.

18

The latest fashion favors RESTful services and simpler architectural approaches. All of that
probably contributed to the development of OpenID Connect protocol (OIDC). OpenID Connect is
based on much simpler mechanisms than SAML, but it is reusing the same basic principles. OpenID
connect has a very eventful history. It all started with a bunch of homebrew protocols such as LID
or SXIP, that are mostly forgotten today. That was followed by the development of OpenID protocol,
which was still very simple. OpenID gained some attention especially with providers of Internet
services. Despite its simplicity, OpenID was not very well engineered, and it quickly reached its
technological limits. It was obvious that OpenID needs to be significantly improved. At that time,
there was almost unrelated protocol called OAuth, which was designed for management of cross-
domain authorizations. That protocol was developed into something that was almost, but not quite,
entirely unlike the original OAuth protocol. As the result had almost nothing to do with the original
OAuth protocol, it is perfectly understandable that it was dubbed OAuth2. In fact, OAuth2 is not
really a protocol at all. It is rather a vaguely-defined framework to build other protocols. OAuth2
framework was used to build a cross-domain authentication and user profile protocol. This new
protocol is much more similar to SAML than to the original OpenID, therefore it was an obvious
choice to call it OpenID Connect. Some traditions are just worth maintaining.

Now there are two protocols that are using the same principle and doing almost the same thing.
The principle is illustrated in the following diagram.

The interaction goes like this:

1. User is accessing a resource. This can be web page or web application on the target site.

2. Target site does not have a valid session for the user. Therefore it redirects user browser to the

19

source site. It will add authentication request into that redirect.

3. Browser follows the redirect to the source site. The source site gets the authentication request
and parses it.

4. If the user is not already authenticated with the source site then the authentication happens
now. The source site prompts for the username, password, certificate, one-time password or
whatever credential that is required by the policy. With a bit of luck the authentication
succeeds.

5. The source site redirects the browser back to the target site. The source site adds authentication
response to the redirect. The most important part of the response is a token. The token directly
or indirectly asserts userÕs identity.

6. The target site will parse the authentication response and process the token. The token may by
just a reference to the real token (SAML artifact) or it may be access key to another service that
provides the identity (OIDC UserInfo). In that case the target site makes another request (6a).
This request is usually a direct one and does not use browser redirects. One way or another, the
target site now has claims about user identity.

7. Target site evaluates the identity, processes authorizations and so on. A local session with the
user is usually established at this point to skip the authentication redirects on the next request.
The target site finally provides the content.

Following table compares the terminology and technologies used in SAML and OIDC worlds.

SAML World OpenID Connect World

Source site Identity Provider (IdP) Identity Provider (IDP) or
OpenID Provider (OP)

Target site Service Provider (SP) Relying Party (RP)

Token SAML Assertion (or artifact) ID token, access token

Intended for Web applications, web services
(SOAP)

Web applications, mobile
applications, REST services

Based on N/A OAuth2

Data representation XML JSON

Cryptography framework XMLenc, XMLdsig JOSE

Token format SAML JWT

Careful reader will notice the similarity with the web-based access management mechanisms.
ThatÕs right. This is the same wheel reinvented over and over again. However, to be completely
honest we have limited our description to cover flows for web browser only. Both SAML and OIDC
has broader applicability that just web browser flows. And the differences between the protocols
are much more obvious in these extended use cases. But the web browser case nicely illustrates the
principles and similarities of SAML, OpenID Connect and also the simple web-SSO systems.

Maybe the most important differences between SAML, OIDC and web-SSO systems is the intended
use:

20

¥ SAML was designed for the web applications and SOAP web services world. It will handle
centralized (single-IDP) scenarios very will, but it can also work in decentralized federations. Go
for SAML if you are using SOAP and WS-Security or if you plan to build big decentralized
federation.

¥ OpenID Connect was designed mostly for use with social networks and similar Internet services.
Its philosophy is still somehow centralized. It will work well if there is one strong identity
provider and many relying parties. Technologically it will fit into RESTful world much better
than SAML. Current fashion trends are favorable to OIDC.

¥ Web-SSO systems are designed to be used inside a single organization. This is ideal to
implement SSO between several customer-facing applications so the customers will have no
idea that they interact with many applications and not just one. The web-SSO systems are not
designed to work across organizational boundaries.

Although SAML and OIDC are designed primarily for cross-domain use, it is no big surprise to see
them inside a single organization. There is a clear benefit in using an open standardized protocol
instead of a proprietary mechanism. However, it has to be expected that the SSO system based on
SAML or OIDC will have slightly more complicated setup than a simple Web-SSO system.

Kerberos, Enterprise SSO and Friends

Many of us would like to think that everything is based on web technologies today and that non-
web mechanisms are things of the past. Yet, there are still cases that are not web-based and where
web-based SSO and AM mechanisms will not work. There is still a lot of legacy applications,
especially in the enterprise environment. Applications based on rich clients or even character-
based terminal interactions are still not that difficult to find. And then there are network operating
systems such as Windows and numerous UNIX variants, there are network access technologies
such as VPN or 802.1X and so on. There are still many cases where web-based access management
and SSO simply wonÕt work.

These technologies usually pre-date the web. Honestly, the centralized authentication and single
sign-on are not entirely new ideas. It is perhaps no big surprise that there are authentication and
SSO solutions even for non-web applications.

The classic classroom example of non-web SSO system is Kerberos. The protocol originated at MIT
in the 1980s. It is a single sign-on protocol for operating systems and rich clients based on
symmetric cryptography. Even though it is a cryptographic protocol it is not too complicated to
understand and it definitely withstood the test of time. It has been used to this day, especially for
authentication and SSO of network operating systems. It is a part of Windows network domain and
it is often the preferred solution for authentication of UNIX servers. The most serious limitation of
Kerberos is given by its use of symmetric cryptography. The weakness of symmetric cryptography is
key management. Kerberos key management can be quite difficult especially when Kerberos realm
gets very big. Key management is also one of the reasons why it is not very realistic to use Kerberos
in cross-domain scenarios. However inside a closed organization Kerberos is still a very useful
solution.

The major drawback in using Kerberos is that every application and client needs to be "kerberized".
In other words everybody that wants to take part in Kerberos authentication needs to have
Kerberos support in oneÕs software. There are kerberized versions of many network utilities so this

21

is usually not a problem for UNIX-based networks. But it is a problem for generic applications.
There is some support for Kerberos in common web browsers which is often referred to as
"SPNEGO". However this support is usually limited to interoperability with Windows domains.
Therefore even though Kerberos is still useful for operating system SSO it is not a generic solution
for all applications.

Many network devices use RADIUS protocol for what network engineers call "Authentication,
Authorization and Accounting" (AAA). However RADIUS is a back-end protocol. It does not take care
of client interactions. The goal of RADIUS is that the network device (e.g. WiFi access point, router
or VPN gateway) can validate user credentials that it has received as part of other protocol. The
client connecting to VPN or WiFi network does not know anything about RADIUS. Therefore
RADIUS is similar to the LDAP protocol and it is not really an access management technology.

Obviously there is no simple and elegant solution that can provide SSO for all enterprise
applications. Despite that one technology appeared in the 1990s and early 2000s and promised to
deliver universal enterprise SSO solution. It was called "Enterprise Single Sign-On" (ESSO). The
ESSO approach was to use agents installed on every client device. The agent detects when login
dialog appears on the screen, fills in the username and password and submits the dialog. If the
agent is fast enough the user does not even notice the dialog and this creates the impression of
Single Sign-On. However, there are obvious drawbacks. The agents need to know all the passwords
in a cleartext form. There are ESSO variations with passwords randomly generated or even single-
user passwords which partially alleviates this problem. But the drawback is that the ESSO also
needs to be integrated with password management of all the applications, which is not entirely
easy. However the most serious drawback of ESSO are the agents. These only work on workstations
that are strictly controlled by the enterprise. Yet the world is changing, enterprise perimeter has
efficiently disappeared, and the enterprise cannot really control all the client devices. Therefore
also ESSO is now mostly a thing of the past.

Access Management and the Data

Access Management servers and Identity Providers need to know the data about users to work
properly. But it is complicated. The purpose of access management systems is to manage access of
users to the applications. Which usually means processing authentication, authorization (partially),
auditing the access and so on. For this to work, the AM system needs access to the database where
the user data are stored. It needs access to usernames, passwords and other credentials,
authorization policies, attributes and so on. The AM systems usually do not store these data
themselves. They rely on external databases. In most cases these databases are directory services or
noSQL databases. This is an obvious choice: these databases are lightweight, highly available and
extremely scalable. The AM system usually need just simple attributes, therefore the limited
capabilities of directories and NoSQL databases are not a limiting factor here. Marriage of access
management and lightweight database is an obvious and very smart match.

However, there is one critical issue Ð especially if the AM system is also used as a single sign-on
server. The data in the directory service and the data in the applications must be consistent. E.g. it
is a huge problem if one user has different usernames in several applications. Which username
should he use to log in? Which username should be sent to the applications? There are ways how to
handle such situations, but this is usually very cumbersome and expensive. It is much easier to
unify the data before the AM system is deployed.

22

Even though the "M" in AM stands for "management", typical AM system has only a very limited
data management capabilities. The AM systems usually assume that the underlying database is
already properly managed. E.g. a typical AM system has only a very minimalistic user interface to
create, modify and delete user records. Some AM systems may have self-service functionality (such
as password reset), but even that functionality is usually very limited. Even though the AM relies on
the fact that the data in the AM directory service and the data in applications are consistent there is
usually no way how to fully synchronize the data by using the AM system itself. There may be
methods for on-demand or opportunistic data updates, e.g. creating user record in the database
when the user logs in for the first time. But there are usually no solutions for deleting the records
or for updating the records of inactive users.

Therefore the AM systems are usually not deployed alone. The underlying directory service or
NoSQL database is almost always a hard requirement for even humblest AM functionality. But for
the AM system to really work properly it needs something to manage and synchronize the data.
Identity Management (IDM) system is usually used for that purpose. In fact, it is usually strongly
recommended deploying directory and IDM system before the AM system. The AM system cannot
work without the data. And if the AM works with data that are not maintained properly, it will not
take a long time until it fails.

Advantages and Disadvantages of Access Management Systems

Access management systems have significant advantages. Most of the characteristics are given by
the AM principle of centralized authentication. As the authentication is carried out by a central
access management server, it can be easily controlled and audited. Such centralization can be used
to consistently apply authentication policies - and to easily change them when needed. It also
allows better utilization of an investment into authentication technologies. E.g. multi-factor or
adaptive authentication can be quite expensive if it has to be implemented by every application.
But when it is implemented in the AM server, it is re-used by all the applications without additional
investment.

However, there are also drawbacks. As the access management is centralized, it is obviously a
single point of failure. Nobody is going to log in when the AM server fails. This obviously means
major impact on functionality of all applications. Therefore AM servers need to be highly available
and scalable. Which is not always an easy task. The AM servers need a very careful sizing as they
may easily become a performance bottlenecks. However, perhaps the most severe drawback is the
total cost of access management solution. The cost of the AM server itself is usually not a major
issue. But the server will not work just by itself. The server needs to be integrated with every
application. Even though there are standard protocols, the integration is far from being
straightforward. Support for AM standards and protocols in the applications is still not universal.
Especially older enterprise applications need to be modified to switch their authentication
subsystem to the AM server. This is often so costly that the adoption of AM technologies is often
limited just to a handful of enterprise applications. Although recent applications usually have some
support for AM protocols, setting it up is still not an easy task. There are subtle incompatibilities
and treacherous details, especially if the integration goes beyond mere authentication into
authorization and user profile management.

Even though many organizations are planning deployment of an AM system as their first step in the
IAM project, this approach seldom succeeds. The project usually plans to integrate 50-80%

23

applications into the AM solution. But the reality is that only a handful of applications can be easily
integrated with the AM system. The rest of the applications is integrated using an IDM system that
is hastily added to the project. Therefore it is better to plan ahead: analyze the AM integration
effort, prototype the deployment, and make a realistic plan for the AM solution. Make sure the AM
can really bring the promised benefits. Starting with IDM and adding AM part later is often much
more reasonable strategy.

Homogeneous Access Management Myth

There are at least two popular access management protocols for the web. There are huge identity
federations based on SAML. Cloud services and social networks usually use OpenID Connect or its
variations. There are variations and related protocols to be used for mobile applications and
services. Then there are other SSO protocols, primarily focused on intra-organizational use. There
is no single protocol or mechanism that can solve all the problems in the AM world.

Additionaly, the redirection approach of AM systems assumes that the user has something that can
display authentication prompts and carry out user interaction. Which is usually a web browser.
Therefore, the original variant of access management mechanisms applies mostly to conventional
web-based applications. Variations of this approach are also applicable to network services and
single-page web applications. However, this approach is usually not directly applicable for
applications that use rich clients, operating system authentication and similar "traditional"
applications. Browser is not the primary environment that can be used to carry out the
authentication in those cases. There are some solutions that usually rely on embedded browser,
however that does not change the basic fact that the AM technologies are not entirely suitable for
this environment. These applications usually rely on Kerberos as an SSO system or do not integrate
with any SSO system at all.

Typical IT environment is composed of a wild mix of technologies and not all of them are entirely
web-based. Therefore it is quite unlikely a single AM system can apply to everything that is
deployed in your organization. Authentication is very tightly bound to the user interaction,
therefore it depends on the method how the user interacts with the application. As the user is using
different technologies to interact with the web application, mobile application and operating
system then it is obvious that also authentication and SSO methods for these systems will be
different.

Therefore it has to be expected that there will be several AM or SSO systems in the organization,
each one serving its own technological island. And each island needs to be managed.

Practical Access Management

Unifying access management system, Single Sign-On, cross-domain identity federation, social login,
universally-applicable 2-factor authentication Ð there are the things that people usually want when
they think about Identity and Access Management (IAM). These are all perfectly valid requirements.
However, everything has its cost. It is notoriously difficult to estimate the cost of access
management solutions, because majority of the cost is not in the AM software. Huge part of the total
cost is hidden inside existing applications, services and clients. All of this has to be considered
when planning an access management project.

Even though the AM is what people usually want, it is usually wise not to start with AM as the first

24

step. AM deployment has many dependencies: unified user database, managed and continually
synchronized data, applications that are flexible enough to be integrated and so on. Unless your IT
infrastructure is extremely homogeneous and simple, it is very unlikely that these dependencies
are already satisfied. Therefore it is almost certain that an AM project attempted at the beginning of
the IAM program will not reach its goals. It is much more likely for such AM projects to fail
miserably. On the other hand, if the AM project is properly scoped and planned and has realistic
goals, there is high chance of success.

Perhaps the best way to evaluate an AM project is to ask several questions:

¥ Do I really need access management for all applications? Do I need 100% coverage? Can I afford
all the costs? Maybe it is enough to integrate just a couple of applications that are source of the
worst pain. Do I know which applications are these? Do I know what my users really use during
they workday? Do I know what they need?

¥ What are the real security benefits of AM deployment? Will I be disabling the native
authentication to the applications? Even for system administrators? What will I do in case of
administration emergencies (e.g. system recovery)? Would system administrators still be able to
circumvent the AM system? If yes then what is the real security benefit? If not then what will be
the recovery procedure in case the AM system fails?

¥ Do I really need SSO for older and rarely used applications? What is the real problem here? Is
the problem that users are entering the password several times per day? Or is the real problem
that they have to enter a different username or password to different applications, and they
keep forgetting the credentials? Maybe simple data cleanup and password management will
solve the worst problems, and I can save a huge amount of money on AM project?

The access management technologies are the most visible part of the IAM program. But it is also the
most expensive part, and the most difficult piece to set up and maintain. Therefore do not
underestimate other IAM technologies. Do not try to solve every problem with AM golden hammer.
Using the right tool for the job is a good approach in every situation. But in IAM program, it is
absolutely critical for success.

Identity Management
Identity management (IDM) is maybe the most overlooked and underestimated technology in the
whole identity and access management (IAM) field. Yet IDM is a crucial part of almost every IAM
solution. It is IDM that can bring substantial benefits to almost any organization. So, what that
mysterious IDM thing really is?

Identity management is exactly what the name says: it is all about managing identities. It is about
the processes to create Active Directory accounts and mailboxes for a new employee. IDM sets up
accounts for students at the beginning of each school year. IDM makes it possible to immediately
disable all access to a suspicious user during a security incident. IDM takes care of adding new
privileges and removing old privileges of users during reorganization. IDM makes sure all the
accounts are properly disabled when the employee leaves the company. IDM automatically sets up
privileges for students and staff appropriate for their classes. IDM records access privileges of
temporary workers, partners, support engineers and all the third-party identities that are not
maintained in your human resources (HR) system. IDM automates the processes of role request and
approval. IDM records every change in user privileges in the audit trail. IDM governs the annual

25

reviews of roles and access privileges. IDM makes sure the copies of user data that are kept in the
applications are synchronized and properly managed. IDM makes sure data are managed
according to data protection rules. And IDM does many other things that are absolutely essential
for every organization to operate in an efficient and secure manner.

It looks like IDM is the best thing since the sliced bread. So whereÕs the catch? Oh yes, there is a
catch. Or it is perhaps better to say that there was a catch. The IDM systems used to be expensive.
Very expensive. The IDM systems used to be so expensive, it was very difficult to justify the cost
even with such substantial and clear benefits. But that time is over now.

!

Terminology.

The term identity management is often used for the whole identity and access
management (IAM) field. This is somehow confusing because technologies such as
single sign-on or access management do not really manage the identities. Such
technologies manage the access to the applications. Even directory servers do not
exactly manage the identities. Directory servers store the identities and provide
access to them. There is in fact one whole branch of technologies that manage
identities. Those systems are responsible for creating identities and maintaining
them. Those are sometimes referred to as identity provisioning , identity lifecycle
management or identity administration systems . But given the current state of the
technology such names are indeed an understatement. Those systems can do much
more than just provisioning or management of identity lifecycle. We will refer to
these systems simply as identity management (IDM) systems. When we refer to the
entire field that contains access management, directory services, identity
management and governance we will use the term identity and access management
(IAM).

History of Identity Management

LetÕs start at the beginning. In the 1990s there was no technology that would be clearly identified as
"identity management". Of course, all the problems above had existed almost since the beginning of
modern computing. There had always been some solutions for those problems. Historically, most of
that solutions were based on paperwork and scripting. That worked quite well - until the big system
integration wave spread through the industry in the 1990s and 2000s. As data and processes in
individual applications got integrated, the IDM problems became much more pronounced. Manual
paper-based processes were just too slow for the age of information superhighways. The scripts
were too difficult to maintain in the world where new application is deployed every couple of
weeks. The identity integration effort naturally started with the state-of-the-art identity technology
of the day: directory services. As we have already shown, the directories were not entirely ideal
tools for the job. The directories did not work very well in environment where people though that
LDAP is some kind of dangerous disease, where usernames and identifiers were assigned quite
randomly and where every application insisted that the only authoritative data are those stored in
its own database.

The integration problems motivated the inception of IDM technologies in early 2000s. Early IDM
systems were just data synchronization engines that were somehow hard-coded to operate with
users and accounts. Some simple Role-Based Access Control (RBAC) engines and administration
interfaces were added a bit later. During mid-2000s there were several more-or-less complete IDM

26

systems. This was the first generation of the IDM systems. These systems were able to synchronize
identity data between applications and provide some basic management capabilities. Even such a
simple functionality was a huge success at that time. The IDM systems could synchronize the data
without any major modification of the applications, therefore they brought the integration cost to a
reasonable level. The problem was that the cost of the IDM systems themselves was quite high.
These systems were still somehow crude, therefore the configuration and customization required a
very specialized class of engineers. IDM engineers were almost exclusively employed by IDM
vendors, big system integrators and expensive consulting companies. This made the deployment of
IDM solutions prohibitively expensive for many mid-size and smaller organizations. Even big
organizations often deployed IDM solution with quite limited features to make the cost acceptable.

Early IDM systems evolved and improved in time. There were companion products for identity
governance and compliance that augmented the functionality. Yet, it is often almost impossible to
change the original architecture of a product. Therefore many first-generation IDM products
struggle with limitations of the early product design to this day.

All the first-generation IDM systems were commercial closed-source software. Many of these
products are still available on the market, and they are even considered to be leaders. However, the
closed-source character of the IDM products is itself a huge problem. Every IDM solution has to be
more-or-less customized. Which usually means more rather than less. It has to be the IDM system
that adapts, and not the applications. Requiring each application to adapt to a standardized IDM
interface means a lot of changes in a lot of different places, platforms and languages. The total cost
of all necessary modifications adds up to a huge number. Such approach is being tried from time to
time, but it almost always fails. It is not a practical approach. While there are many applications in
the IT infrastructure, there is just one IDM system. If the IDM system adapts to applications and
business processes, the changes are usually smaller, and they are all in one place, implemented in a
single platform. The IDM system must be able to adapt. It has to adapt a great deal, and it has to
adapt easily and rapidly. Closed-source software is notoriously bad at adapting to requirements that
are difficult to predict. Which in practice means that the IDM projects based on first-generation
products were hard to use, slow to adapt and expensive. The closed-source software is also prone to
vendor lock-in. Once the IDM system is deployed and integrated, it is extremely difficult to replace
it with a competing system. The closed-source vendor is the only entity that can modify the system,
and the system cannot be efficiently replaced. Which means that the end customer is not in a
position to negotiate. Which means high maintenance costs. It naturally follows that the first
generation of IDM systems was a huge commercial success. For the vendors, that is.

Then the 2000s were suddenly over, with an economic crash at the end. We can only speculate what
were the reasons, but the fact is that around the years 2009-2011 several very interesting new IDM
products appeared on the market. One interesting thing is that all of them were more-or-less open
source. The benefit that open source character brings may be easy to overlook for business-oriented
people. However, the benefits of open source in the identity management are almost impossible to
overstate. As every single IDM engineer knows, understanding of the IDM product, and the ability
to adapt the product, are two critical aspects of any IDM project. Open source is the best way to
support both understanding and flexibility. There is also third important advantage: it is almost
impossible to create a vendor lock-in situation with an open source product. All the open source
products are backed by companies that offer professional support services that are equivalent to
the services offered by commercial IDM products. This brings quality assurance for the products
and related services. However, the companies does not really "own" the products, there is no way

27

for them to abuse intellectual property rights against the customers. Open source brings new and
revolutionary approach, both to technology and business.

What is This Identity Management, Anyway?

Identity management is a simple term which encompasses a very rich and comprehensive
functionality. It contains identity provisioning (and reprovisioning and deprovisioning),
synchronization, organizational structure management, role-based access control, data consistency,
approval processes, auditing and few dozens of other features. All of that is thoroughly blended and
mixed with a pinch of scripting and other seasoning until there is a smooth IDM solution.
Therefore, it is quite difficult to tell what identity management is just by using a dictionary-like
definition. We would rather describe what identity management is by using a couple of typical
usage scenarios.

LetÕs have a fictional company called ExAmPLE, Inc. This company has few thousand employees,
decent partner network, customers and suppliers and all the other things as real-world companies
have. And ExAmPLE company has an IDM system running in its IT infrastructure.

ExAmPLE hires a new employee called Alice. Alice signs an employee contract few days before she
starts her employment. The contract is entered into the HR system by the ExAmPLE HR staff. The
IDM system periodically scans the HR records, and it discovers the record of a new hire. The IDM
systems pulls in the record and analyzes it. The IDM system will take userÕs name and employee
number from the HR record, it will generate a unique username and based on that information it
creates a user record in the IDM system. The IDM system also gets the organization code of 11001
from the HR record. The IDM will look inside its organizational tree and discovers that the code
11001 belongs to sales department. Therefore IDM will automatically assign the user to the sales
department. The IDM will also process the work position code of S007 in the HR record. The IDM
policies say that the code S007 means sales agent and that anybody with that code should
automatically receive the "Sales Agent" role. Therefore the IDM will assign that role. As this is a core
employee, the IDM will automatically create an Active Directory account for the user together with
the company mailbox. The account will be placed into the Sales Department organizational unit.
The "Sales Agent" role entitles the user to more privileges. Therefore the Active Directory account is
automatically assigned to sales groups and distribution lists. The role also gives access to the CRM
system, therefore CRM account is also automatically created and assigned to appropriate groups.
All of that happens in a couple of seconds after the new HR record is detected. It all happens
automatically.

28

Alice starts her career, and she is a really efficient employee. Therefore she gets more
responsibilities. Alice is going to prepare specialized market analyses based on empirical data
gathered in the field. ExAmPLE is a really flexible company, always inventing new ways how to
make business operations more efficient. Therefore they invented this work position especially to
take advantage of AliceÕs skills. Which means there is no work position code for AliceÕs new job. But
she needs new privileges in the CRM system to do her work efficiently. She needs that right now.
Fortunately the ExAmPLE has a flexible IDM system. Alice can log into the IDM system, select the
privileges that she needs and request them. The request has to be approved by AliceÕs manager and
by the CRM system owner too. They get the notification about the request, and they can easily
approve or reject it in the IDM system. Once the request is approved AliceÕs CRM account will be
automatically assigned to appropriate CRM groups. Alice may start working on her analysis
minutes or hours after she has requested the privileges.

29

Alice lives happily ever after. One day she decides to get married. Alice, similarly to many other
women, has the strange habit of changing her surname after the marriage. Alice has a really
responsible work position now, she has accounts in a dozen information systems. This is no easy
task to change her name in all of them, is it? In fact, it is very easy because ExAmPLE has its IDM
system. Alice goes to the HR department, and the HR staff changes her surname in the HR system.
The IDM system will pick up the change and propagate that to all the affected systems. Alice even
automatically gets a new e-mail address with her new surname (keeping the old one as an alias).
Alice receives a notification that now she can use her new e-mail address. The change is fast, clean
and effortless.

30

Later that day Alice discovers that her password is about to expire. Changing the password in all
the applications would be a huge task. But Alice knows what to do. She logs into the IDM system
and changes her password there. The password change is automatically propagated to each
affected system according to policy set up by the IT security office.

The following month something unexpected happens. There is a security incident. The security
office discovered the incident and now they are investigating it. It looks like it was an insider job.
The security officers are using the data from the IDM system to focus their investigation on users
that had privileges to access affected information assets. They pinpoint Mallory as a prime suspect.
The interesting thing is that Mallory should not have these privileges at all. Luckily the IDM system
also keeps an audit trail about every privilege change. Therefore they discover that it was MalloryÕs
colleague Oscar that assigned these privileges to Mallory. Both men are to be interviewed. But as
this incident affects sensitive assets there are some preventive measures to be executed before any
word about the incident spreads. The security officers use the IDM system to immediately disable
all the accounts that Mallory and Oscar have. It takes just a few seconds for IDM to disable these
accounts in all the affected applications.

31

The investigation later reveals that Oscar is mostly innocent. Mallory misused OscarÕs trust and
tricked him to assign the extra privileges. Mallory abused the privileges to get sensitive data and he
tried to sell them. The decision is that Mallory has to immediately leave the company while Oscar
may stay. However, as Oscar has shown poor judgment in this case his responsibilities are reduced.
The IDM is now used to permanently disable all MalloryÕs accounts, to re-enable OscarÕs accounts
and also to revoke sensitive privileges that are considered too risky for Oscar to have.

Few months later Oscar is still ashamed because of his failure. He decides not to prolong his
employee contract with ExAmPLE and to leave the company without causing more trouble. OscarÕs
contract expires at the end of the month. This date is recorded in the HR system and the IDM system
takes it from there. Therefore at midnight of the last OscarÕs day at work the IDM system
automatically deletes all OscarÕs accounts. Oscar starts a new career as a barman in New York. He is
very successful.

32

