

Practical Identity Management With
MidPoint

Radovan Semančík et al.

Version 2.2, 2022-04-21

Colophon
Practical Identity Management With MidPoint
by Radovan Semančík et al.
Evolveum

Book revision: 2.2
Publication date: 2022-04-21
Corresponding midPoint version: 4.4

© 2015-2022 Radovan Semančík and Evolveum, s.r.o. All rights reserved.

This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Major sponsoring for this book was provided by:

1

http://creativecommons.org/licenses/by-nc-nd/4.0/

Table of Contents
Colophon. 1

Introduction. 6

1. Understanding Identity and Access Management . 10

Directory Services and Other User Databases . 10

Directory Servers are Databases . 13

Access Management . 14

Identity Management . 25

Identity Governance . 44

Identity Management and Governance Terminology . 53

Complete Identity and Access Management Solution . 54

IAM and Security . 55

Building Identity and Access Management Solution. 60

2. MidPoint Overview . 61

How MidPoint Works . 61

Case Study . 65

Connectors and Resources. 65

User and Accounts . 68

Initial Import. 71

Assignments and Projections . 74

Roles . 76

There Is Much More . 79

What MidPoint Is Not . 79

3. Installation and Configuration Principles . 81

Requirements . 81

Installation. 81

MidPoint User Interface . 82

User Interface Areas . 83

User Interface Concepts . 84

Object Details Page . 85

MidPoint Configuration Basics . 89

Configuration Objects . 89

XML, JSON and YAML . 90

Maintaining MidPoint Configuration . 92

Looking Around MidPoint Installation. 93

Logging . 93

4. Resources and Mappings . 95

Identity Resource Definitions . 95

Connectors . 97

2

Bundled and Deployed Connectors . 98

Connector Configuration Properties . 99

Testing the Resource . 101

Resource Schema Basics. 102

Hub and Spoke . 103

Schema Handling. 107

Attribute Handling . 108

Mappings . 110

Expressions . 115

Script Expressions . 116

Activation. 118

Credentials. 119

Complete Provisioning Example . 119

Shadows . 126

5. Synchronization . 129

Synchronization in MidPoint . 130

Source Systems, Target Systems And Other Creatures . 131

Inbound and Outbound Mappings . 132

Correlation . 135

Synchronization Situations and Reactions . 136

Synchronization Tasks . 140

Synchronization Example: HR Feed . 142

HR Feed Recommendations. 151

Synchronization and Provisioning . 153

Synchronization Strategies . 155

Mapping and Expression Tips and Tricks . 156

Resource Capabilities . 159

Synchronization Example: LDAP Account Correlation. 161

Peculiarities of Reconciliation . 169

Deltas . 170

Live Synchronization . 173

Conclusion . 174

6. Schema . 176

MidPoint Schema . 176

Data Unification . 177

Basic User Schema. 177

Operational, Experimental and Deprecated Items . 183

Activation. 184

Schema Definition . 189

Schema Extensibility. 191

PolyString and Protected String . 194

3

Advanced Schema Concepts . 198

Type Hierarchy. 198

Item Path . 202

Conclusion . 205

7. Role-Based Access Control . 206

Reality, Policy and Assignments . 206

Roles . 209

Provisioning Roles . 210

Roles, Accounts and Attributes. 213

Role Hierarchy . 214

Role Universality . 218

Role Hierarchy Structure . 219

Assignment Gets Complicated . 220

Dynamic Roles . 221

Metaroles . 224

RBAC, ABAC And The Wildlife. 226

8. Object Templates . 229

Object Templates . 229

Item Definitions In Object Template . 231

Automatic Role Assignment in Object Template . 235

Autoassignment in Roles . 241

Iteration . 243

Includes . 250

Combining the Ingredients . 251

Complete Deployment Example . 252

Conclusion . 268

9. Organizational Structures . 270

Organizational Units . 270

Organizational Structure Hierarchy . 273

Orgs in the Database . 277

Orgs and Roles . 278

Managers . 280

Relation . 284

Multiple Organizational Structures. 287

Beyond Users . 289

Organizational Structure Synchronization . 290

Organizational Structure Provisioning . 301

Focus and Projection. 308

Conclusion . 311

10. Troubleshooting . 312

Designed for Visibility . 312

4

Systematic Approach . 313

Error Messages and Operation Results. 314

Logging . 316

Auditing . 322

Troubleshooting Clockwork and Projector . 324

Troubleshooting Mappings and Expressions . 330

Troubleshooting Connectors . 333

Troubleshooting Authorizations . 336

Reporting a Bug . 339

Useful Troubleshooting Tips . 342

11. MidPoint Development, Maintenance and Support . 344

Professional Development. 344

Open Source . 344

MidPoint Release Cycle. 345

MidPoint Support and Subscriptions . 345

MidPoint Community . 346

12. Additional Information . 348

MidPoint Documentation Site. 348

Samples . 348

Book Samples . 348

Story Tests . 349

MidPoint Mailing List . 349

Evolveum Blog . 350

To Be Continued . 351

Conclusion . 354

Glossary . 355

5

Introduction
It’s a dangerous business, Frodo, going out your door. You step onto the
road, and if you don’t keep your feet, there’s no knowing where you might
be swept off to.

— Bilbo Baggins, The Lord of the Rings by J.R.R. Tolkien

Many years ago we started a project. Because we had to. Back then we didn’t think too much about
business and markets and things like that. We were focused on the technology. The project simply
went on. It had its ups and downs – but all the time there was pure engineering passion. The effort
brought fruits, and now there is a product like no other: midPoint.

MidPoint is an identity management and governance platform. We built it from scratch. It is a
comprehensive and feature-rich system. MidPoint can handle complete identity lifecycle
management and some parts of identity governance and compliance. It can speed up the process
that create accounts for new employee, student or customer. MidPoint can automatically disable
accounts after the relation to the person has expired. MidPoint manages assignment of roles and
privileges to employees, partners, agents, contractors, customers and students. MidPoint keeps an
eye that the policies are continually maintained and enforced. It governs the processes of access
certification (attestations). It provides auditing and reporting based on the identity data.

MidPoint is a comprehensive system. There are not many products that can do what midPoint does.
Yet, midPoint has one critical advantage over the competing products: midPoint is completely open
source platform. Open source is the fundamental philosophy of midPoint. We believe that open
source is a critical aspect in the development of quality software. Open source principle is a guiding
principle of midPoint community: partners, contributors supporters and all the engineers that
work with midPoint. Open source character means that any engineer can completely understand
how midPoint works. It also means that midPoint can be modified as needed, that issues can be
fixed quickly, and especially to ensure the continuity of midPoint development. After all these years
with midPoint, we simply cannot imagine using any identity technology which is not open source.

There are few engineers in our team who have been dealing with identity management
deployments since early 2000s. The term "Identity and Access Management" (IAM) was not even
invented back then. We have seen a lot of IAM solutions during our careers. The IDM system was
the core of vast majority of these solutions. Whether it is given by our point of view, or whether
that is the generic rule, we do not know for sure. All we know is that midPoint is a really useful tool.
When it is used by the right hands, midPoint can do miracles. This is exactly what this book is all
about: the right use of midPoint to build a practical Identity Management solutions. This book will
tell you how to build and deploy a practical IDM solution. It will also tell you why to do it in the first
place. The book will explain not just the features and configuration options. It will also describe the
motivation and the underlying principles of identity management. Understanding the principles is
as at least as important as knowing the mechanics of an IDM product. The book describes how the
things work when they work. It also tries to describe the limitations, drawbacks and pitfalls. The
limitations are often much more important than the features, especially when designing a new
solution on a green field.

The first chapter is an introduction to the basic concepts of Identity and Access Management (IAM).

6

It is very general, and it does not deal with midPoint at all. Therefore, if you are familiar with
Identity and Access Management, feel free to skip the first chapter. However, according to our
experience, this chapter has many some things to tell even to exprienced IAM engineers. If you are
impatient, and you want to start directly with midPoint, then skip the chapter (you would do that
anyway, wouldn’t you?). Just please try to find the time to return to the first chapter later. This
chapter contains important information to put midPoint in broader context. You will need that
information to build a complete IAM solution.

The second chapter describes the midPoint big picture. It shows how midPoint looks like from the
outside. It describes how midPoint is usually used, and how it behaves. The purpose of this chapter
is to familiarize the reader with midPoint workings and basic principles. It describes how midPoint
is used.

The third chapter describes basic concepts of midPoint configuration. It guides the reader through
midPoint installation. It describes how midPoint is customized to suit the needs of a particular
deployment. However, midPoint customization is a very complex matter, and chapter describes just
the basic principles. It will take most of the book to fill in the details.

The fourth chapter describes the concepts of identity resource and mappings. This is the bread-and-
butter of an identity management. This chapter will tell you how to create very basic midPoint
deployment, how to connect target systems and how to map and transform the data.

The fifth chapter is all about synchronization. Primary purpose of synchronization is to get the data
from the source systems such as HR system to midPoint. Yet, midPoint synchronization is much
more powerful than that. This chapter also expands the explanation of underlying midPoint
principles such as mappings and deltas.

The sixth chapter talks about midPoint schema. MidPoint has a built-in identity data model. Even
though this data model is quite rich, it is usually not sufficient to cover all the real-world use cases.
Therefore, the data model is designed to be extensible. This chapter describes the methods how a
new data items can be defined in midPoint schema.

The seventh chapter is all about role-based access control (RBAC). MidPoint role-based model is a
very powerful tool to set up complex structures describing job roles, responsibilities, privileges and
so on. The role model, and especially the concept of assignment, are generic mechanisms that are
used in almost every part of midPoint. Organizational structure management and many identity
governance features are built on the foundations described in this chapter.

The eighth chapter is an introduction to object templates. Those templates form a basis of an
internal data consistency in midPoint. They can be used to set up simple policies and automation
rules. Object templates are a basic workhorse that is used in almost all midPoint deployments.

The ninth chapter describes organizational structures. MidPoint organizational structure
mechanisms are generic and very powerful. They can be used to model traditional organizational
hierarchies, tree, and even structures that are not exactly trees. The same mechanism can be used
to set up projects, teams, workgroups, classes or almost any conceivable grouping concept. This
chapter describes how organizational structures are synchronized with the outer world. The
concept of generic synchronization can be applied to synchronize midPoint objects with almost any
external data structure.

7

The tenth chapter is about troubleshooting. To err is human. Given all the flexibility of midPoint
mechanisms, configuration mistakes just happen, and it may not be easy to figure out the root
cause of problems. Therefore, this chapter provides an overview of midPoint diagnostic facilities
and recommendations for their use.

The eleventh chapter provides overview of midPoint development process and overall approach. It
is also explained how midPoint development is funded and how midPoint subscriptions work.

The twelfth chapter is a collection of pointers to additional information. This includes a pointer to
sample files that accompany this book.

Finally, there is a glossary, explaining all the strange and confusing terms used in identity
management and governance field.

The other chapters are not written yet. The description of policies, entitlements, authorizations,
archetypes, deployment practices and all the other advanced topics is missing. This book is not
finished yet. Just like midPoint itself, this book is written in an incremental and iterative way.
Writing a good book is a huge task in itself, and it takes a lot of time. We cannot dedicate that much
time to writing the book in one huge chunk. Obviously, a book like this is needed for midPoint
community. Therefore, we have decided not to wait until the book is complete. We will be
continuously publishing those chapters that are reasonably well finished. It is better to have
something than to have nothing, isn’t it? Please be patient. The whole book will be finished
eventually. As always – your support, contributions and sponsoring may considerably speed up
things here.

We would like to thank all the midPoint developers, contributors and supporters. There was a lot of
people involved in midPoint during all these years. All these people pushed midPoint forward. Most
of all, we would like to thank the people that were there when the midPoint project was young and
that are still there until this day. We would like to thank Katka Stanovská, Katka Bolemant (née
Valaliková), Igor Farinič, Ivan Noris, Vilo Repáň, Pavol Mederly and Radovan Semančík. Those were
the people that were there when midPoint was young, and they are still the people who are the
force that drives midPoint into the future.

Anything that is stated in this book are the opinions of the authors. We have tried really hard to
remain objective. However, as hard as we might try, some points of view are difficult to change. We
work for Evolveum – a company that is also an independent software vendor. Therefore, our
opinions may be slightly biased. We have honestly tried to avoid any biases and follow proper
engineering practices. You are the judge and the jury in this matter. You, the reader, will decide
whether we have succeeded or not. You have free access to all the necessary information to do that:
this book is freely available as is all the midPoint documentation and the source code. We are not
hiding anything. Unlike many other vendors, we do not want or need to hide any aspect of the
software we are producing.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0
International License (CC BY-NC-ND). This essentially means that you can freely use this book for a
personal use. You can retrieve and distribute it at no cost. However, you are not allowed to sell it,
modify it or use any parts of this book in commercial projects. There is no direct profit that we
make from this book. The primary reason for writing this book is to spread knowledge about
midPoint. However, even open source projects such as midPoint need funding. If you use midPoint

8

in a commercial project that is a source of profit we think it is only fair if you share part of that
profit with midPoint authors. Therefore, we have chosen the CC BY-NC-ND license for this book. You
can use this book freely to learn about midPoint. However, this license does not give you right to
take parts of this book and include it in your project documentation. You can point to this book by
URL, but you are not allowed to pass this book to the customer as a part of product documentation
in a commercial project. You are not allowed to use this book as material during commercial
training. You are not allowed use the book in any way that generates profit. If you need to use this
book in such a way, please contact Evolveum, and you can obtain special license to do this. The
license fees collected in this way will be used to improve midPoint and especially midPoint
documentation. You know as well as we do that this is needed.

Following people have worked on the words and images that make up this book:

• Radovan Semančík (author and maintainer)

• Veronika Kolpaščiková (illustrations, corrections)

• Richard Richter (corrections, suggestions)

Yet there is much more people whose work was needed to make this work happen: midPoint
developers, contributors, analysts and deployment engineers, specialists and generalists,
theoretical scientists and practical engineers, technical staff and business people, people of
Evolveum and the people that work for our partners, our families, friends and all the engineers and
scientists for generations and generations past. We indeed stand on the shoulders of giants.

9

Chapter 1. Understanding Identity and
Access Management

The beginning of knowledge is the discovery of something we do not
understand.

— Frank Herbert

What is identity and access management? Answer to that question is both easy and very complex.
The easy part is: identity and access management (IAM) is a set of information technologies that
deal with identities in the cyberspace. The complex part of the answer takes the rest of this book.

This book deals mostly with Enterprise Identity and Access Management. That is identity and access
management applied to larger organizations such as enterprises, financial institutions, government
agencies, universities, health care, etc. The focus is on managing employees, contractors, customers,
partners, students and other people that cooperate with the organization. However, many of the
mechanisms and principles described in this book can be applied to non-enterprise environments.

The story of identity and access management starts with information security. The security
requirements dictate the need for authentication and authorization of the users. Authentication is a
mechanism by which the computer checks that the user is really the one they pretend to be. And
authorization is a related mechanism by which the computer determines whether to allow or deny
the user a specific action. Almost every computer system has some means of authentication and
authorization.

Perhaps the most widespread form of authentication is a password-based "log in" procedure. The
user presents an identifier and a password. The computer checks whether the password is valid.
For this procedure to work the computer needs an access to the database of all valid users and
passwords. Early stand-alone information systems had their own databases that were isolated from
the rest of the cyberspace. The data were maintained manually. But the advent of computer
networking changed everything. Users were able to access many systems and the systems
themselves were connected to each other. Maintaining an isolated user database in each system no
longer made much sense. And that’s where the real story of digital identity begins.

Directory Services and Other User Databases
The central concept of identity management is a data record that contains information about a
person. This concept has many names: user profile, persona, user record, digital identity and many
more. The most common name in the context of identity management is user account. Accounts
usually hold information that describes the real-world person using a set of attributes such as given
name and family name. But probably the most important part is the technical information that
relates to the operation of an information system for which the account is created. This includes
operational parameters such as location of users home directory, wide variety of permission
information such as group and role membership, system resource limits and so on. User accounts
are represented in a wide variety of forms ranging from relational database records through
structured data files to semi-structured text files. But regardless of the specific method used to store

10

and process the records the account is undoubtedly one of the most important concepts of IAM
field. And so are the databases where the accounts are stored as accounts, being data records, they
have to be stored somewhere.

The account databases are as varied as the account types. Most account databases in the past were
implemented as an integral part of the monolithic information system using the same database
technology as the system itself used. This is an obvious choice and it remains very popular even
today. Therefore many accounts are stored in relational database tables and similar application
data stores.

Application data stores are usually tightly bound to the application. Therefore accounts stored in
such databases are difficult to share with other applications. However, sharing account data across
the organization is more than desirable. It makes very little sense to maintain account data in each
database separately – especially if most the accounts are the same in each application. Therefore
there is a strong motivation to deploy account databases that can be shared by many applications.

Directory servers are built with the primary purpose to provide shared data storage to applications.
While application databases usually use their own proprietary protocol, directory servers
implement standardized protocols. While databases are built for application-specific data model,
directory servers usually extend standardized data model which improves interoperability. While
databases may be heavyweight and expensive to scale, directory servers are designed to be
lightweight and provide massive scalability. That makes directory servers almost ideal candidates
for a shared account database.

11

Shared identity store is making user management easier. An account needs to be created and
managed in one place only. Authentication still happens in each application separately. Yet, as the
applications use the same credentials from the shared store, the user may use the same password
for all the connected applications. This is an improvement over setting the password for each
application separately.

Identity management solutions based on shared directory servers are simple and quite cost-
efficient. Therefore we have been giving the same advice for many years: if you can connect all
your applications to an LDAP server, do not think too much about it and just do it. The problem is
that this usually works only for very simple systems.

Lightweight Directory Access Protocol (LDAP)

Lightweight Directory Access Protocol (LDAP) is a standard protocol for accessing directory
services. It is an old protocol when judging by Internet age standards. LDAP roots go as far back as
1980s to a family of telecommunication protocols known as X.500. Even though LDAP may be old, it
is widely used. It is a very efficient binary protocol that was designed to support massively
distributed shared databases. It has a small set of well-defined simple operations. The operations
and the data meta-model implied by the protocol allow very efficient data replication and
horizontal scalability of directory servers. This simplicity contributes to low latencies and high
throughput for read operations. The horizontal scalability and relative autonomy of directory
server instances is supposed to increase the availability of the directory system. These benefits
often come at the expense of slow write operations. As identity data are often read but seldom
modified, slower writes are usually a perfectly acceptable trade-off. Therefore, LDAP-based
directory servers were, and in many places still remain, the most popular databases for identity
data.

LDAP is one of the precious few established standards in the IAM field. However, it is far from
being perfect. LDAP was created in 1990s, with roots going back to 1980s. There are some problems
in original LDAP design, such as grouping mechanisms and some details of search and modify
operations. Also, LDAP schema has a distinctive feel of 80s and 90s. LDAP would deserve a major
review, to correct the problems and bring the protocol to 21st century. Sadly, there hasn’t been a
major update to LDAP specifications for decades.

Even though LDAP has its problems, it still remains a useful tool. Most LDAP server vendors
provide proprietary solutions to LDAP problems. Many organizations store identities in LDAP-

12

enabled data stores. There are many applications that support LDAP, mostly for centralization of
password-based authentication. LDAP still remains a major protocol in Identity and Access
Management field. Therefore we will be getting back to the LDAP protocol many times in this book.

Directory Servers are Databases
Directory servers are just databases that store information. Nothing more. The protocols and APIs
used to access directory servers are designed as database interfaces. It means that they are good for
storing, searching and retrieving data. While the user account data often contain entitlement
information (permissions, groups, roles, etc.), identity stores are not well suited to evaluate them.
I.e. directory server can provide information what permissions an account has, but it is not
designed to make a decision whether to allow or deny a specific operation. And that is not all.
Directory servers do not contain data about user sessions. It means that directory servers do not
know whether the user is currently logged in or not. Many directory servers are used for basic
authentication and even authorization. Yet, the directory servers were not designed to do this.
Directory servers provide only the very basic capabilities. There are plug-ins and extensions that
provide partial capabilities to support authentication and authorization. But that does not change
the fundamental design principles. Directory servers are databases, not authentication or
authorization servers. They should be used as such.

However, many applications use directory servers to centralize password authentication. In fact,
this is a good and cost-efficient way to centralize password-based authentication, especially if you
are just starting with identity and access management. Nevertheless, you should be aware this a
temporary solution. It has many limitations. The right way to do it is to use an authentication server
instead of directory server. Access Management (AM) technologies can provide that.

Single Directory Server Myth

Shared directory server makes user management easier. However, this is not a complete solution
and there are serious limitations to this approach. The heterogeneity of information systems makes
it nearly impossible to put all required data into a single directory system.

The obvious problem is the lack of a single, coherent source of information. There are usually
several sources of information for a single user. For example a human resources (HR) system is
authoritative for the existence of a user in the enterprise. But the HR system is usually not
authoritative for assignment of employee identifier such as username. There needs to be an
algorithm that ensures uniqueness of the username, possibly including uniqueness across all the
current and past employees, contractors and partners. Moreover, there may be additional sources
of information. For example Management information system may be responsible for
determination of user’s roles (e.g. in project-oriented organizational structure). Inventory
management system may be responsible for assigning telephone number to the user. The
groupware system may be an authoritative source of the user’s e-mail address and other electronic
contact data. There are usually 2 to 20 systems that provide authoritative information for a single
user. Therefore, there is no simple way how to feed and maintain the data in the directory system.

And then there are spacial and technological barriers. Many complex applications need local user
database. They must store the copies of user records in their own databases to operate efficiently.
For example, large billing systems cannot work efficiently with external data (e.g. because of a need

13

to make relational database join). Therefore, even if directory server is deployed, these applications
still need to maintain a local copy of identity data. Keeping the copy synchronized with the
directory data may seem like a simple task. But it is not. Additionaly, there are legacy systems which
usually cannot access the external data at all (e.g. they do not support LDAP protocol at all).

Some services need to keep even more state than just a simple database record. For example file
servers usually create home directories for users. While the account creation can usually be done
in on-demand fashion (e.g. create user directory at first user log-on), the modification and deletion
of the account is much more difficult. Directory server will not do that.

Perhaps the most painful problem is the complexity of access control policies. Role names and
access control attributes may not have the same meaning in all systems. Different systems usually
have different authorization algorithms that are not mutually compatible. While this issue can be
solved with per-application access control attributes, the maintenance of these attributes is seldom
trivial. If every application has its own set of attributes to control access control policies then the
centralized directory provides only a negligible advantage. The attributes may as well reside in the
applications themselves. And that’s exactly how most deployments end up. Directory servers
contain only the groups, groups that usually roughly approximate RBAC roles. Even LDAP
standards themselves create a significant obstacle to interoperability in this case. There are at least
three or four different and incompatible specifications for group definition in LDAP directories.
The standard to manage LDAP groups is not ideal at all. It is especially problematic when managing
big groups. Therefore, many directory servers provide their own non-standard improvements,
which further complicates interoperability. Yet even these server-specific improvements usually
cannot support complex access control policies. Therefore, access control policies and fine-grained
authorizations are usually not centralized, they are maintained directly in the application
databases.

The single directory approach is feasible only in very simple environments or in almost entirely
homogeneous environments. In all other cases there is a need to supplement the solution by other
identity management technologies.

This does not mean that the directory servers or other shared databases are useless. Quite the
contrary. They are very useful if they are used correctly. They just cannot be used alone. More
components are needed to build a complete solution.

Access Management
While directory systems are not designed to handle complex authentication, access management
(AM) systems are built to handle just that. Access management systems handle all the flavors of
authentication, and even some authorization aspects. The principle of all access management
systems is basically the same:

1. Access management system gets between the user and the target application. This can be done
by a variety of mechanisms, the most common method is that the applications themselves
redirect the user to the AM system if they do not have existing session.

2. Access management system prompts user for the username and password, interacts with
authentication token, creates a challenge and prompts for the response or in any other way
initiates the authentication procedure.

14

3. User enters the credentials.

4. Access management system checks the validity of credentials and evaluates access policies.

5. If access is allowed then the AM system redirects user back to the application. The redirection
usually contains an access token: a small piece of information that tells the application that the
user is authenticated.

6. Application validates the token, creates a local session and allows the access.

After that procedure, the user works with the application normally. Only the first access goes
through the AM server. This is important for AM system performance and sizing, and it impacts
session management functionality.

The applications only need to provide the code that integrates with the AM system. Except for that
small integration code, applications do not need to provide any authentication code at all. It is the
AM system that prompts for the password, not the application. This is a fundamental difference
when compared to LDAP-based authentication mechanisms. In the LDAP case, it is the application
that prompts for the password. In the AM case, the Access Management server does everything.
Many applications do not even care how the user was authenticated. All they need to know is that
he was authenticated and that the authentication was strong enough. This feature brings a very
desirable flexibility to the entire application infrastructure. The authentication mechanism can be
changed at any time without disrupting the applications. We live in an era when passwords are
migrated to a stronger authentication mechanisms. The flexibility that the AM-based approach

15

brings may play a key part in that migration.

Web Single Sign-On

Single Sign-On (SSO) systems allow user to authenticate once, and access number of different
system after that. There are many SSO systems for web applications, however it looks like these
systems are all using the same basic principle of operation. This general access management flow is
described below:

1. Application A redirects the user to the access management server (SSO server).

2. The access management server authenticates the user.

3. The access management server establishes session (SSO session) with the user browser. This is
the crucial part of the SSO mechanism.

4. User is redirected back to the application A. Application A usually establishes a local session with
the user.

5. User interacts with application A.

6. When user tries to access application B, the application B redirects user to the access
management server.

7. The access management server checks for existence of SSO session. As the user authenticated
with the access management server before, there is a valid SSO session.

8. Access management server does not need to authenticate the user again and immediately
redirects user back to application B.

9. Application B establishes a local session with the user and proceeds normally.

The user usually does not even realize that he was redirected when accessing application B. There is
no interaction between the redirects and the redirects and the processing on the access
management server is usually very fast. It looks like the user was logged into the application B all
the time.

16

Authorization in Access Management

The request of a user accessing an application is directly or indirectly passed through the access
management server. Therefore, the access management server can analyze the request and
evaluate whether the user request is authorized or not. That is a theory. Unfortunately, the situation
is much more complicated in practice.

The AM server usually intercepts only the first request to access the application because it would be
a performance impact to intercept all the requests. After the first request, the application
established a local session and proceeds with the operation without any communication with the
AM server. Therefore the AM server can only evaluate authorization during the first request. This
means it can only evaluate a very rough-grained authorization decisions. In practice, it usually
means that the AM server can make only all-or-nothing authorization decisions: whether a
particular user can access all parts of a particular application or that he cannot access the
application at all. The AM server usually cannot make any finer-grain decisions just by itself.

Some AM systems provide agents that can be deployed to applications and that enforce a finer-
grain authorization decisions. Such agents often rely on HTTP communication, they are making
decisions based on the URLs that the user is accessing. This approach might have worked well in
the 1990s, but it has only very limited applicability in the age of single-page web applications and

17

mobile applications. In such cases the authorization is usually applied to services rather than
applications.

However, even applying the authorization to service front-ends does not solve the problem entirely.
Sophisticated applications often need to make authorization decisions based on context which is
simply not available in the request or user profile at all. E.g. an e-banking application may allow or
deny a transaction based on the sum of previous transactions that were made earlier that day.
While it may be possible to synchronize all the authorization information into the user profile, it is
usually not desirable. It would be a major burden to keep such information updated and consistent,
not to mention security concerns. Many authorization schemes rely on a specific business logic,
which is very difficult to centralize in an authorization server.

Then there are implementation constraints. In theory, the authorization system should make only
allow/deny decisions. However, this is not enough to implement an efficient application. The
application cannot afford to list all the objects in the database, pass them to authorization server,
and the realize that the authorization server denied access to almost all of them. Authorization has
to be processes before the search operation and additional search filters have to be applied. Which
means that authorization mechanisms need to be integrated deep into the application logic. This
significantly limits the applicability of centralized authorization mechanisms.

AM systems often come with a promise to unify authorization across all the applications and to
centralize management of organization-wide security policies. Unfortunately, such broad promises
are seldom fulfilled. The AM system can theoretically evaluate and enforce some authorization
statements. This may work well during demonstrations and even in very simple deployments. Yet in
complex practical deployments, this capability is extremely limited. The vast majority of the
authorization decisions is carried out by each individual application and is completely outside of
the reach of an AM system.

SAML and OpenID Connect

Some access management systems use proprietary protocols to communicate with the applications
and agents. This is obviously an interoperability issue – especially when the AM principles are used
in the Internet environment. Indeed, it is the Internet that motivated standardization in this field.

The first widespread standardized protocol in this field was Security Assertion Markup Language
(SAML). The original intent of SAML was to allow cross-domain sign-on and identity data sharing
across organizations on the Internet. SAML is both an access management protocol and a security
token format. SAML is quite complex, heavily based on XML standards. Its specifications are long,
divided into several profiles, there are many optional elements and features and overall SAML is a
set of very rich and flexible mechanisms.

Primary purpose of SAML is transfer of identity information between organizations. There are big
SAML-based federations with hundreds of participating organizations. Many e-government
solutions are based on SAML, there are big partner networks running on SAML, and overall it looks
like SAML is a success. Yet, SAML was a victim of its own flexibility and complexity. The latest
fashion trends are not very favorable to SAML. XML and SOAP-based web service mechanisms are
getting out of fashion, which impacts popularity of SAML. That has probably motivated the
inception of other access management protocols.

18

The latest fashion favors RESTful services and simpler architectural approaches. All of that
probably contributed to the development of OpenID Connect protocol (OIDC). OpenID Connect is
based on much simpler mechanisms than SAML, but it is reusing the same basic principles. OpenID
connect has a very eventful history. It all started with a bunch of homebrew protocols such as LID
or SXIP, that are mostly forgotten today. That was followed by the development of OpenID protocol,
which was still very simple. OpenID gained some attention especially with providers of Internet
services. Despite its simplicity, OpenID was not very well engineered, and it quickly reached its
technological limits. It was obvious that OpenID needs to be significantly improved. At that time,
there was almost unrelated protocol called OAuth, which was designed for management of cross-
domain authorizations. That protocol was developed into something that was almost, but not quite,
entirely unlike the original OAuth protocol. As the result had almost nothing to do with the original
OAuth protocol, it is perfectly understandable that it was dubbed OAuth2. In fact, OAuth2 is not
really a protocol at all. It is rather a vaguely-defined framework to build other protocols. OAuth2
framework was used to build a cross-domain authentication and user profile protocol. This new
protocol is much more similar to SAML than to the original OpenID, therefore it was an obvious
choice to call it OpenID Connect. Some traditions are just worth maintaining.

Now there are two protocols that are using the same principle and doing almost the same thing.
The principle is illustrated in the following diagram.

The interaction goes like this:

1. User is accessing a resource. This can be web page or web application on the target site.

2. Target site does not have a valid session for the user. Therefore it redirects user browser to the

19

source site. It will add authentication request into that redirect.

3. Browser follows the redirect to the source site. The source site gets the authentication request
and parses it.

4. If the user is not already authenticated with the source site then the authentication happens
now. The source site prompts for the username, password, certificate, one-time password or
whatever credential that is required by the policy. With a bit of luck the authentication
succeeds.

5. The source site redirects the browser back to the target site. The source site adds authentication
response to the redirect. The most important part of the response is a token. The token directly
or indirectly asserts user’s identity.

6. The target site will parse the authentication response and process the token. The token may by
just a reference to the real token (SAML artifact) or it may be access key to another service that
provides the identity (OIDC UserInfo). In that case the target site makes another request (6a).
This request is usually a direct one and does not use browser redirects. One way or another, the
target site now has claims about user identity.

7. Target site evaluates the identity, processes authorizations and so on. A local session with the
user is usually established at this point to skip the authentication redirects on the next request.
The target site finally provides the content.

Following table compares the terminology and technologies used in SAML and OIDC worlds.

SAML World OpenID Connect World

Source site Identity Provider (IdP) Identity Provider (IDP) or
OpenID Provider (OP)

Target site Service Provider (SP) Relying Party (RP)

Token SAML Assertion (or artifact) ID token, access token

Intended for Web applications, web services
(SOAP)

Web applications, mobile
applications, REST services

Based on N/A OAuth2

Data representation XML JSON

Cryptography framework XMLenc, XMLdsig JOSE

Token format SAML JWT

Careful reader will notice the similarity with the web-based access management mechanisms.
That’s right. This is the same wheel reinvented over and over again. However, to be completely
honest we have limited our description to cover flows for web browser only. Both SAML and OIDC
has broader applicability that just web browser flows. And the differences between the protocols
are much more obvious in these extended use cases. But the web browser case nicely illustrates the
principles and similarities of SAML, OpenID Connect and also the simple web-SSO systems.

Maybe the most important differences between SAML, OIDC and web-SSO systems is the intended
use:

20

• SAML was designed for the web applications and SOAP web services world. It will handle
centralized (single-IDP) scenarios very will, but it can also work in decentralized federations. Go
for SAML if you are using SOAP and WS-Security or if you plan to build big decentralized
federation.

• OpenID Connect was designed mostly for use with social networks and similar Internet services.
Its philosophy is still somehow centralized. It will work well if there is one strong identity
provider and many relying parties. Technologically it will fit into RESTful world much better
than SAML. Current fashion trends are favorable to OIDC.

• Web-SSO systems are designed to be used inside a single organization. This is ideal to
implement SSO between several customer-facing applications so the customers will have no
idea that they interact with many applications and not just one. The web-SSO systems are not
designed to work across organizational boundaries.

Although SAML and OIDC are designed primarily for cross-domain use, it is no big surprise to see
them inside a single organization. There is a clear benefit in using an open standardized protocol
instead of a proprietary mechanism. However, it has to be expected that the SSO system based on
SAML or OIDC will have slightly more complicated setup than a simple Web-SSO system.

Kerberos, Enterprise SSO and Friends

Many of us would like to think that everything is based on web technologies today and that non-
web mechanisms are things of the past. Yet, there are still cases that are not web-based and where
web-based SSO and AM mechanisms will not work. There is still a lot of legacy applications,
especially in the enterprise environment. Applications based on rich clients or even character-
based terminal interactions are still not that difficult to find. And then there are network operating
systems such as Windows and numerous UNIX variants, there are network access technologies
such as VPN or 802.1X and so on. There are still many cases where web-based access management
and SSO simply won’t work.

These technologies usually pre-date the web. Honestly, the centralized authentication and single
sign-on are not entirely new ideas. It is perhaps no big surprise that there are authentication and
SSO solutions even for non-web applications.

The classic classroom example of non-web SSO system is Kerberos. The protocol originated at MIT
in the 1980s. It is a single sign-on protocol for operating systems and rich clients based on
symmetric cryptography. Even though it is a cryptographic protocol it is not too complicated to
understand and it definitely withstood the test of time. It has been used to this day, especially for
authentication and SSO of network operating systems. It is a part of Windows network domain and
it is often the preferred solution for authentication of UNIX servers. The most serious limitation of
Kerberos is given by its use of symmetric cryptography. The weakness of symmetric cryptography is
key management. Kerberos key management can be quite difficult especially when Kerberos realm
gets very big. Key management is also one of the reasons why it is not very realistic to use Kerberos
in cross-domain scenarios. However inside a closed organization Kerberos is still a very useful
solution.

The major drawback in using Kerberos is that every application and client needs to be "kerberized".
In other words everybody that wants to take part in Kerberos authentication needs to have
Kerberos support in one’s software. There are kerberized versions of many network utilities so this

21

is usually not a problem for UNIX-based networks. But it is a problem for generic applications.
There is some support for Kerberos in common web browsers which is often referred to as
"SPNEGO". However this support is usually limited to interoperability with Windows domains.
Therefore even though Kerberos is still useful for operating system SSO it is not a generic solution
for all applications.

Many network devices use RADIUS protocol for what network engineers call "Authentication,
Authorization and Accounting" (AAA). However RADIUS is a back-end protocol. It does not take care
of client interactions. The goal of RADIUS is that the network device (e.g. WiFi access point, router
or VPN gateway) can validate user credentials that it has received as part of other protocol. The
client connecting to VPN or WiFi network does not know anything about RADIUS. Therefore
RADIUS is similar to the LDAP protocol and it is not really an access management technology.

Obviously there is no simple and elegant solution that can provide SSO for all enterprise
applications. Despite that one technology appeared in the 1990s and early 2000s and promised to
deliver universal enterprise SSO solution. It was called "Enterprise Single Sign-On" (ESSO). The
ESSO approach was to use agents installed on every client device. The agent detects when login
dialog appears on the screen, fills in the username and password and submits the dialog. If the
agent is fast enough the user does not even notice the dialog and this creates the impression of
Single Sign-On. However, there are obvious drawbacks. The agents need to know all the passwords
in a cleartext form. There are ESSO variations with passwords randomly generated or even single-
user passwords which partially alleviates this problem. But the drawback is that the ESSO also
needs to be integrated with password management of all the applications, which is not entirely
easy. However the most serious drawback of ESSO are the agents. These only work on workstations
that are strictly controlled by the enterprise. Yet the world is changing, enterprise perimeter has
efficiently disappeared, and the enterprise cannot really control all the client devices. Therefore
also ESSO is now mostly a thing of the past.

Access Management and the Data

Access Management servers and Identity Providers need to know the data about users to work
properly. But it is complicated. The purpose of access management systems is to manage access of
users to the applications. Which usually means processing authentication, authorization (partially),
auditing the access and so on. For this to work, the AM system needs access to the database where
the user data are stored. It needs access to usernames, passwords and other credentials,
authorization policies, attributes and so on. The AM systems usually do not store these data
themselves. They rely on external databases. In most cases these databases are directory services or
noSQL databases. This is an obvious choice: these databases are lightweight, highly available and
extremely scalable. The AM system usually need just simple attributes, therefore the limited
capabilities of directories and NoSQL databases are not a limiting factor here. Marriage of access
management and lightweight database is an obvious and very smart match.

However, there is one critical issue – especially if the AM system is also used as a single sign-on
server. The data in the directory service and the data in the applications must be consistent. E.g. it
is a huge problem if one user has different usernames in several applications. Which username
should he use to log in? Which username should be sent to the applications? There are ways how to
handle such situations, but this is usually very cumbersome and expensive. It is much easier to
unify the data before the AM system is deployed.

22

Even though the "M" in AM stands for "management", typical AM system has only a very limited
data management capabilities. The AM systems usually assume that the underlying database is
already properly managed. E.g. a typical AM system has only a very minimalistic user interface to
create, modify and delete user records. Some AM systems may have self-service functionality (such
as password reset), but even that functionality is usually very limited. Even though the AM relies on
the fact that the data in the AM directory service and the data in applications are consistent there is
usually no way how to fully synchronize the data by using the AM system itself. There may be
methods for on-demand or opportunistic data updates, e.g. creating user record in the database
when the user logs in for the first time. But there are usually no solutions for deleting the records
or for updating the records of inactive users.

Therefore the AM systems are usually not deployed alone. The underlying directory service or
NoSQL database is almost always a hard requirement for even humblest AM functionality. But for
the AM system to really work properly it needs something to manage and synchronize the data.
Identity Management (IDM) system is usually used for that purpose. In fact, it is usually strongly
recommended deploying directory and IDM system before the AM system. The AM system cannot
work without the data. And if the AM works with data that are not maintained properly, it will not
take a long time until it fails.

Advantages and Disadvantages of Access Management Systems

Access management systems have significant advantages. Most of the characteristics are given by
the AM principle of centralized authentication. As the authentication is carried out by a central
access management server, it can be easily controlled and audited. Such centralization can be used
to consistently apply authentication policies - and to easily change them when needed. It also
allows better utilization of an investment into authentication technologies. E.g. multi-factor or
adaptive authentication can be quite expensive if it has to be implemented by every application.
But when it is implemented in the AM server, it is re-used by all the applications without additional
investment.

However, there are also drawbacks. As the access management is centralized, it is obviously a
single point of failure. Nobody is going to log in when the AM server fails. This obviously means
major impact on functionality of all applications. Therefore AM servers need to be highly available
and scalable. Which is not always an easy task. The AM servers need a very careful sizing as they
may easily become a performance bottlenecks. However, perhaps the most severe drawback is the
total cost of access management solution. The cost of the AM server itself is usually not a major
issue. But the server will not work just by itself. The server needs to be integrated with every
application. Even though there are standard protocols, the integration is far from being
straightforward. Support for AM standards and protocols in the applications is still not universal.
Especially older enterprise applications need to be modified to switch their authentication
subsystem to the AM server. This is often so costly that the adoption of AM technologies is often
limited just to a handful of enterprise applications. Although recent applications usually have some
support for AM protocols, setting it up is still not an easy task. There are subtle incompatibilities
and treacherous details, especially if the integration goes beyond mere authentication into
authorization and user profile management.

Even though many organizations are planning deployment of an AM system as their first step in the
IAM project, this approach seldom succeeds. The project usually plans to integrate 50-80%

23

applications into the AM solution. But the reality is that only a handful of applications can be easily
integrated with the AM system. The rest of the applications is integrated using an IDM system that
is hastily added to the project. Therefore it is better to plan ahead: analyze the AM integration
effort, prototype the deployment, and make a realistic plan for the AM solution. Make sure the AM
can really bring the promised benefits. Starting with IDM and adding AM part later is often much
more reasonable strategy.

Homogeneous Access Management Myth

There are at least two popular access management protocols for the web. There are huge identity
federations based on SAML. Cloud services and social networks usually use OpenID Connect or its
variations. There are variations and related protocols to be used for mobile applications and
services. Then there are other SSO protocols, primarily focused on intra-organizational use. There
is no single protocol or mechanism that can solve all the problems in the AM world.

Additionaly, the redirection approach of AM systems assumes that the user has something that can
display authentication prompts and carry out user interaction. Which is usually a web browser.
Therefore, the original variant of access management mechanisms applies mostly to conventional
web-based applications. Variations of this approach are also applicable to network services and
single-page web applications. However, this approach is usually not directly applicable for
applications that use rich clients, operating system authentication and similar "traditional"
applications. Browser is not the primary environment that can be used to carry out the
authentication in those cases. There are some solutions that usually rely on embedded browser,
however that does not change the basic fact that the AM technologies are not entirely suitable for
this environment. These applications usually rely on Kerberos as an SSO system or do not integrate
with any SSO system at all.

Typical IT environment is composed of a wild mix of technologies and not all of them are entirely
web-based. Therefore it is quite unlikely a single AM system can apply to everything that is
deployed in your organization. Authentication is very tightly bound to the user interaction,
therefore it depends on the method how the user interacts with the application. As the user is using
different technologies to interact with the web application, mobile application and operating
system then it is obvious that also authentication and SSO methods for these systems will be
different.

Therefore it has to be expected that there will be several AM or SSO systems in the organization,
each one serving its own technological island. And each island needs to be managed.

Practical Access Management

Unifying access management system, Single Sign-On, cross-domain identity federation, social login,
universally-applicable 2-factor authentication – there are the things that people usually want when
they think about Identity and Access Management (IAM). These are all perfectly valid requirements.
However, everything has its cost. It is notoriously difficult to estimate the cost of access
management solutions, because majority of the cost is not in the AM software. Huge part of the total
cost is hidden inside existing applications, services and clients. All of this has to be considered
when planning an access management project.

Even though the AM is what people usually want, it is usually wise not to start with AM as the first

24

step. AM deployment has many dependencies: unified user database, managed and continually
synchronized data, applications that are flexible enough to be integrated and so on. Unless your IT
infrastructure is extremely homogeneous and simple, it is very unlikely that these dependencies
are already satisfied. Therefore it is almost certain that an AM project attempted at the beginning of
the IAM program will not reach its goals. It is much more likely for such AM projects to fail
miserably. On the other hand, if the AM project is properly scoped and planned and has realistic
goals, there is high chance of success.

Perhaps the best way to evaluate an AM project is to ask several questions:

• Do I really need access management for all applications? Do I need 100% coverage? Can I afford
all the costs? Maybe it is enough to integrate just a couple of applications that are source of the
worst pain. Do I know which applications are these? Do I know what my users really use during
they workday? Do I know what they need?

• What are the real security benefits of AM deployment? Will I be disabling the native
authentication to the applications? Even for system administrators? What will I do in case of
administration emergencies (e.g. system recovery)? Would system administrators still be able to
circumvent the AM system? If yes then what is the real security benefit? If not then what will be
the recovery procedure in case the AM system fails?

• Do I really need SSO for older and rarely used applications? What is the real problem here? Is
the problem that users are entering the password several times per day? Or is the real problem
that they have to enter a different username or password to different applications, and they
keep forgetting the credentials? Maybe simple data cleanup and password management will
solve the worst problems, and I can save a huge amount of money on AM project?

The access management technologies are the most visible part of the IAM program. But it is also the
most expensive part, and the most difficult piece to set up and maintain. Therefore do not
underestimate other IAM technologies. Do not try to solve every problem with AM golden hammer.
Using the right tool for the job is a good approach in every situation. But in IAM program, it is
absolutely critical for success.

Identity Management
Identity management (IDM) is maybe the most overlooked and underestimated technology in the
whole identity and access management (IAM) field. Yet IDM is a crucial part of almost every IAM
solution. It is IDM that can bring substantial benefits to almost any organization. So, what that
mysterious IDM thing really is?

Identity management is exactly what the name says: it is all about managing identities. It is about
the processes to create Active Directory accounts and mailboxes for a new employee. IDM sets up
accounts for students at the beginning of each school year. IDM makes it possible to immediately
disable all access to a suspicious user during a security incident. IDM takes care of adding new
privileges and removing old privileges of users during reorganization. IDM makes sure all the
accounts are properly disabled when the employee leaves the company. IDM automatically sets up
privileges for students and staff appropriate for their classes. IDM records access privileges of
temporary workers, partners, support engineers and all the third-party identities that are not
maintained in your human resources (HR) system. IDM automates the processes of role request and
approval. IDM records every change in user privileges in the audit trail. IDM governs the annual

25

reviews of roles and access privileges. IDM makes sure the copies of user data that are kept in the
applications are synchronized and properly managed. IDM makes sure data are managed
according to data protection rules. And IDM does many other things that are absolutely essential
for every organization to operate in an efficient and secure manner.

It looks like IDM is the best thing since the sliced bread. So where’s the catch? Oh yes, there is a
catch. Or it is perhaps better to say that there was a catch. The IDM systems used to be expensive.
Very expensive. The IDM systems used to be so expensive, it was very difficult to justify the cost
even with such substantial and clear benefits. But that time is over now.

Terminology.

The term identity management is often used for the whole identity and access
management (IAM) field. This is somehow confusing because technologies such as
single sign-on or access management do not really manage the identities. Such
technologies manage the access to the applications. Even directory servers do not
exactly manage the identities. Directory servers store the identities and provide
access to them. There is in fact one whole branch of technologies that manage
identities. Those systems are responsible for creating identities and maintaining
them. Those are sometimes referred to as identity provisioning, identity lifecycle
management or identity administration systems. But given the current state of the
technology such names are indeed an understatement. Those systems can do much
more than just provisioning or management of identity lifecycle. We will refer to
these systems simply as identity management (IDM) systems. When we refer to the
entire field that contains access management, directory services, identity
management and governance we will use the term identity and access management
(IAM).

History of Identity Management

Let’s start at the beginning. In the 1990s there was no technology that would be clearly identified as
"identity management". Of course, all the problems above had existed almost since the beginning of
modern computing. There had always been some solutions for those problems. Historically, most of
that solutions were based on paperwork and scripting. That worked quite well - until the big system
integration wave spread through the industry in the 1990s and 2000s. As data and processes in
individual applications got integrated, the IDM problems became much more pronounced. Manual
paper-based processes were just too slow for the age of information superhighways. The scripts
were too difficult to maintain in the world where new application is deployed every couple of
weeks. The identity integration effort naturally started with the state-of-the-art identity technology
of the day: directory services. As we have already shown, the directories were not entirely ideal
tools for the job. The directories did not work very well in environment where people though that
LDAP is some kind of dangerous disease, where usernames and identifiers were assigned quite
randomly and where every application insisted that the only authoritative data are those stored in
its own database.

The integration problems motivated the inception of IDM technologies in early 2000s. Early IDM
systems were just data synchronization engines that were somehow hard-coded to operate with
users and accounts. Some simple Role-Based Access Control (RBAC) engines and administration
interfaces were added a bit later. During mid-2000s there were several more-or-less complete IDM

26

systems. This was the first generation of the IDM systems. These systems were able to synchronize
identity data between applications and provide some basic management capabilities. Even such a
simple functionality was a huge success at that time. The IDM systems could synchronize the data
without any major modification of the applications, therefore they brought the integration cost to a
reasonable level. The problem was that the cost of the IDM systems themselves was quite high.
These systems were still somehow crude, therefore the configuration and customization required a
very specialized class of engineers. IDM engineers were almost exclusively employed by IDM
vendors, big system integrators and expensive consulting companies. This made the deployment of
IDM solutions prohibitively expensive for many mid-size and smaller organizations. Even big
organizations often deployed IDM solution with quite limited features to make the cost acceptable.

Early IDM systems evolved and improved in time. There were companion products for identity
governance and compliance that augmented the functionality. Yet, it is often almost impossible to
change the original architecture of a product. Therefore many first-generation IDM products
struggle with limitations of the early product design to this day.

All the first-generation IDM systems were commercial closed-source software. Many of these
products are still available on the market, and they are even considered to be leaders. However, the
closed-source character of the IDM products is itself a huge problem. Every IDM solution has to be
more-or-less customized. Which usually means more rather than less. It has to be the IDM system
that adapts, and not the applications. Requiring each application to adapt to a standardized IDM
interface means a lot of changes in a lot of different places, platforms and languages. The total cost
of all necessary modifications adds up to a huge number. Such approach is being tried from time to
time, but it almost always fails. It is not a practical approach. While there are many applications in
the IT infrastructure, there is just one IDM system. If the IDM system adapts to applications and
business processes, the changes are usually smaller, and they are all in one place, implemented in a
single platform. The IDM system must be able to adapt. It has to adapt a great deal, and it has to
adapt easily and rapidly. Closed-source software is notoriously bad at adapting to requirements that
are difficult to predict. Which in practice means that the IDM projects based on first-generation
products were hard to use, slow to adapt and expensive. The closed-source software is also prone to
vendor lock-in. Once the IDM system is deployed and integrated, it is extremely difficult to replace
it with a competing system. The closed-source vendor is the only entity that can modify the system,
and the system cannot be efficiently replaced. Which means that the end customer is not in a
position to negotiate. Which means high maintenance costs. It naturally follows that the first
generation of IDM systems was a huge commercial success. For the vendors, that is.

Then the 2000s were suddenly over, with an economic crash at the end. We can only speculate what
were the reasons, but the fact is that around the years 2009-2011 several very interesting new IDM
products appeared on the market. One interesting thing is that all of them were more-or-less open
source. The benefit that open source character brings may be easy to overlook for business-oriented
people. However, the benefits of open source in the identity management are almost impossible to
overstate. As every single IDM engineer knows, understanding of the IDM product, and the ability
to adapt the product, are two critical aspects of any IDM project. Open source is the best way to
support both understanding and flexibility. There is also third important advantage: it is almost
impossible to create a vendor lock-in situation with an open source product. All the open source
products are backed by companies that offer professional support services that are equivalent to
the services offered by commercial IDM products. This brings quality assurance for the products
and related services. However, the companies does not really "own" the products, there is no way

27

for them to abuse intellectual property rights against the customers. Open source brings new and
revolutionary approach, both to technology and business.

What is This Identity Management, Anyway?

Identity management is a simple term which encompasses a very rich and comprehensive
functionality. It contains identity provisioning (and reprovisioning and deprovisioning),
synchronization, organizational structure management, role-based access control, data consistency,
approval processes, auditing and few dozens of other features. All of that is thoroughly blended and
mixed with a pinch of scripting and other seasoning until there is a smooth IDM solution.
Therefore, it is quite difficult to tell what identity management is just by using a dictionary-like
definition. We would rather describe what identity management is by using a couple of typical
usage scenarios.

Let’s have a fictional company called ExAmPLE, Inc. This company has few thousand employees,
decent partner network, customers and suppliers and all the other things as real-world companies
have. And ExAmPLE company has an IDM system running in its IT infrastructure.

ExAmPLE hires a new employee called Alice. Alice signs an employee contract few days before she
starts her employment. The contract is entered into the HR system by the ExAmPLE HR staff. The
IDM system periodically scans the HR records, and it discovers the record of a new hire. The IDM
systems pulls in the record and analyzes it. The IDM system will take user’s name and employee
number from the HR record, it will generate a unique username and based on that information it
creates a user record in the IDM system. The IDM system also gets the organization code of 11001
from the HR record. The IDM will look inside its organizational tree and discovers that the code
11001 belongs to sales department. Therefore IDM will automatically assign the user to the sales
department. The IDM will also process the work position code of S007 in the HR record. The IDM
policies say that the code S007 means sales agent and that anybody with that code should
automatically receive the "Sales Agent" role. Therefore the IDM will assign that role. As this is a core
employee, the IDM will automatically create an Active Directory account for the user together with
the company mailbox. The account will be placed into the Sales Department organizational unit.
The "Sales Agent" role entitles the user to more privileges. Therefore the Active Directory account is
automatically assigned to sales groups and distribution lists. The role also gives access to the CRM
system, therefore CRM account is also automatically created and assigned to appropriate groups.
All of that happens in a couple of seconds after the new HR record is detected. It all happens
automatically.

28

Alice starts her career, and she is a really efficient employee. Therefore she gets more
responsibilities. Alice is going to prepare specialized market analyses based on empirical data
gathered in the field. ExAmPLE is a really flexible company, always inventing new ways how to
make business operations more efficient. Therefore they invented this work position especially to
take advantage of Alice’s skills. Which means there is no work position code for Alice’s new job. But
she needs new privileges in the CRM system to do her work efficiently. She needs that right now.
Fortunately the ExAmPLE has a flexible IDM system. Alice can log into the IDM system, select the
privileges that she needs and request them. The request has to be approved by Alice’s manager and
by the CRM system owner too. They get the notification about the request, and they can easily
approve or reject it in the IDM system. Once the request is approved Alice’s CRM account will be
automatically assigned to appropriate CRM groups. Alice may start working on her analysis
minutes or hours after she has requested the privileges.

29

Alice lives happily ever after. One day she decides to get married. Alice, similarly to many other
women, has the strange habit of changing her surname after the marriage. Alice has a really
responsible work position now, she has accounts in a dozen information systems. This is no easy
task to change her name in all of them, is it? In fact, it is very easy because ExAmPLE has its IDM
system. Alice goes to the HR department, and the HR staff changes her surname in the HR system.
The IDM system will pick up the change and propagate that to all the affected systems. Alice even
automatically gets a new e-mail address with her new surname (keeping the old one as an alias).
Alice receives a notification that now she can use her new e-mail address. The change is fast, clean
and effortless.

30

Later that day Alice discovers that her password is about to expire. Changing the password in all
the applications would be a huge task. But Alice knows what to do. She logs into the IDM system
and changes her password there. The password change is automatically propagated to each
affected system according to policy set up by the IT security office.

The following month something unexpected happens. There is a security incident. The security
office discovered the incident and now they are investigating it. It looks like it was an insider job.
The security officers are using the data from the IDM system to focus their investigation on users
that had privileges to access affected information assets. They pinpoint Mallory as a prime suspect.
The interesting thing is that Mallory should not have these privileges at all. Luckily the IDM system
also keeps an audit trail about every privilege change. Therefore they discover that it was Mallory’s
colleague Oscar that assigned these privileges to Mallory. Both men are to be interviewed. But as
this incident affects sensitive assets there are some preventive measures to be executed before any
word about the incident spreads. The security officers use the IDM system to immediately disable
all the accounts that Mallory and Oscar have. It takes just a few seconds for IDM to disable these
accounts in all the affected applications.

31

The investigation later reveals that Oscar is mostly innocent. Mallory misused Oscar’s trust and
tricked him to assign the extra privileges. Mallory abused the privileges to get sensitive data and he
tried to sell them. The decision is that Mallory has to immediately leave the company while Oscar
may stay. However, as Oscar has shown poor judgment in this case his responsibilities are reduced.
The IDM is now used to permanently disable all Mallory’s accounts, to re-enable Oscar’s accounts
and also to revoke sensitive privileges that are considered too risky for Oscar to have.

Few months later Oscar is still ashamed because of his failure. He decides not to prolong his
employee contract with ExAmPLE and to leave the company without causing more trouble. Oscar’s
contract expires at the end of the month. This date is recorded in the HR system and the IDM system
takes it from there. Therefore at midnight of the last Oscar’s day at work the IDM system
automatically deletes all Oscar’s accounts. Oscar starts a new career as a barman in New York. He is
very successful.

32

The security office has handled the security incident professionally and the IDM system provided
crucial data to make the security response quick and efficient. They receive praise from the board
of directors. But the team always tries to improve. They try to learn from the incident and reduce
the possibility of such a thing happening again. The team is using data from the IDM system to
analyze the privileges assigned to individual users. The usual job of the IDM system is to create and
modify accounts in the applications. But the IDM system is using bidirectional communication with
the applications. Therefore this analysis is far from being yet another pointless spreadsheet
exercise. The analysis is based on real application data processes and unified by the IDM system:
what are the real accounts, to which user they belong, what roles they have, which groups they
belong and so on. The IDM system can detect accounts that do not have any clear owner. The
security team discovers quite a rich collection of testing accounts that were obviously used during
the last data center outage half a year ago. The IT operations staff obviously forgot about these
accounts after the outage. The security staff disables the accounts using the IDM tools and sets up
an automated process to watch out for such accounts in the future.

33

Based on the IDM data the security officers suspect that there are users that have too many
privileges. This is most likely a consequence of the request-and-approval process and these
privileges simply accumulated over time. But this is just a suspicion. It is always difficult for a
security staff to assess whether particular user should have certain privilege or should not have it.
This is especially difficult in flexible organizations such as ExAmPLE, where work responsibilities
are often cumulated and organizational structures is somehow fuzzy. Yet there are people that
know what each employee should do: the managers. However, there are many managers on many
departments and it would be a huge task to talk to each one of them and consult the privileges. The
IDM system comes to the rescue once again. The security officers set up automated access
recertification campaign. They sort all users to their managers based on the organizational
structure which is maintained in the IDM system. Each manager will receive an interactive list of
their users and their privileges. The manager must confirm (re-certify) that the user still needs
those privileges. This campaign is executed in a very efficient manner as the work is evenly
distributed through the organization. Therefore the campaign is completed in a couple of days. At
the end the security officers know which privileges are no longer needed and can be removed. This
reduces the exposure of the assets which is a very efficient way to reduce residual security risk.

Experienced identity management professionals certainly realized that this
description is slightly idealized. The real world is not a fairy tale and real life with
an IDM system is much more complicated that this simple story suggests. Even
though the real life is harder than a story in a book, the IDM system remains an
indispensable tool for automation and information security management.

34

How Does The Technology Work?

Obviously identity management systems have a lot of advantages for business, processes, efficiency
and all that stuff. But how does it really works on a technological level? The basic principle is very
simple: identity management system is just a sophisticated data synchronization engine.

Identity management system takes data from the source systems, such as HR databases. It is
processing the data, mapping and transforming the values as necessary. It will figure out which
records are new. The IDM engine will do some (usually quite complex) processing on the records.
That usually includes processing policies such as Role-Based Access Control (RBAC), organizational
policies, password policies and so on. The result of this processing is creation or modification of
user accounts in other systems such as Active Directory, CRM systems and so on. So basically it is all
about getting the data, changing them and moving them around. This does not seem very
revolutionary, does it? But it is all about the details. It is the way how the IDM system gathers the
data, how it is processing the data and how it is propagating the changes that make all the
difference.

Identity Management Connectors

Identity management system must connect to many different applications, databases and
information systems. Typical IDM deployment has tens or even hundreds of such connections.
Therefore the ease of connecting IDM system with its environment is one of its essential qualities.

Current IDM systems use connectors to communicate with all surrounding systems. These
connectors are based on similar principles that database drivers. On one end there is unified
connector interface that presents that data from all the systems using the same "protocol". On the
end of the connector is the native protocol that the application supports. Therefore there are
connectors for LDAP and various LDAP variants, SQL protocols and dialects, connectors that are
file-based, connectors that invoke web services or REST services and so on. Every slightly advanced
IDM system has tens of different connects.

35

Connector is usually relatively simple piece of code. Primary responsibility of a connector is to
adapt communication protocols. Therefore LDAP connector translates the LDAP protocol messages
into data represented using a common connector interface. The SQL connector does the same thing
with SQL-based protocols. The connector also interprets the operations invoked on the common
connector interface by the IDM system. Therefore the LDAP protocol will execute the "create"
operation by sending LDAP "add" message to the LDAP server and parsing the reply. Connectors
usually implement the basic set of create-read-update-delete (CRUD) operations. Therefore a typical
connector is quite a simple piece of code. Despite its simplicity the whole connector idea is a clever
one. The IDM system does not need to deal with the communication details. The core of the IDM
system can be built to focus on the generic identity management logic which is typically quite
complex just by itself. Therefore any simplification that the connectors provide is more than
welcome.

Connectors are usually accessing external interfaces of source and target systems. It is natural that
the connector authors will choose interfaces that are public, well-documented and based on open
standards. Many newer systems have interfaces like that. But there are notorious cases that refuse
to provide such an interface. Despite that there is almost always some way to build a connector. The
connector may create record directly in the application database. Or it may execute a database
routine. Or it may execute a command-line tool for account management. Or it may even do crazy
things such as simulation of a user working with text terminal and filling out a form to create new
account. There is almost always a way to do what connector needs to do. Just some ways are nicer
than others.

The connector-based architecture is pretty much standard among all advanced IDM systems. Yet
the connector interfaces significantly vary from one IDM system to another. Therefore the

36

connectors are not interchangeable between different IDM systems. The connector interfaces are
all proprietary. And the connectors are often used as weapons to somehow artificially increase the
profit from IDM solution deployment. Except for one case. The ConnId connector framework is the
only connector interface that is actively used and developed by several competing IDM systems. It
is perhaps no big surprise that ConnId is an open source framework.

Even though connector-based approach is quite widespread, some older IDM systems are not using
connectors. Some IDM products use agents instead of connectors. Agent does a similar job than the
connector does. However, agent is not part of the IDM system instance. Agents are installed in each
connected application and they communicate with the IDM system using a remote network
protocol. This is a major burden. The agents need to be installed everywhere. And then they need to
be maintained, upgraded, there may be subtle incompatibilities and so on. Also, running a third-
party code inside every application can be a major security issue. Overall the agent-based systems
are too cumbersome (and too costly) to operate. The whole agent idea perhaps originated
somewhere in our digital past when applications and databases haven’t supported any native
remote interfaces. In such a situation the agents are obviously better than connectors. Fortunately,
this is a thing of the past. Today even old applications have some way to manage identities using a
remote interface. This is typically some web or REST service that is easy to access from a connector.
But even if the application provides only a command-line interface or interactive terminal session
there are connectors that can handle that sufficiently well. Therefore today the agent-based systems
are generally considered to be obsolete.

Identity Provisioning

Provisioning is perhaps the most frequently used feature in any IDM system. In the generic sense
provisioning means maintenance of user accounts in applications, databases and other target
systems. This includes creation of the account, various modifications during the account lifetime
and permanent disable or delete at the end of the lifetime. The IDM system is using connectors to
manipulate the accounts. And in fact good IDM systems can manage much more than just accounts.
Management of groups and group membership was quite a rare feature in early years of IDM
technology. Yet today an IDM system that cannot manage groups is almost useless. Almost all IDM
systems work with roles. But only few IDM systems can also provision and synchronize the roles
(e.g. automatically create LDAP group for each new role). Good IDM system can also manage,
provision and synchronize organizational structures. However, this feature is still not entirely
common.

Synchronization and Reconciliation

Identity provisioning may be the most important feature of an IDM system. But if an IDM system
did just the provisioning and nothing else it would be a quick an utter failure. It is not enough to
create an account when a new employee is hired or delete that account when an employee leaves.
Reality works in mysterious ways and it can easily make a big mess in a very short time. Maybe
there was a crash in one of the applications and the data were restored from a backup. So an
account that was deleted few hours ago is unexpectedly resurrected. It stays there, alive, unchecked
and dangerous. Maybe an administrator manually created an account for a new assistant because
the HR people were all busy to process the papers. And the new assistant had such pretty eyes.
When the record finally gets to the HR system and it is processed the IDM system discovers that
there is already a conflicting account and it simply stops with an error. Maybe few (hundred)

37

accounts get accidentally deleted by junior system administrator trying out an innovative system
administration routine. There are simply too many ways how things can go wrong. And in reality
they do go wrong surprisingly often. It is not enough for an IDM system to just set things up and
then forget about it. One of the most important features of any self-respecting IDM system is to
make sure that everything is right and also that it stays right all the time. Identity management is
all about continuous maintenance of the identities. Without that continuity the whole IDM system
is almost useless.

The trick to keep the data in order is to know when they get out of order. In other words, the IDM
system must detect when the data in the application databases change. If an IDM system detects
that there was a change then it is not that difficult to react to the change and fix it. The secret
ingredient is the ability to detect changes. But there’s a slight issue with that, isn’t it? We cannot
expect that the application will send a notification to the IDM system every time a change happens.
We do not want to modify the applications, otherwise the IDM deployment will be prohibitively
expensive. The application needs to be passive and the IDM system needs to be active. Fortunately,
there are several ways how to do that.

Some applications already keep a track of the changes. Some databases record a timestamp of the
last change for each row. Some directory servers keep a record of recent changes for the purpose of
data replication. Such meta-data can be used by the IDM system. The IDM system may periodically
scan the timestamps or replication logs for new changes. When the IDM detects a change it can
retrieve the changed objects and react to the change based on its policies. The scanning for changes
based on meta-data is usually very efficient therefore it can be executed every couple of minutes.
Therefore the reaction to the change can be done almost in the real-time. This method has many
names in various IDM systems. It is called "live synchronization", "active synchronization" or
simply just "synchronization". Sadly, this method is not always available. In fact this ability is quite
rare.

But all is not lost. Even if the application does not maintain good meta-data that allow near-real-
time change detection there is still one very simple way that works for almost any system. The IDM
system gets the list of all accounts in the application. Then it compares that list with the list of
accounts that are supposed to be there. Therefore it compares the reality (what is there) with the
policy (what should be there). The IDM system can react to any discrepancies and repair them. This
method is called reconciliation. It is quite a brutal method, almost barbaric. But it does the job.

Listing all accounts and processing each of them may seem as a straightforward job. But it can be
extremely slow if the number of accounts is high and the policies are complex. It can take anything
from a few minutes to a few days. Therefore it cannot be executed frequently. Running that once
per day is feasible only for small and simple systems. Running it once per week (on weekends) is a
more common practice. But many systems cannot afford to run it more frequently than once per
month.

There are also other methods. But synchronization and reconciliations are the most frequently
used. The drawback of synchronization is that it is not entirely reliable. The IDM system may miss
some changes, e.g. due to change log expiration, system times not being synchronized or variety of
other reasons. On the other hand, reconciliation is mostly reliable. But it is a very demanding task.
Therefore these two methods are often used together. Synchronization runs all the time and
handles the vast majority of the changes. Reconciliation runs weekly or monthly and it acts as a
safety net to catch the changes that might have escaped during synchronization.

38

Identity Management and Role-Based Access Control

Managing permissions for every user individually is a feasible options only if the number of users
is very low. Individual management of permissions becomes very difficult with populations as
small as few hundreds of users. When the number of users goes over a thousand such management
usually becomes an unbearable burden. The individual management of permissions is not only a
huge amount of work, it is also quite an error-prone routine. This has been known for decades.
Therefore many systems unified common combinations of permissions into roles and the concept
of Role-Based Access Control (RBAC) was born. The roles often represent work positions or
responsibilities that are much closer to the “business” than technical permissions. A role may
reflect the concepts of bank teller, website administrator or sales manager. User has a role, the role
contains permissions, permissions are used for authorization - that is the basic principle of RBAC.
The low-level permissions are hidden from the users. Users are quite happy when they deal with
the business-friendly role names.

Terminology.

The term RBAC is frequently used in the industry, however the actual meaning of
RBAC is not always clear. The confusion is perhaps caused by the fact that there is
a formal RBAC specification known as NIST RBAC model. When people say RBAC
some of them mean that specific formal model, others mean anything that is
similar to that formal model and yet others mean anything that deals with roles.
We use the term RBAC in quite a broad sense. Major identity management systems
usually implement a mechanism that is inspired by the formal NIST RBAC model,
but the mechanism deviates form the formal model as necessary. That is what we
mean when we use the term RBAC.

Most RBAC systems allow for roles to be placed inside other roles thus creating role hierarchy. Top
of the hierarchy is usually composed of business roles such as “marketing specialist”. Business roles
contain a lower-level roles. These are often application roles such as “website analytics” or “CMS
administrator”. These lower-level roles may contain concrete permissions. Or they may contain
other roles that are even closer to the underlying technology. And so on, and so on, there are
proverbial turtles all the way down. Role hierarchy is often a must when the number of
permissions and users gets higher.

39

No IDM system can be really complete without RBAC mechanism in place. Therefore, the vast
majority of IDM systems support roles in one way or another. However, the quality of RBAC support
significantly varies. Some IDM systems only support the bare minimum that is required to claim
RBAC support. Other systems have excellent and very advanced dynamic and parametric hybrid
RBAC systems. Most IDM systems are somewhere in between.

Role-based mechanism is a very useful management tool. In fact the efficiency of role-based
mechanism often leads to its overuse. This is a real danger especially in bigger and somehow
complex environments. The people that design roles in such environment have a strong motivation
to maintain order by dividing the roles to the smallest reusable pieces and then re-combining them
in a form of application and business roles. This is further amplified by the security best practices
such as the principle of least privilege. This is completely understandable and perfectly valid
motivation. However, it requires extreme care to keep such RBAC structure maintainable. Even
though this may seem counter-intuitive, it is quite common that the number of roles exceeds the
number of users in the system. Unfortunately, this approach turns the complex problem of user
management to even more complex problem of role management. This phenomenon is known as
role explosion.

Role explosion is a real danger and it is definitely not something that can be avoided easily. The
approach that prevailed in the first-generation IDM deployments was to simply live with the
consequences of role explosion. Some IDM deployments even created tools that were able to
automatically generate and (more-or-less successfully) manage hundreds of thousands of roles.
However, this is not a sustainable approach. The second-generation IDM systems bring features
that may help to avoid the role explosion in the first place. Such mechanisms are usually based on
the idea to make the roles dynamic. The roles are no longer just a static set of privileges. Dynamic
roles may contain small pieces of algorithmic logic used to construct the privileges. Input to these
algorithms are parameters that are specified when the role is assigned. Therefore the same role can
be reused for many related purposes without a need to duplicate the roles. This can significantly
limit the number of roles required to model a complex system. This is the best weapon against role
explosion that we currently have.

Even though the RBAC system has some drawbacks it is necessary for almost any practical IDM
solutions. There were several attempts to replace the RBAC system with a completely different
approach. Such attempts have some success in the access management and related field. But those
alternatives cannot easily replace RBAC in the identity management. Attribute-Based Access Control
(ABAC) is one such popular example. The ABAC idea is based on replacing the roles with pure
algorithmic policies. Simply speaking, ABAC policy is a set of algorithms that take user attributes as
input. The policy combines that input with the data about operation and context. Output of the
policy is a decision whether an operation should be allowed or denied. This approach is simple and
it may work reasonably well in the access management world where the AM server knows a lot of
details about the operation that just takes place. But in the IDM field we need to set up the account
before the user logs in for the first time. There are no data about the operation yet. And even
contextual data are very limited. That, together with other issues, makes ABAC a very poor choice
for an IDM system. Therefore whether you like it or not, RBAC is the primary mechanism of any
practical IDM solution. And it is here to stay.

40

Identity Management and Authorizations

The basic principle of authorization in the information security is quite straightforward: take the
subject (user), object (the things that user is trying to access) and the operation. Evaluate whether
the policy allows that subject-object-operation triple. If policy does not allow it then deny the
operation. This is quite simple. But in the identity management field we need to think quite
differently. We need to work backwards. The IDM system needs to set up an account for a user
before the user initiates any operation. And when user really starts an operation then the IDM
system will not know anything about it. Therefore the concept of authorization in the IDM world is
somehow turned completely upside down.

The IDM system does not take direct part in authorization. IDM system sets up accounts in
applications and databases. But the IDM system itself is not active when user logs into an
application and executes the operations. Does that mean IDM system cannot do anything about
authorizations? Definitely not. The IDM system does not enforce authorization decisions. But the
IDM can manage the data that determine how the authorization is evaluated. IDM system can place
the account to the correct groups, which will cause certain operations to be allowed and other
operations denied. IDM system can set up an access control lists (ACLs) for each account that it
manages. IDM system is not evaluating or enforcing the authorizations directly. But it indirectly
manages the data that are used to evaluate authorizations. And this is an extremely important
feature.

Authentication and authorizations are two very prominent concepts of information security. And
they are vitally important for any identity and access management solution. However,
authentication is quite simple in principle. Yes, the user may have several credential types used in
adaptive multi-factor authentication. But while that description sounds a bit scary it is still not that
complex. There are just a couple of policy statements that govern authentication. Also,
authentication is typically quite uniform: most users are authenticating using the same mechanism.
Authentication is not that difficult to centralize (although it may be expensive). Authentication is
therefore relatively easy to manage.

But it is quite a different story for authorization. Every application has slightly different
authorization mechanism. And these mechanisms are not easy to unify. One of the major obstacles
is that every application works with different objects, the objects may have complex relations with
other objects and all of them may also have complex relations with the subjects. The operations are
also far from being straightforward as they may be parametrized. And then there is context. There
may be per-operation limits, daily limits, operations allowed only during certain times or when
system is in certain state. And so on. This is very difficult to centralize. Also, almost every user has
slightly different combination of authorizations. Which means that there is a great variability and a
lot of policies to manage. And then there are two crucial aspects that add whole new dimension of
complexity: performance and scalability. Authorization decisions are evaluated all the time. It is not
rare to see an authorization evaluated several times for each request. Authorization processing
needs to be fast. Really fast. Even a round-trip across a local network may be a performance killer.
Due to complexity and performance reasons the authorization mechanisms are often tightly
integrated into the fabric of each individual application. E.g. it is a common practice that
authorization policies are translated to SQL and they are used as an additional clauses in
application-level SQL queries. This technique is taking advantage of the database engine to quickly
filter out the data that the user is not authorized to access. This method is very efficient and it is

41

perhaps the only practical option when dealing with large-scale data sets. However this approach is
tightly bound to the application data model and it is usually almost impossible to externalize.

Therefore it is not realistic to expect that the authorization could be centralized anytime soon. The
authorization policies need to be distributed into the applications. But managing partial and
distributed policies is not an easy task. Someone has to make sure that the application policies are
consistent with the overall security policy of the organization. Fortunately, the IDM systems are
designed especially to handle management and synchronization of data in broad range of systems.
Therefore the IDM system is the obvious choice when it comes to management of authorization
policies.

Organizational Structure, Roles, Services and Other Wildlife

Back in the 2000s the IDM was all about managing user accounts. It was enough to create, disable
and delete an account to a have a successful IDM deployment. But the world is a different place
now. Managing the accounts is simply not enough anymore. Yes, automated account management
brings significant benefits and it is a necessary condition to get at least a minimal level of security
in complex systems. But account management is often not enough to justify the cost of an IDM
system. Therefore current IDM systems can do much more than just a simple account management.

There are many things that an advanced IDM system can manage:

• Accounts. Obviously. Many IDM systems can fully manage account attributes, groups
membership, privileges, account status (enabled/disabled), validity dates and all the other
details.

• Groups and roles. Apart from managing the membership of accounts in groups the IDM system
can take care of the whole group life-cycle: create a group, manage it and delete it.

• Organizational structure. The IDM system can take organizational structure from its
authoritative source (usually HR) and synchronize it to all the applications that need it. Or the
IDM itself may be used to manually maintain an organizational structure.

• Servers, services, devices and "things". While this is not yet IDM mainstream, there are some
experimental solutions that use IDM principles to manage concepts that are slightly outside the
traditional IDM scope. E.g. there is an IDM-based solution that can automatically deploy
predefined set of virtual machines for each new project. The new IDM systems are so flexible
that they can theoretically manage everything that is at least marginally related to the concept
of identity: virtual machines, networks, applications, configurations, devices … almost anything.
This is still quite a unique functionality. But it is very likely that we will see more stories about
this in the future.

While all these features are interesting, some of them clearly stand out. The management of groups
and organizational structure are those that are absolutely critical for almost any new IDM
deployment. Your organizational structure may be almost flat and project-oriented or you may
have twelve levels of divisions and sections. But regardless of the size and shape of your
organizational structure it needs to be managed and synchronized across applications in pretty
much the same way as identities are synchronized. You may need to create groups in Active
Directory for each of your organizational unit. You want them to be correctly nested. You may want
to create distribution list for each of your ad-hoc team. And you want this operation to have as little
overhead as possible otherwise the teams cannot really be managed in ad-hoc fashion. You may

42

want to synchronize the information about projects into your issue tracking system. You may also
want to automatically create a separate wiki space and a new source code repository for each new
development project. The possibilities are almost endless. Both the traditional organizations and
the new lean and agile companies will benefit from that.

Organizational structure management is closely related to group management. The groups are
often bound to workgroups, projects or organizational units. E.g. and IDM system can automatically
maintain several groups for each project (admin and member groups). Those groups can be used
for authorization. Similarly, an IDM system can automatically maintain application-level roles,
access control lists (ACLs) and other data structures that are usually used for authorization.

While this functionality provides benefits in almost any deployment, organizational structure
management is absolutely crucial for organizations that are based on tree-like functional
organizational structures. These organizations heavily rely on the information derived from
organizational structure. E.g. direct manager of the document author can review and approve the
document in the document management system. Only the employees in the same division can see
the document draft. Only the employees of a marketing section can see marketing plans. And so on.
Traditionally, such data are encoded into an incomprehensible set of authorization groups and lists.
And that contributes to the fact that reorganizations are a total nightmare for IT administrators.
However, an IDM system can significantly improve the situation. IDM can create the groups
automatically. It can make sure that the right users are assigned into these groups. It can
synchronize information about the managers into all affected applications. And so on. And a good
IDM system can do all of that using just a handful of configuration objects.

43

This seems to be almost too good to be true. And it is fair to admit that the quality of organizational
management features significantly varies among IDM systems. Group management and
organizational structure management seem to be a very problematic feature. Only few IDM
systems support these concepts at the level that allows practical out-of-box deployment. Most IDM
systems have some support for that, but any practical solution requires heavy customization. It is
not clear why IDM vendors do not pay attention to features that are required for almost any IDM
deployment. Therefore when it comes to a comprehensive IDM solution there is one crucial advice
that we could give: choose the IDM product wisely.

Everybody Needs Identity Management

Such a title may look like a huge exaggeration. But in fact it is very close to the truth. Every non-
trivial system has a need for identity management, even though the system owners may not realize
that. As you are reading this book, chances are that you are one of the few people that can see the
need. In that case it is all mostly about costs/benefits calculation. Identity management has some
inherent complexity. While even very small systems need IDM, the benefits are likely to be too
small to justify the costs. The cost/benefit ratio is much better for mid-size organizations.
Comprehensive, automated identity management is an absolute necessity for large-scale systems.
There seems to be a rule of thumb that has quite a broad applicability:

Number of users Recommendation

Less than 200 You may need automated identity management,
but the benefits are probably too small to justify
the costs. Managing users accounts manually is
probably still a feasible option.

200 – 2 000 You need automated identity management, and
the benefits may be just enough to justify the
costs. However, you still need to look for a very
cost-efficient solution. Automating the most
basic and time-consuming tasks is probably just
enough.

2 000 – 20 000 You really need automated identity
management. You cannot manage that crowd
manually. If you implement identity
management solution properly, the benefits will
be much higher than the costs.

More than 20 000 I can’t believe that you do not have any
automated identity management yet. Go and get
one. Right now. You can thank me later.

Identity Governance
Identity governance is basically an identity management taken to a higher business level. The
identity management proper is focused mainly on technical aspects of identity life-cycle such as
automatic provisioning, synchronization, evaluation of the roles and computing attributes. On the
other hand, identity governance abstracts from the technical details, focusing on policies, roles,

44

business rules, processes and data analysis. E.g. a governance system may deal with segregation of
duties policy. It may drive the process of access re-certification. It may focus on automatic analysis
and reporting of the identity, auditing and policy data. It will drive remediation processes to
address policy violations. It will manage application of new and changed policies, evaluate how is
your system compliant with policies and regulations and so on. This field is sometimes referred to
as governance, risk management and compliance (GRC).

Almost all IDM systems will need at least some governance features to be of any use in practical
deployments. Moreover, many governance features are just refinement of concepts that originated
in the IDM field many years ago. Therefore, the boundary between identity management and
identity governance is quite fuzzy. The boundary is so fuzzy that new terms were invented for the
unified field that includes the identity management proper together with identity governance.
Identity governance and administration (IGA) is one of these terms. For us the governance is just a
natural continuation of identity management evolution.

Back in 2010s, it was a common practice for identity governance features to be implemented by
specialized products that are separated from their underlying IDM platforms. Many IDM and
governance solutions are still divided into (at least) two products. This strategy obviously brings
new revenue streams for the vendors. Yet, it makes almost no sense at all from customer point of
view. It perhaps comes without saying that reasonable IDM solutions should offer both the IDM and
governance features in one unified and well aligned product.

Identity Governance Features

Below is a list of features that belong to the governance/compliance category. As the boundary of
governance is so fuzzy, there are also features that may be considered governance-related IDM
features.

• Delegated administration. Basic IDM deployments are usually based on the idea of an
omnipotent system administrator that can do almost anything. Then there are end users that
can do almost nothing. While this concept may work in small and simple deployments, it is not
sufficient for larger systems. Large organizations usually need to delegate some administration
privileges to other users. There may be HR personnel, people that are responsible for
management of their organizational units, administrator responsible for a particular group of
systems, application administrators, and so on.

• Deputies. Delegated administration is very useful, yet it is quite static. Delgated administation is
specified in policies that are not entirely easy to change. However, there is often a need for ad-
hoc delegation, such as a temporary delegation of privileges during manager’s vacation. Such a
manager could nominate a deputy that would receive some of manager’s privileges. This is all
done on an ad-hoc basis, initiated by an explicit action of the manager.

• RBAC-related policies, such as Segregation of Duties (SoD) policy. Simply speaking SoD policy
ensures that conflicting duties cannot be accumulated with a single person. This is usually
implemented by using a role exclusion mechanisms. However, it may go deeper. E.g. it may be
required that each request is approved by at least two people.

• Policies related to organizational structure. Organizational structure may look like a simple
harmless tree, but in reality it is far from being simple or harmless. Or a tree. In theory the
organizational structure should be managed by business or operations departments such as HR.

45

Yet the reality is often quite different. Business departments lack the tools and processes to
efficiently manage organizational structure. Therefore, it is often an IDM system that assumes
the responsibility for organizational structure management. In such cases there is a need to
police the organizational structure. For example there may be policies that mandate a single
manager for each department. In that case the IDM system may need to handle situations that
there is no manager or too many managers.

• Dynamic approval schemes. Approval processes are usually considered to be part of basic
identity management functionality, as they were present in early IDM systems back in 2000s.
The user (or the manager) request role assignment. The operation is driven through an
approval process before being executed. Approvals provide a very useful mechanism, especially
in case that role assignment cannot be automated, usually due to a non-existent policies.

Approvals are usually implemented by some kind of general-purpose workflow engine by
almost all IDM/governance systems. However, this is often a source of maintenance problems,
especially in deployments that are focused on identity governance functionality. In such cases
the approval processes are no longer simple quasi-linear workflows. Approval processes tend to
be very dynamic, and their nature is almost entirely determined by the polices rather that
process flows. Workflow engines have a very hard time coping with such a dynamic situation.
IDM system that implement special-purpose policy-based approval engines provide much better
solutions.

Approval mechanisms are very useful. However, they also have a dark side. Approval decisions
are often made on a very subjective "looks good" basis. This obviously opens an opportunity for
bad decisions and negligence. False denial of role assignment is likely to trigger an immediate
(and occasionaly quite emotional) feedback from the requester. However, approval of role
assignment that should not be assigned is likely to trigger no feedback at all. Yet, such a decision
is likely to cause a security risk, a risk that is very difficult to detect. This can be partially solved
by a multi-level approval processes, especially for sensitive roles. However, there is trend to
"automate" approval decisions based on "artificial intelligence" mechanisms. This may look like
a very useful tool and time-saver. However, the artificial intelligence is only as good as are the
training data. If the machine is trained using bad decisions, it will also suggest bad decisions.
This is further complicated by a very limited visibility and accountability of such decisions.
Therefore such mechanisms have to be used with utmost care.

• Entitlement management is mostly an identity management thing. It deals with entitlements
of user’s accounts in target systems such as role or group membership. However, this process
can go both ways. Governance systems may provide an "entitlement discovery" features that
take entitlements as inputs. This can be used evaluate compliance and policy violations, but it
may also be a valuable input for role engineering.

• Role mining. IDM systems are seldom deployed on a green field. In the common case there are
existing systems in place, there are application roles, entitlements and privileges. It is not an
easy job to create IDM roles that map to this environment. This is usually a slow and tedious
process. However, IDM system can retrieve all the existing information and use it to propose
role structure. This is not a fully deterministic process, it requires a lot of user interaction,
tuning, and it is often based on a machine learning capabilities. It is not a replacement for role
engineering expertise. However, machine-assisted role mining can significantly speed up the
process.

46

• Re-certification campaigns. Assignment of roles is often an easy task. Request a role, role goes
through an approval process, and the role is assigned. Then everybody forgets about it. There is
a significant incentive to request assignment of a new role. Yet, there is almost no incentive to
request unassignment of a role that is no longer needed. This leads to accumulation of
privileges over time. Such privilege hoarding may reach dangerous levels for employees with
long and rich job transfer history. Therefore, there are re-certification campaigns that are also
known as "certification", "access certification" or "attestation" mechanisms. The goal of those
campaign is to confirm ("certify" or "testify") that the user still needs the privileges that were
assigned previously. Re-certification campaigns are designed to be conducted on a large number
of users in a very efficient manner. Therefore, there are special processes, and a very specific
user interface is provided to conduct such campaigns.

Similarly to approval processes, some identity governance systems offer "artificial intelligence"
support for re-certification processes. Such assistance can be very attractive, as re-certification
processes are often quite intimidating due to a large number of decisions that have to be made
in each campaign. However, the risks of such "automation" is even more pronounced than it is
in the approval case. Re-certification is often the last defence against dangerous privilege
accumulation. Poorly-trained artificial intelligence may cause a systematic build-up of risk in
the organization.

• Role governance is usually quite a complex matter. Typical IDM deployment is likely to have a
large number of roles. It is quite hard to define those roles in the first place. Then it is even
harder to maintain the roles. Environment is changing all the time, therefore the roles have to
change as well. It is usually beyond the powers of a single administrator to do so. Therefore,
many role owners are usually nominated to take care of role maintenance. Roles are often
grouped into applications, categories, catalogs or functional areas. The IDM system must make
sure that the owners have the right privileges to do their job. The IDM system should also take
care that each role has at least one owner at any given time, that role definitions are
periodically reviewed and so on.

• Role lifecycle management is a dynamic part of role governance. Role changes are likely to
have a serious impact on overall security of the system. Therefore, it may not be desirable to
simply delegate role management duties. It may be much more sensible to require that role
changes has to be approved before being applied. New roles are also created all the time and
old roles are decommissioned. The IDM system may need to make sure that a decommissioned
role is not assigned to any new user. Yet, old roles may still be needed in the system during a
phase-out period. IDM system has to keep track of them, to avoid keeping outdated roles in the
systems forever.

• Role modeling. A change of a single role often does not make much sense just by itself. The
roles are usually designed in such a way that a set of roles works together and forms a role
model. Therefore, approval of each individual role change may be too annoying, and it may
even be harmful. E.g. there may be an inconsistent situation in case that one change is approved
and another is rejected. Therefore, roles and policies are often grouped into models. The models
are reviewed, versioned and applied in their entirety.

• Simulation. IDM deployments tend to be complex. There are many relations, interactions and
policies. It is no easy task to predict the effects of a change in a role, policy or organizational
structure. Therefore, some IDM systems provide a simulation features that provide predictions
and impact analyses of planed changes.

47

• Compliance policies, reporting and management. Policies in the identity management world
are usually designed to be strictly enforced. This works fine for fundamental policies that are
part of simple IDM deployments. However, the big problem is how to apply new policies -
especially policies that are mandated by regulations, recommendations and best practices. It is
almost certain that significant part of your organization will not be compliant with such new
policy. Applying the policy and immediately enforcing it is likely to cause a major business
disruption. However, it is almost impossible to prepare for new policies and to mitigate their
impact without knowing which users and roles are affected. Therefore, there is a two-step
process. The policies are applied, but they are not enforced yet. The policies are used to evaluate
the compliance impact. Compliance reports can be used to find the users that are in violation of
the policy, in order to remedy the situation. Compliance reports may also be used to track the
extent and progress of compliance.

• Remediation. Good IDM deployments strive for automation. All the processes and actions that
can be automated are automated. E.g. if a role is unassigned and user does no longer needs an
account, such account is automatically deleted or disabled. However, there are actions that
cannot be automated because they require decision of a living and thinking human being.
Approvals are one example of such processes. However, there are more situations like that.
Many of those require more initiative than a simple yes/no decision. One such example is
organizational structure management. There is usually a rule that each department must have a
manager. However, what should IDM system do in case that a department manager is fired?
IDM system cannot stop that operation, as there are certainly good reasons to revoke all
privileges of that manager. The manager and all the associated accounts have to go, as soon as
possible. Now there is a department without a manager, and the IDM system itself cannot do
anything about it. That is where remediation comes to the rescue. Remediation process is
started after the operation that removed the manager. The remediation process will ask a
responsible person to nominate a new manager for the department. There may be a broad
variety of remediation processes. Simple process will ask for yes/no decisions, or it may ask to
nominate a user. Then there are often options to set up generic processes that apply to
completely unexpected situations.

• Risk management automation. Information security is not a project, it is a process. It starts
with risk analysis, planning, execution, and then it goes back to analysis and planning and
execution, and so on and so on for ever and ever. Risk analysis is the part of the process that
takes a huge amount of time and effort - especially when it comes to analysis of insider threat as
there is usually a lot of insiders to analyze. However, an IDM system can help to reduce the risk
analysis effort. Each role assigned to a user is a risk. If roles are marked with relative risk levels,
IDM system can compute the accumulation of risk for each user. As each role gives access to a
particular set of assets, the IDM system may provide data to evaluate asset exposure to users.

• Identity analytics and intelligence (IdA) is mostly an umbrella terms. It usually refers to a
composition of several identity governance features, integrated into a holistic, risk-based
approach. Identity analytics and intelligence starts by a look at the data. The process starts with
a very realistic assumption that the data are not in perfect order, that there are inconsistencies,
imperfections, risks and all kinds of other problems. Various techniques are employed to detect
the problems. Most techniques seems to be based on recognition of anomalies and patters in the
data. Outlier detection mechanisms look for users with privileges that are significantly different
from the privileges of their colleagues. On the other hand, role mining is used to detect similar
privileges assigned to similar users, suggesting new roles. Many of the identity analytics and

48

intelligence techniques are based on risk modeling. There are mechanisms to identify over-
privileged users by analysing risk scores of individual users. Similar mechanisms can be used to
identify high-privilege entitlements assigned to a low-privilege user or similar risk anomalies.

• Workflow orchestration is provided by some IGA platforms. Workflow engines drive processes
based on simple algorithms, usually containing many manual steps that need to be carried out
by different people of teams. IGA platforms use workflow automation mostly to implement
approval mechanisms. While use of workflow engine for approvals may look like an obvious
choice, workflow engines are perhaps the worst tools possible. Approval processes are usually
dynamic process, their form heavily depends on input (request) and policy settings. The list of
approvers, approval stages and exit conditions depend on the set of requested roles and other
factors (e.g. user risk level), which is not an easy thing to handle in high-level business process
modeling language.

Even though workflow orchestration is almost useless for implementation of approval
processes, it still has its place in IGA platform. Workflow automation may be useful for driving
on-boarding (enrollment) and off-boarding processes. It may also be useful for some
remediation cases, although remediation tends to be an unstructured or semi-structured
activity that is better handled by case management than workflow automation.

Almost all IGA platforms that support workflow automation are bringing their own (often
proprietary) workflow engine. This means that the administrators need to learn how to
configure the workflows, users need to adapt to new user interface, notifications need to be
integrated and so on. It would be much better to re-use existing workflow engine, an engine
that is already used by the organization to drive all its other business processes. Except for
approvals which heavily depend on role structure, other IGA processes tend to be very similar
to ordinary business processes in the organization. Re-use of existing workflow automation and
orchestration platform should be a natural choice. Except for one annoying detail. Most
organizations do not have such a system. Therefore even that strange proprietary workflow
engine embedded in the IGA platform may still be quite useful.

Not all IGA platforms will implement all the features. Scope and quality of implementation vary
wildly from system to system. Moreover, individual IGA platforms are using their own terminology,
which makes the situation very confusing. This is further obscured by marketing departments, that
try to present even the smallest advantage as revolutionary achievement. Most IGA platform are
closely guarded commercial closed source software, access to the software and documentation is
jealously guarded. This makes comparison of individual IGA platform a very challenging
undertaking. Perhaps the best approach is to know what you need: summarize your requirements
and priorities. Write down your expectations, select a product, and conduct a proof-of-concept test
tuned to your specific needs. That is perhaps the only reliable way to break through the marketing
veil.

Risk-Based Approach To Identity Governance

Risk-based approach to identity management and governance is a very good idea. In fact, it is an
excellent idea, one of the best ideas in decades. However, as with many great ideas, there are
difficulties and drawbacks.

But wait a moment, what is this "risk-based" thing all about? To answer that question we have to

49

make a quick road-trip through information security landscape.

The concept of risk comes from information security theory. Security practitioners have realized a
long time ago that it is all but impossible to create a perfectly secure system. As you try to make a
system more and more secure, every step is more expensive than the previous step. Every
countermeasure is less efficient than the previous one, it is more intrusive, it is less flexible, harder
to adapt to business needs. Eventually, the system gets to the state where it is practically useless for
business, yet the system is still not completely secure.

Therefore the security practitioners came with a concept of risk. Risk is a measure of danger that a
particular asset is subjected to. An asset such as a customer database can be in risk with respect to
particular threat, for example a hacker trying to steal the database to sell it to your competition.
The risk tells about the probability of an asset being compromised. For example, keeping the
database in a form of spreadsheet on decades old Windows machine connected to an open Internet
is obviously quite a risky thing to do. The risk can be addressed using countermeasures.
Countermeasures are all the things that we do to make systems more secure, ranging from
operating system updates, through access-control systems up to bomb-proof doors and heavily-
armed guards.

As it is not practical to completely secure a system, there is always some amount of risk that we
have to accept. This is called residual risk, a risk that we are aware of, yet it is not efficient to reduce
or eliminate the risk. Even though residual risk cannot be completely eliminated, there may be risk
mitigation plans. For example, we may accept that there is a risk of an operating system
vulnerability, and no amount of automated software updates, vulnerability database integrations
and watchfulness is ever going to eliminate the risk completely. However, we can mitigate the risk
by preparing plans to be executed when we are affected by a zero-day vulnerability. The plan may
include disabling network access to vulnerable services as soon as we learn about the vulnerability,
investigation that looks for traces of an attacker exploiting the vulnerability, emergency
communication and contingency plans and so on. Risk mitigation is focused on making the impact
of such an attack less painful, reducing the damage.

In an ideal situation we are completely aware of the risk, so we can implement countermeasures
and prepare risk mitigation plans. However, we need to know quite a lot about the risk for the
countermeasures and mitigation plans to be efficient. Risk is not just a single number, it is a multi-
dimensional and often very complex concept. The amount of risk is evaluated in a risk assessment
process, which is often very tedious and demanding exercise. Risk assessment process evaluates
assets, to determine the value of the data and services. The process looks at threats, such as skills
and motivations of an attacker. The assessment looks at vulnerabilities that attackers can use to gain
access to our systems. It is also concerned with existing countermeasures, processes, policies and
other details.

This means that the risk assessment process deals with big and complex data that cannot be
processed by a human mind alone. The data are usually fed into risk models to determine the risk.
Risk models are a set of complex mathematical formulas that transform data on assets, threats,
vulnerabilities and all the other inputs into a multi-dimensional representation of risk areas. In
theory, the risk model can tell us that we have a high risk in network security, especially when
dealing with customer data - and we should really do something about it!

The results of risk assessment are meant to drive the implementation of countermeasures and risk

50

mitigation plans. There are too many countermeasures and mitigation strategies to choose from, we
cannot possible implement them all. We want only the really efficient ones. We do not want to
waste time and money on sophisticated encryption of data that are just copies of public
information, do we? The risk assessment is supposed to tell us what is important and what is not.
This is an important principle of efficient and systematic information security process: never guess,
never go blind, let the risk lead you. Base your decisions on data. Implement countermeasures
exactly where they are needed, where they are in a good position to address real risks.

However, information systems are not the easiest things to analyze. They never seem to stand still!
The data are changing, new integration routes are added, systems are re-configured. Yet, the most
annoying of all, user accounts and privileges change pretty much every day. By the time the risk
assessment is done, the results are already out of date! How are we supposed to evaluate the risk,
when everything around us is changing constantly?

The answer is, of course, automation. There are parts of risk assessment that cannot be automated.
For example, there is no magic method to automatically assess business value of your data assets.
However, some parts of risk assessment can be automated.

This is where we get back to identity management and governance. Almost all organizations are
affected by insider threat, a threat posed by people that are already part of your organization.
Employees, contractors, support engineers, cloud service providers - they already have access to
your data. They do not need to hack anything, they do not need to overcome any countermeasures.
They are already inside. All it takes to reveal your trade secrets are a simple copy and paste
keystrokes. One file download is all it takes to sell your customer database. The proliferation of
cloud services make such "exploits" entirely trivial. There is no technological countermeasure, no
perimeter that could stop an insider to use a privilege that he or she already has.

This means that identity data heavily affect outcome of risk modeling. A system where almost all of
your employees have unrestricted access to a customer database is very likely to pose much higher
risk than all the network-related risks combined. A single person that has administrator-level
access to almost every system in your organization is certainly a very attractive phishing target.
There are high risks hidden in the identity data of almost any organization. Yet, such risk can be
easily reduced by adjusting the access rights. But how to find such risks? Identity data are often
complex, system-specific, distributed in many directories, cloud systems and application databases.
Any identity practitioner can certainly see where this leads: identity management system, of
course.

Identity management system is an ideal place for evaluation of risks related to identity and access
data. Essential data are already in the database of identity management system: users, roles, role
assignments, role composition, entitlements, everything is there. Entitlements can be assessed to
assign a risk score to them. Then the data can be fed into a risk model, evaluating how are the
entitlements combined in roles, how are teh roles assigned to users, identifying high-risk roles and
users. The model is evaluated by the machine, quickly and efficiently. The efficiency opens up a
whole range of possibilities, that form the essence of a risk-based approach to identity governance.

As we can evaluate a risk posed by any individual user, we can easily identify dangerous
accumulation of privileges in the hands of a single user. Then we can focus on addressing this risk,
analysing why have the privileges accumulated, whether they are all necessary, removing excess
privileges to lower the risk. Perhaps we can consider changing business processes to divide the

51

responsibilities among several users, lowering the risk even further. We can evaluate the risk
model after each step, checking whether we have reached acceptable risk levels already.

The risk model can evaluate risk of each role. This allows detection of anomalies, such as
assignment of a powerful high-risk role to an ordinary user that is supposed to be low-risk. Such
role is likely to be assigned by mistake, or perhaps it was a role assigned during an emergency that
was never removed. Unassignment of such role may be a quick way to reduce the risk. Smart
system could suggest several types of such outliers, where privileges of an individual users stand
out from the surrounding.

Once we have the concept of risk established in our system, we can use it in security policies. For
example, it makes sense to require stronger password for high-risk users, or even better,
automatically set up a multi-factor authentication for them. It may be desirable to re-certify
privileges of high-risk users more frequently than those of low-risk users. Assignment of new role
to a high-risk user may need to pass through additional approval stage. The policies can take the
risk into consideration. This approach is often referred to as adaptive security.

There are even more advantages when the risk-based approach is applied also to other areas of
identity and access management field. For example, it may be a good idea to require strong
authentication from high-risk users, while allowing weaker authentication for low-risk users. This
can be achieved in many ways, the easiest is perhaps for identity management system to propagate
risk scores to access management user profiles.

Risk-based identity management and governance is indeed the right thing to do. However, the devil
is in the details, and the reality is much harder than the glossy marketing brochures dare to admit.
There are hidden dangers and dark corners on this route:

• One risk assessment means nothing. Nothing at all. The results are out of date as soon as they
are produced by the model. You have to do assessment continually, all the time, since now till
eternity. You take the results of an assessment, plan countermeasures, apply them, only to do all
the work over again. This is called "security process". It never ends.

• Risk evaluation is almost always subjective. When evaluating risk of any individual entitlement,
you will probably use subjective terms such as "low", "medium" and "high". The subjective
terms are often hidden behind scores, numbers that may look like they are exact values. In
reality, they are everything but exact.

Subjective risk assessment is pretty much a standard method. Objective risk measures are
sometimes tries, such as conversion of risk to a monetary value. However, such "objective"
measures are often very misleading, and they are generally frowned upon by information
security practitioners. There is nothing fundamentally wrong with subjective risk assessment as
long as you are aware of the limitations. Perhaps the most important rule is to keep the
assessment consistent and proportional. Entitlements that are assigned "low" risk level should
pose approximately the same risk, and it should be significantly lower than all the entitlements
marked as "medium" risk.

• You need risk model appropriate for your organization and situation. When it comes to risk
models, one size does not fit all. There are simple risk models appropriate for quick assessments
in organizations with low security requirements. Then there are overly complex risk models
that are designed for high-security military setting. Even if you find a model that fits your

52

needs, you still need to fine-tune it. You cannot just buy an instant ready-to-serve-in-5-minutes
risk model. Such model will never work for you.

• Model is not reality. Model is meant to be an approximation of reality. However, how well the
model approximates reality must not be taken for granted. Risk model may not for you, and you
may not even realize it. Bad model will get you into a false sense of security, claiming that you
are all green while in fact you can be in grave danger. Do not trust your risk model blindly. Try
to validate the results, try to confront model results with reality as much as you can.

Information security is quite a strange field. You can clearly prove that your system is insecure, for
example by successfully attacking your system. Yet, you can never completely prove that your
system is secure. This limitation is a major source of confusion, and it also opens up opportunities
for charlatans, offering their security snake oil on the market. As you cannot buy information
security process, you cannot buy a ready-made risk-based approach to identity governance. You
have to build it yourself. Having advanced and smart identity governance platform at your side is
unquestionably a great help. However, such a platform is only a tool. Even the smartest and most
expensive tool will not do all the work. It will make your work more efficient, but you still need to
be the one driving it. One size does not fit all. Your organization is different to other organizations.
That is what makes you unique, what gives you competitive edge, what makes you survive on the
market. You cannot expect to buy a model or a process that fits your needs perfectly. You have to
adapt and develop your own models, policies and processes. Having a starting point that is similar
to your needs is a huge advantage. Starting from industry-specific frameworks, templates and
samples will save you a lot of time. Go for these, whenever they are available. However, you will
have to understand how the frameworks work, you will need to know what you are doing, as you
will certainly need to adapt them to your needs.

Similarly to information security, "off the shelf" is mostly just an illusion in identity management
and governance. Whatever the bold marketing statements say, you cannot just buy it and run it. No,
not even in the cloud. You can buy identity governance platform as a service, but you cannot buy
identity governance. You will have to learn a lot of things, you will have to dive deep into policies
and models, you will have to do a lot of work yourself. Set your expectations realistically.

Identity Management and Governance Terminology
Identity professionals, often motivated by marketing needs, like to invent new names and use them
to describe the same thing. Therefore there are many overlapping, overloaded and similar terms in
use.

Identity management (IDM) is usually used to describe the low-level parts (technology), while
identity governance is used to describe the high-level parts (business). Yet the boundary is very
fuzzy and many IDM systems provide governance capabilities, and many governance systems
provide low-level functions. Identity governance and administration (IGA) is a term supposed to
describe both parts together. Governance, risk management and compliance (GRC) is a terms that
was mostly used in the past to represent the high-level identity governance functionality, later
known simply as identity governance. Identity security is a marketing term that roughly covers IGA
functionality.

Overall, the terminology is very fluid. Vendors use their own terms, often choosing overloaded or
confusing terminology. Industry analysts and consultants also adding their own terms and

53

meanings to existing terms. Marketing terms are invented faster than the documentation can adapt,
making the situation quite confusing. We have tried to compile the terminology as precisely as we
could, while still making the terms understandable. We have chosen to follow established industry
terminology when possible, even though many terms are overloaded and ambiguous. However, we
did not want to increase the confusion by re-inventing the terminology. We are pointing out the
ambiguities in the text as needed. At the very least, we are trying to use a consistent terminology in
this book. When in doubt, please refer to the glossary.

Complete Identity and Access Management Solution
A comprehensive Identity and Access Management solution cannot be built by using just a single
component. There is no single product or solution that will provide all the necessary features. And
as the requirements are so complex and often even contradictory it is very unlikely that there ever
will be any single product that can do it all.

A clever combination of several components is needed to build complete solution. The right mix of
ingredients for this IAM soup will always be slightly different as no two IAM solutions are the same.
But there are three basic components that are required for any practical IAM deployment:

• Directory service or a similar identity store is the first component. This is the database that
stores user account information. The accounts are stored there in a “clean” form that can be
used by other applications. This database is then widely shared by applications that are capable
to connect to it. This part of the solution is usually implemented as a replicated LDAP server
topology or Active Directory domain. This has an advantage of relatively low cost and high
availability. But there is one major limitation: the data model needs to be simple. Very simple.
And the identity store needs to be properly managed.

• Access Management is a second major component of the solution. It takes care of
authentication and (partially) authorization. Access management unifies authentication
mechanisms. If an authentication mechanism is implemented in the access management server
then all integrated applications can easily benefit. It also provides Single Sign-On (SSO),
centralizes access logs and so on. It is a very useful component. But of course, there are
limitations. AM system needs access to identity data. Therefore it needs reliable, very scalable
and absolutely consistent identity database as a back-end. This is usually provided by the
directory service. Performance and availability are the obvious obstacles here. But there is one
more obstacle which is less obvious but every bit as important: data quality. The data in the
directory service must be up to date and properly managed. But that is only part of the picture.
As most applications store some pieces of identity data locally, these data also need to be
synchronized with the directory database. No access management system can do this well
enough. And there is no point for AM to do it at all. The AM system has a very different
architectural responsibilities. Therefore yet another component is needed.

• Identity Management is the last but in many ways the most important component. This is the
real brain of the whole solution. The IDM system maintains the data. It is the component that
keeps the entire system from falling apart. It makes sure the data are up to date and compliant
with the policies. It synchronizes all the pieces of identity data that those pesky little
applications always keep creating. It maintains groups, privileges, roles, organizational
structures and all the other things necessary for the directory and the access management to
work properly. It maintains order in the system. And it allows living and breathing system

54

administrators and security officers to live happily, to breath easily and to keep control over the
whole solution.

The following diagram shows how all these components fit together.

This is truly a composite solution. There are several components that have vastly different features
and characteristics. But when bound together into one solution, the result is something that is much
more than just a sum of its part. The components support each other. The solution cannot be
complete unless all three components are in place.

However, building a complete solution may be quite expensive and it may take a long time. You
have to start somewhere. But if you have resources for just one product then choose identity
management. IDM is a good start. It is not that expensive as access management. And IDM brings
good value even quite early in the IAM program. Especially the second generation IDM systems are
very good at repaying the investment. Going for open source product will also keep the initial
investment down. Staring with IDM is usually the best choice to start the IAM program.

IAM and Security
Strictly speaking, Identity and Access Management (IAM) does not entirely fit into the information
security field. The IAM goes far beyond information security. IAM can bring user comfort, reduce
operation costs, speed up processes and generally improve the efficiency of the organization. This is
not what information security is concerned with. But even though IAM is not strictly part of
information security there is still a huge overlap. IAM deals with authentication, authorization,
auditing, role management and governance of objects that are directly related to the information
security. Therefore IAM and information security have an intimate and very complicated

55

relationship.

It is perhaps not too bold to say that the IAM is a pre-requisite to good information security.
Especially the identity management (IDM) part is absolutely critical - even though this may not be
that obvious at the first sight. But the evidence speaks clearly. Security studies quite consistency
rate the insider threat as one of the most severe threats for an organization. However, there is not
much that the technical countermeasures can do about the insider threat. The employee,
contractor, partner, serviceman - they all are getting the access rights to your systems easily and
legally. They will legally pass through even the strongest encryption and authentication because
they have got the keys. Firewalls and VPNs will not stop them because those people are meant to
pass through them to do their jobs.

Vulnerabilities are there, obviously. And with the population of thousands of users there is a good
change that there is also an attacker. Maybe one particular engineer was fired yesterday. But he still
has VPN access and administration rights to the servers. And as he might not be entirely happy
about the way how he has been treated the chances are he might be quite inclined to make your life
a bit harder. Maybe leaking some company records would do the trick. Now we have a motivated
attacker who will not be stopped by any countermeasures and who can easily access the assets. Any
security officer can predict the result without a need for a comprehensive risk analysis.

Information security has no clear answers to the insider threat. And this is no easy issue to solve as
there is obviously a major security trade-off. The business wants users to access the assets easily to
do their jobs. To keep the wheels of an organization turning. But security needs to protect the assets
from the very same users. And there is no silver bullet to solve this issue. However there is a couple
of things that can be done to improve the situation:

• Record who has access to what. Each user has accounts in many applications through the
enterprise. Keep track which account belongs to which user. It is very difficult to do that
manually. But even the worst IDM system can do that.

• Remove access quickly. If there is a security incident then the access rights need to be removed
in order of seconds. If an employee is fired then the accounts have to be disabled in order of
minutes. It is not a problem for a system administrator to do that manually. But will the
administrator be available during a security incident late in the night? Would you synchronize
layoffs with the work time of system administrators? Wouldn’t system administrators forget to
stop all the processes and background jobs that the user might have left behind? IDM system
can do that easily. Security staff can simply disable all the accounts by using IDM system. Single
click is all that is needed.

• Enforce policies. Keep track about the privileges that were assigned to users. This usually
means managing assignment of roles (and other entitlements) to users. Make sure that the
assignment of sensitive roles is approved before user gets the privileges. Compare the policies
and the reality. System administrators that create accounts and assign entitlements are not
robots. Mistakes can happen. Make sure the mistakes are discovered and remediated. This is the
natural best practice. But it is almost impossible to do manually. Yet even an average IDM
system can do that without any problems.

• Remove unnecessary roles. Role assignments and entitlements tend to accumulate over time.
Long-time employees often have access to almost any asset simply because they needed the data
at some point in their career. And the access to the asset was never removed since. This is a

56

huge security risk. It can be mitigated by inventing a paper-based process to review the
entitlements. But that process is very slow, costly, error-prone and it has to be repeated in
regular intervals. But advanced IDM systems already support automation of this re-certification
process.

• Maintain order. If you closely follow the principle of least privilege then you have probably
realized that you have more roles that you have users. Roles are abstract concepts and they are
constantly evolving. Even experienced security professionals can easily get lost in the role
hierarchies and structures. The ordinary end users often have absolutely no idea what roles
they need. Yet, it is not that hard to sort the roles to categories if you maintain them in a good
IDM system. This creates a role catalog that is much easier to understand, use and maintain.

• Keep track. Keep an audit record about any privilege change. This means keeping track of all
new accounts, account modifications, deletions, user and account renames, role assignments
and unassignments, approvals, role definition changes, policy changes and so on. This is a huge
task to do manually. And it is almost impossible to avoid mistakes. But a machine can do that
easily and reliably.

• Scan for vulnerabilities. Mistakes happen. System administrators often create testing accounts
for troubleshooting purposes. And there is an old tradition to set trivial passwords to such
accounts. These accounts are not always cleaned up after the troubleshooting is done. And there
may be worse mistakes. System administrators may assign privileges to a wrong user. Help desk
may enable account that should be permanently disabled. Therefore, all the applications have
to be permanently scanned for accounts that should not be there and for entitlements that
should not be assigned. This is simply too much work to be done manually. It is not really
feasible unless a machine can scan all the system automatically. This is called reconciliation,
and it is one of the basic functionalities of any decent IDM system.

Theoretically all of these things can be done manually. But it is not feasible in practice. The reality is
that information security seriously suffers - unless there is and IDM system that brings automation
and visibility. Good information security without an IDM system is hardly possible.

Zero-Trust Approach

Zero-trust is an approach to design network and application systems. The basic idea is that a system
should not implicitly trust any other system, not even systems located on a "secure" corporate
network. Simply speaking, zero-trust approach is mostly about removing security perimeter.

For many decades, corporate networks were designed using hard exterior, soft interior approach.
Corporate network was protected from the Internet by an army of specialized security systems and
techniques, such as firewalls, de-militarized zones, network traffic analysers, intrusion detection
systems, network anti-virus scanners and everything else a booming network security market
could provide. While the castle gates were heavily protected, the interior of corporate network was
very soft. Originally, there were no security measures inside corporate networks at all. Anyone that
got inside could connect to any system. Of course, basic authentication and authorization
mechanisms were usually there, but the network was not segmented, and the traffic was usually
not even protected by basic encryption. This approach created a security perimeter around
corporate network. If you want to keep the data secure, you have to make sure nobody gets into the
network.

57

Of course, this approach does not really make much sense in the Internet era. There is no such
thing as a network perimeter, not since the invention of WiFi, mobile data and USB keys anyway. It
is ridiculously easy to breach the perimeter by connecting a WiFi device to the corporate network.
However, even that was usually not needed, as the data can be copied to USB keys, or easily moved
outside the perimeter by using virtual private network (VPN) access. Corporate security
professionals tried to address such threats by strictly controlling user’s devices, such as disabling
USB ports, disabling access to other networks while the device was part of VPN, and so on.
However, none of these countermeasures were really effective, and they were usually very
intrusive and inconvenient for the users. Advent of cloud services and mobile devices was the last
drop, the traditional corporate information security approach was dead. Even the most traditional
security practitioners had to admit what was already obvious: there is no perimeter.

The old approach was replaced by a new one: zero trust. An application should not trust any other
application, not even an application on the same corporate network. Network perimeter was
replaced by mutual authentication and network traffic protection. Each application must
authenticate the other end of the connection, whether it is talking to the party it is supposed to talk
to. Network traffic always needs to be encrypted and authenticated (signed), always assuming that
it can be passing through an insecure network. Simply speaking, we treat corporate network in
exactly the same way as we are treating public Internet. The soft interior turned into hard interior,
and the perimeter was no longer needed.

The concept of zero trust is not new at all. It was here pretty much since the very beginnings of
information security. Security practitioners are trained not to trust anything or anyone, set up
policies, require authentication, deny access by default, encrypt all network traffic, minimize
privileges, manage risks, and so on. Therefore, "zero trust" approach is essentially just a thorough
application of proper information security principles. This approach is here for decades, it just had
different names: defence in depth, perimeterless security, network hardening and so on.

Even though zero trust approach is not new, it dramatically gained on importance in the era of
cloud services and remote access. Many functions provided by traditional corporate applications
are provided by cloud services now. Such applications need data to work, therefore, the very use of
"as a service" applications is by itself a breach of the perimeter. Cloud applications need to work
together with on-premise applications. Traditional enterprise integration patterns based on soft
interior do not work in this brave new world any more. All of that is driving the zero trust concepts.

Of course, "zero trust" is more a wish rather than a strict rule. A system that trusts nothing will not
be able to work at all. There is always some amount of trust involved, even in zero trust approach.
The system must trust that the root keys and certificates are authentic. There is an implicit trust
that the developers have not introduced a back door into system code. Zero trust approach should
perhaps be called "minimal trust approach". However, "zero trust" is much more attractive in
glossy magazines and presentations. Whatever is the approach called, the basic principle remains
the same: aggressively minimize implicit trust in the system.

Identity permeates everything, therefore the zero trust approach has an impact on identity and
access management as well. Impact on access management technologies is perhaps quite obvious.
Access management deals mostly with authentication. The applications need to authenticate to
each other in this new zero trust world. Therefore the access management systems need to handle
authentication of non-person identities, such as applications and devices. Many scenarios do not
significantly deviate from the usual authentication, perhaps the only difference is that the

58

authentication needs to be completely non-interactive. However, there are also more complex
authentication scenarios, such as an application authentication on behalf of a user. Traditional
authentication methods (such as password-based authentication) are obviously ill-prepared for
such scenarios. Therefore the zero trust approach is often combined with introduction of new
authentication mechanisms.

Impact of zero trust approach on identity management systems is much more subtle. Zero trust
approach requires mutual authentication of communication parties. Which means that the identity
management system needs to manage non-person identities such as applications and devices. This
requirement is not new, therefore most well-maintained identity management products are more
than capable in this aspect. The problematic part is usually the connection between the identities,
the relationship. If two applications have to communicate, both of them need to know about the
other one. API keys, pre-shared secrets, certificates and other cryptographic material needs to be
set up before first communication can happen. The credentials need to be updated, keys must be
changed periodically, certificates need to be renewed. Such application credentials are much more
important than passwords ever were, as application credentials are quite literally the keys to the
kingdom. An attacker that gets access to the application keys has access to all the data in cloud
applications, which very likely means your payroll data, customer database, internal documents,
almost everything that is important to you. Experienced information security professionals know,
that it is not encryption that is the most difficult part of cryptography. The key management is.
Similarly, it is not the authentication that is the most difficult problem in zero trust approach.
Identity and credential management is much harder. Today, application identities and credentials
are usually configured manually by system administrators. However, such approach does not scale.
The whole idea of "as a service" applications is to make information systems more flexible, more
dynamic, and especially less demanding when it comes to system administration. Manual
management of application identities goes well against that idea.

What can an identity management system do for zero trust approach?

Firstly, it can do the same thing it normally does. It can manage user identities. In zero trust mode,
users have to authenticate everywhere, they have to be authorized everywhere, in every
application or service. While authentication can usually be handled by access management or
single sign-on systems, authorization is much harder. Identity management system can do it, it can
manage entitlements and privileges, it can deprovision unnecessary accounts and access rights.
This part is relatively easy, it is what identity management systems do for decades.

Secondly, identity management system can manage access of one application to other application.
This means management of application accounts, management of application credentials,
privileges, deprovisioning the accounts when application is decommissioned. This may sound
simple, but it is all but simple in reality. The most basic requirement is an application inventory, an
authoritative list of applications in an organization. However, many organizations do not have that
at all. Those organizations that have it, usually have in a form of informal spreadsheet that is not
entirelly machine-readable. How is identity management system supposed to even start
management of application identities, when there is no authoritative source? Therefore the effort
should start with building such a source, which may be a manually-maintained information in the
identity management system. Then, application accounts and entitlements (groups) need to be
associated with the application. Applications much have owners, which can be maintained in IDM
system. As application accounts and entitlements are associated with an application, they can be
automatically deprovissioned when application is decommissioned. However, perhaps the most

59

challenging part is credential management. The credentials should be changed periodically.
However, this change has to be synchronized on both sides of the communication channel (both
client and server part), otherwise there will be an outage. This is difficult to automate, even with
the state-of-the-art IDM system.

Overall, current identity management and governance platforms are not ready for full
management of applications, application accounts and entitlements. Only a partial functionality is
usually available. Even though the concepts of zero trust approach are quite old, they were never
applied systematically at scale. Therefore there was not a sufficient demand to implement required
features in identity management systems. The future will tell whether current wave of zero trust
hype brings such demand. However, pretty much all IDM systems much evolve and develop new
features. Therefore it is crucial to choose and IDM platform that can evolve.

Building Identity and Access Management Solution
There is no single identity and access management solution that would suit everybody. Every
deployment has specific needs and characteristics. Deployment in a big bank will probably focus on
governance, role management and security. Deployment in small enterprise will focus on cost
efficiency. Cloud provider will focus on scalability, user experience and simplicity. Simply speaking,
one size does not fit all. Almost all IAM solutions use the same principal components. However,
product choice, solution topology and configuration will significantly vary. Do not expect that you
download a product, install it and that it will solve all your problems. It won’t. Customization is the
key.

We consider identity management to be heart and brain of any IAM solution. This is one of the
reasons why we have started midPoint project. The rest of this book will focus almost exclusively
on identity management and the use of midPoint as the IDM component. This is the place where
theory ends and practice begins.

60

Chapter 2. MidPoint Overview
Chaos was the law of nature; Order was the dream of man.

— Henry Adams

MidPoint is an open source identity management (IDM) and identity governance platform. It is a
very rich and sophisticated system that provides many advanced features. MidPoint is maintained
by Evolveum – a company dedicated to open source development. All midPoint core developers
work for Evolveum. However, there are also partners and other engineers that are contributing to
midPoint development.

One of the main differences between midPoint and other IDM systems is that midPoint is designed
and implemented with one primary goal in mind: practicality. It goes very deep into the very
foundations of midPoint. To be more concrete, practicality means:

• Things that are simple or frequently used should be easy to configure. Propagation of changed
password, user enable/disable, account synchronization – these should be as easy as possible. As
simple as flicking a switch or setting few configuration properties.

• Things that are more complex or used less frequently may be a bit harder. Such as editing XML
or JSON file or writing few lines of Groovy or Python script.

• Things that are very complex or very unusual should be still possible. However, these might not
be easy. It may require longer scripts or implementing some Java classes. It may require forking
and modifying the source code. But it must be possible to do almost anything.

This means that simple solutions which do not deviate from the usual requirements will be easy to
implement. Most IAM programs start simple, solving common problems. Quick start allows to gain
the benefits very early in the project. The effort grows as the requirements are getting more
complex and more unusual. But the effort is still much lower than implementing everything from
scratch. And there is always an option to stop the project at any point where the costs are getting
too high to justify the benefits.

MidPoint is an open source system. Therefore, there is no license cost that would offset the initial
costs. Even small projects are feasible with midPoint.

Simply speaking, midPoint is following the Pareto principle: 20% effort brings 80% benefits. There
are many mechanisms that support this approach. Some are based in midPoint design, some
originate from midPoint development practices and some are even supported by the Evolveum
business model. But more about that later.

How MidPoint Works
MidPoint does what any identity management system is supposed to do: it manages identities. The
very basic functionality of midPoint is the synchronization of identity data that are stored in
various applications, databases, directory servers, text files and so on. We call all these systems
identity resources or resources for short. MidPoint is using connectors to reach the resources.
MidPoint can propagate a change that happened in one resource to other resources. E.g. an

61

employee record appears in the HR system, it is picked up by midPoint, processed, transformed and
then new Active Directory and CRM accounts are created. This is the process that we call
synchronization.

MidPoint has a rich graphical user interface (GUI) that can be used to manage the identities.
Changes made by system administrators are automatically propagated to all affected resources. E.g.
security officer disables a user by clicking on disable button in midPoint user interface. Then
MidPoint makes sure that all accounts that belong to the user are immediately disabled.

62

This is the essence of midPoint operation. This may sound simple, but this description is extremely
simplified. The reality is much more complicated. Most of the important things happen inside
midPoint before the changes are applied to target resources. For each change that midPoint detects
it needs to evaluate:

• Roles: MidPoint computes where the user should have access. This is usually given by the roles
that the user has. The role structure is often quite rich. There may be hierarchical roles,
parametric roles, conditional roles and a lot of other advanced mechanisms.

• Organizational structure: Users usually belong to some organizational units, projects, teams
or groups. Some of them may give additional privileges to the user.

• Status and life cycle: Accounts can be created, enabled, disabled, archived or deleted. There
are many situations that need to be processed. E.g. we may want to create a disabled account
one week before a new employee starts his work, enable the account on his first day, disable the
account on his last day and delete it three months after he leaves.

• Attributes and identifiers: Simple synchronization scenarios assume that attributes and
values will be the same in all the synchronized systems. That is a nice theory, bit it almost never
works like that in real world. Attribute names need to be translated, values need to be
transformed, data types need to be converted. This is different for each system and even for
each instance of each system. Small algorithms in form of scripting expressions are usually
needed to properly transform the values.

• Credential management: Password changes need to be propagated to the resources.

63

Sometimes we want to synchronize password with all systems, sometimes we want just a subset
of systems. Password policies need to be evaluated, password history needs to be checked,
password may need to be encoded and hashed before storage.

• Policy rules: Policies are evaluated, each rule applied to current situation. The rules may
prohibit illegal situations, such as dangerous combination of roles. Policy rules may mark the
object for later inspection by administrator. The rules may do almost anything to make sure the
system is compliant.

• Consistency: The account in the target application might have changed since midPoint has
updated it. The current change may no longer be applicable to the current state of the account.
The change that midPoint wants to make may conflict with the native change, the change may
be partially applied already, the account may have attribute values that it should not have or
the account may not exist at all. MidPoint has to detect such situations and react accordingly,
e.g. by re-creating a deleted account before applying the changes.

• Approvals: MidPoint determines if any of the changes need to be approved before they are
applied. If that is the case then midPoint drives the request through an approval process. There
may be multiple stages of approval, approver groups, optional approvers, the request can be
escalated if approvers do not take action in time and so on. Approval process may be quite
complicated, the actual steps are computed individually for each request, based on approval
policies.

• Notifications: MidPoint notifies the user that he can access a new account. It notifies the
administrator if something goes wrong.

• Audit: MidPoint records all the changes into an audit trail. This can be used by security officers
or specialized analytic engines later to investigate past situations and changes. Audit trails
provides accountability.

This is a lot of things to process, evaluate and execute. Some of these steps are quite complex. And
indeed there are many complex algorithms implemented in midPoint. There are algorithms that
evaluate complex role structures, organizational structures, temporal constraints, password
policies and so on. The only thing that is needed is to configure them properly.

However, midPoint does even more than that. MidPoint does not only manage identities, it can also
manage any object that is anyhow related to identity management. MidPoint can manage roles, role
catalogs, organizational structures, groups, projects, teams, services, devices and almost any other
object.

MidPoint is also an identity governance system. The job of identity management features is to make
sure that the policies are consistently applied through the organization. The governance features
assist with the maintenance and evolution of those policies. MidPoint implements access
certification process. This is a recurring process that asks managers to confirm that the users still
need the privileges that they have previously received. MidPoint contains mechanism to sort roles
into hierarchies and categories. That is necessary to maintain order during role engineering and
maintenance of role definitions. MidPoint has mechanisms for selective enforcement of role which
comes very useful during migrations and when new system is connected to midPoint. MidPoint has
support for policy lifecycle, general policy rules and so on. And more work in that direction is
planned in future midPoint versions. We fully understand that it is not enough to simply apply the
policies. Policies are living things and they need to evolve.

64

Case Study
This book is about practical identity management. Therefore, we will get very close to a practice by
demonstrating midPoint features using a case study. This is a case study of a fictional company
ExAmPLE, Inc. The name stands for "Exemplary Amplified Placeholder Enterprise". ExAmPLE is a
mid-sized financial company. Its operation heavily relies on information technologies, therefore
there is a diverse set of applications and information systems ranging from legacy applications to
cloud services. As ExAmPLE has few thousand employees and there is a good potential for growth
the management has decided to start an IAM program. The first step of the program is deployment
of midPoint as the identity management system.

Eric is an IT engineer at ExAmPLE, Inc. He has taken the responsibility to install and configure
midPoint. Eric spins up a new Linux virtual machine for midPoint. He downloads midPoint
distribution package and follows the installation instructions. Couple of minutes later midPoint
instance starts up. Eric logs in to the midPoint user interface.

MidPoint instance is almost empty after fresh installation. It contains only a couple of essential
objects. But Eric is a smart engineer. He has already read through this book, and he knows exactly
what he needs to do.

First thing to do is to populate midPoint with employee data. The primary source of ExAmPLE
employee data is an HR system. The HR system is quite big piece of software, it is not easy to
connect to that system directly. Fortunately, it is quite easy to get a text export of the employee data
in comma-separated (CSV) format. Eric plans to use this file to get employee data to midPoint.

Connectors and Resources
MidPoint communicates with all the source and target systems by the means of connectors.
Connectors are relatively small Java components that are plugged into midPoint. There is usually
one connector for each type of the connected system. There are connectors for LDAP servers, Active
Directory, databases, UNIX operating systems and so on. The responsibility of a connector is to
translate protocols. E.g. LDAP connector will translate midPoint search commands to LDAP search

65

requests. The UNIX connector will create an SSH session and translate midPoint create command to
the invocation of Linux useradd binary. Database connector will translate the requests to SQL
language. And so on. Each connector talks using its own communication protocol on one side. But
on the other side the connectors translate the information to a common format that is understood
by midPoint.

There is no distinction between source and target system when it comes to the connector. The same
connectors are used for source and target systems. The difference is only in midPoint configuration.

The connectors are distributed as Java binaries (JAR files). To deploy them to midPoint you just
need to place them in the correct directory and restart midPoint. MidPoint will automatically
discover and examine the connectors during start-up. A handful of frequently used connectors is
bundled into midPoint distribution. These connectors do not need to be deployed. They are
automatically available.

Connector of a specific type works for all the systems that communicate by the protocol supported
by connector. E.g. LDAP connector works for all the LDAP-compliant servers. Connector is a very
generic piece of code. It does not know the hostname, port or passwords that are needed to
establish a connection to a particular server. The configuration that specify connection parameters
for individual server is stored in special configuration object called resource. The term resource in
midPoint terminology generally means any system which is connected to a midPoint instance.

Therefore, Eric the Engineer needs to define a new resource in midPoint in order to get ExAmPLE
employees into midPoint. This resource represents the CSV file exported from the HR system.

66

MidPoint distribution contains CSV file connector already, therefore there is no need to deploy the
connector binary package. All that Eric has to do is to create a new resource definition. There are
(at least) two ways to do it. Firstly, there is a configuration wizard in midPoint user interface. Eric
can use the wizard to configure a new resource from scratch. As you will see later in this book, the
resource definition is quite complex, it has many configuration options. The abundance of options
and choices makes the configuration wizard very rich, and the wizard may be quite confusing for
new users. Therefore it is better for Eric to use the other approach: start from an example. There
are examples of various resource definitions in the midPoint distribution package, and even more
examples are available on-line. Eric quickly locates an XML file that contains a complete example of
a CSV resource. He edits the file to change the filesystem path to his CSV file and adjusts the names
of the columns to match the format of his file. The very minimal resource configuration specifies
just the resource name, connector and connector configuration. The XML file that Eric creates looks
approximately like this (simplified for clarity):

resource-csv-hr-bare.xml

<resource oid="03c3ceea-78e2-11e6-954d-dfdfa9ace0cf">
 <name>HR System</name>
 <connectorRef type="ConnectorType"> ...</connectorRef>
 <connectorConfiguration>
 <configurationProperties>
 <filePath>/opt/midpoint/var/resources/hr.csv</filePath>
 <uniqueAttribute>empno</uniqueAttribute>
 </configurationProperties>
 </connectorConfiguration>
</resource>

If you are a hands-on type of engineer you probably want to follow what Eric is
doing in your own midPoint instance. All the files that Eric is using are provided in
a form of ready-to-use samples. Please see Additional Information chapter at the
end of this book for the details.

Then Eric navigates to Configuration section of midPoint user interface and imports the XML file
into midPoint. Import operation creates new resource definition in midPoint. Eric now navigates to
Resources section of the midPoint user interface. The new CSV resource is there. When Eric clicks
on the resource name a resource details screen appears.

67

Eric can click on the button at the bottom of the screen to test connection to the resource. As this is
a local CSV file, there is no real connection. The test checks that the filesystem path is correct, that
the file exists and that it can be opened. The connector reads the CSV file header to discover the
structure of the data in the CSV file, and presents the information to midPoint. This is stored in
midPoint as resource schema, which describes structure of accounts in this resource. The resource
is now prepared for use.

There is not much that Eric can do with the resource yet. We need to explain a couple of essential
midPoint concepts before moving forward with our case study.

User and Accounts
The concept of user is perhaps the most important concept in the entire IDM field. The term user
represents physical person: an employee, support engineer, temporary worker, student, teacher,
customer, etc. On the other hand the term account refers to the data structure that allows the user
to access applications. This may be an account in the operating system, LDAP entry, row in the
database table and so on. Typically, one user has many accounts – usually one account for each
resource.

68

The data that represent users are stored directly in midPoint. While the data that represent
accounts are stored "on the resource side". Which means accounts are stored in the connected
applications, databases, directories and operating systems. Accounts are not stored in midPoint.
Under normal circumstances MidPoint keeps just account identifiers and some meta-data about the
accounts. All other attributes are retrieved when needed. MidPoint is using the connectors to fetch
account data.

We will strictly distinguish the terms user and account in this book. Such a strong distinction is also
made in the midPoint user interface and documentation. It is very useful to get used to this
terminology.

Accounts are linked to users that own the accounts. MidPoint knows which account belongs to
which user. MidPoint can list all the accounts for any user, it can synchronize the data, it can
disable all the accounts of a particular user and so on. This user-account link is almost always
automatically established and maintained by midPoint.

MidPoint comes with a built-in data model (schema) for users. It contains properties that are very
often used to describe users such as full name, e-mail address and telephone number. There is a
reasonable set of properties that should be a good starting point for most deployments. Of course,
as most midPoint objects, the user schema can be extended with custom properties if needed.

However, there is no built-in data model for accounts. Such data model would not be possible.
Every resource may have different account attributes. There may be different names, different
types and the values may have different meaning. MidPoint is designed to handle those differences.
Schema for resource accounts is dynamically discovered when midPoint connects to the resource
for the first time. MidPoint interprets the schema and automatically adapts to it. E.g. when
midPoint displays information about an account, the user interface fields are dynamically
generated from the discovered schema. MidPoint does that all by itself. No extra configuration and
no coding is necessary.

69

Account schema may significantly differ from resource to resource. Yet midPoint must be able to
synchronize all the accounts from any kind of resource imaginable. In this case the user schema
works as a unified data model. The schema of each account is mapped to the user schema.

Getting back to our ExAmPLE story, Eric has an HR resource configured. Now he can see the
"accounts" that the users have in the HR system. Eric opens the resource detail page in the midPoint
GUI, clicks on Accounts tab and then on the [ Resource ] button (we’ll explain that later). The list of
accounts appears:

All that can be seen in this list are just employee numbers, because employee number is set as the
primary identifier for the HR system. Clicking on the link will display more details. In fact these are
not real accounts. These are lines in the CSV file exported from the HR database. But they describe

70

some aspects of identity and therefore midPoint interprets them as accounts. For midPoint,
"account" is a generic term used to describe any resource-side data structure that represents the
user.

Initial Import
The user is a central concept for any IDM system and midPoint is no exception. MidPoint needs
reliable information about users to work correctly. The HR system is usually a relatively good
source of user information. Eric needs to get that information from the HR system into midPoint.
He has already set up a resource that connects to the CSV file exported from the HR system. But the
resource does not do anything by default. It has to be configured to pull the information from the
file into midPoint. What Eric needs is a set of mappings. Mapping is a mechanism for
synchronization of attribute values between user and linked accounts. In this case Eric needs
inbound mappings to import the data. Inbound mappings synchronize the value in the direction
from the resource into midPoint. Eric can open the resource definition in the configuration wizard
in GUI and he can add the mappings there. Or he can simply look at the configuration samples
again and add the mappings in the XML form. Inbound mapping looks like this:

resource-csv-hr.xml

 <attribute>
 <ref>ri:firstname</ref>
 <inbound>
 <target>
 <path>givenName</path>
 </target>
 </inbound>
 </attribute>

This is a mapping that maps the account (HR) attribute firstname to user (midPoint) property
givenName. This tells midPoint to always update a value of user’s given name when the mapped HR
attribute changes. Eric adds similar mappings for all the attributes in the HR export file. Eric also
needs to add synchronization section to the resource definition. The synchronization section
instructs midPoint to create a new user for each new account. This is exactly what Eric wants:
create a user for each HR account. Eric then re-imports the modified XML file into midPoint.

For the curious and impatient readers, complete definition of HR resource is
stored in resource-csv-hr.xml file in book samples. Please see Additional
Information chapter for the details.

MidPoint is now ready to synchronize the attributes. But we still need a task to pull all the data
from the HR system. Eric navigates to the page that shows the list of HR accounts. At the bottom of
that page there is a big [ Import ] button that can be used to manage the import tasks. Eric clicks on
that button and creates a new import task. The task is started, and it runs for a couple of seconds.
After the task is done Eric can look at users in midPoint:

71

Eric can see details about the user by clicking on the username:

This page shows all the details about the user that midPoint knows about.

The details are sorted into several sections. We are going to explain all of that later in this book. For
now, we only care about first two sections. The Basic section shows user properties as midPoint
knows them. These properties are stored in midPoint repository. MidPoint has quite a rich data
model that can be used out-of-the-box, but the GUI only shows those properties that are actually
used. The "name", given name and family name were imported from the HR resource and that’s
what the page shows.

Let’s have a look at the second tab now:

72

The Projections tab shows user’s accounts. Currently, there is only one account. It is the HR
account that was used to import the data. Account details are displayed by clicking on account
identifier:

The data that are displayed here are really fresh. Account details were retrieved from the resource
at the very moment that the account was displayed. This is the difference between user data and
account data: user data are kept in midPoint repository, while account data are retrieved from the
resource as needed.

The user and the account are linked. MidPoint remembers that this user originated from this
specific HR account. If the HR account is modified then the change is synchronized and applied to
the user data. The mappings are not just for the import. They can work continually and keep the
account and user data synchronized all the time.

73

Assignments and Projections
The concepts of an account is all about the reality: it shows the data that are there at this very
moment. It shows what is there. But identity management is all about policies. Policies, by
definition, specify what should be there. Policies specify what is right. But as every citizen knows all
too well, the things that are and the things that should be do not always match perfectly. We are no
idealists. Therefore we have designed midPoint from the day one to acknowledge that there may be
a difference between reality and policy. Primary role of midPoint is to manage that difference. And
completely align policy and reality in the long run.

This kind of thinking is easy to see in midPoint user interface. There is Projections tab in the user
details page. It shows the accounts that the user has right now. It shows the real state in which the
accounts are. It shows the reality. And then there is Assignments tab. This tab shows the policy.
This tab shows what accounts, roles, organizations, or services are assigned to the user. This tab
shows what user should have.

To demonstrate how the assignments work we need a new resource. Therefore, let Eric connect a
new resource to midPoint. This time it will be new, clean and empty LDAP server. So Eric once
again locates the proper example, modifies the configuration and imports it to midPoint. In a while
there is a new LDAP resource. Eric wants to synchronize all the users to the LDAP server. To do
that, Eric has to define mappings once again. But this time these will be outbound mappings as Eric
wants to propagate data out of midPoint into the (LDAP) resource. We will cover the details of
mapping configuration later, so now let’s just see the results. We have two resources now:

74

For the curious, LDAP resource configuration is located in resource-openldap.xml in
samples directory.

But how do we create an account on that LDAP resource? The right way to do this is to let midPoint
know that a user should have an account on that resource. In midPoint terminology we say, that we
are assigning the resource to the user. All that Eric needs to do is to navigate to user details page,

click on the Assignments › Resource tab, use [ New ] button to add an assignment for the LDAP
resource and click [ Save ]:

After the click on [ Save ] button a lot of complex things happen. But simply speaking midPoint
recomputes what the user should have and what the user has. MidPoint detects that the user should
have an LDAP account now (because there is a new assignment for it). But no such account exists.
Therefore, midPoint creates the account.

When Eric opens the user details again and navigates to the Projections tab he can see that there
are two accounts now:

There is an HR account that was used to create the user in the first place. And there is also LDAP

75

account that was created as a reaction to a new assignment.

Perceptive reader may have noticed that the two accounts have vastly different
attributes. That’s right. Every account has a different schema. MidPoint
automatically discovers the schema. Then midPoint dynamically interprets the
schema to display the attributes in GUI, to validate the inputs, to check for errors
in mappings and so on. MidPoint does everything by itself without any need to
write a single line of code. MidPoint is completely based on the concept of schema
and it takes full advantage of it.

There is reality and there is policy. There are accounts and there are assignments. Ideally these two
things should match perfectly. And midPoint will try really hard to make them match. But there
may be exceptions. Careful reader surely noticed that there is HR account but there is no
assignment for that account. And yet midPoint has not deleted the HR account. That is because the
HR system is what we call a "pure source" system. MidPoint does not write to the HR, it only reads
from it. Writes to the CSV export file would be overwritten by the next export anyway, so there is no
point in writing there. Therefore the HR resource has an exception specified in its configuration: it
allows the HR account to exist even if there is no assignment for it. We can keep the HR account
linked to the user by using this method. We can see the data that were used to create the user. This
improves overall visibility and it greatly helps with diagnostics of configuration issues.

Roles
It would be a daunting task if Eric had to assign every individual account for every individual
resource to every user. Typical IDM deployment has thousands of users and dozens of resources.
Such deployment would be very difficult to manage using only direct resource assignments.

But there is a better way, of course. We can define some roles. The concept of role-based access
control (RBAC) is a well-established practice and the roles are really the bread-and-butter of

76

identity management. The basic idea of RBAC is to group privileges into roles. Then the roles are
assigned to the users instead of privileges. E.g. let’s create a Webmaster role. Then put all the
privileges that webmaster should have into that role. And let’s assign the role to every user that
works as a webmaster. This simplifies the privilege management. If there are two webmasters
there is no need to think about the individual privileges that a webmaster should have. Just assign
the role and the role has everything that is needed. It is also easy to change webmasters: unassign
role from one user, assign to another user. It is also easy if you add a new web server. Just add the
privilege for accessing new server into the Webmaster role. And all webmasters will have it.

That’s the theory. But how does it work for Eric? First of all, let’s add a handful of new resources –
to get some material for the roles. So now we have four resources: HR, LDAP, CRM and Portal. That’s
a good start. Let’s do some role engineering now.

Many organizations have one role that almost every user has. It is often Employee or Staff role. This
role gives access to all the systems that an employee should have access to: Windows domain login,
e-mail, employee portal – things like that. The ExAmPLE company is no exception. In this case the
basic role should create accounts in two systems:

• LDAP server: many applications are connected to LDAP and use it for authentication. We want
every ExAmPLE employee to have account there.

• Portal: this is enterprise intranet portal with lots of small services essential for every employee.

It is simple to create such role in midPoint user interface. Eric navigates to Roles › New role. Fills in

the name of the new role (Employee). Then he goes to the Inducements › All tab. This is where the
role definition takes place. Inducements are almost the same as assignments. However,
inducements do not give access to the role itself. Inducements give access to the users that have this
role. So they are kind of indirect assignments. Eric clicks on New inducement button and adds
inducements for the two resources into the role:

77

Eric clicks on [ Save ] button and the new role is created. Now it is ready to be assigned to the users.
Eric goes on and assigns Employee role to user Bob:

MidPoint automatically creates all the accounts given by the role:

There is the HR account that was used to create the Bob user record in the first place. And then
there are the two accounts that were created because Bob has the Employee role.

This operation works in both directions: if Eric unassigns the Employee role, the accounts given by
the role will be deleted. Eric can create any number of roles like this: roles for Sales agents with
CRM access, roles for Sales managers with higher CRM privileges and so on. MidPoint is designed to
handle large number of roles. Each role can have its own combination of resources. MidPoint
seamlessly merges the privileges given by all the roles a user has. E.g. if two roles give CRM access
to the user, only one CRM account will be created. If one of these roles is unassigned then CRM
account remains there. The account is not deleted yet because it is given by the other role. Only
when the last CRM role is removed that’s the point where the account gets deleted. MidPoint takes
care of all that logic.

Of course, there is much more that the roles can do:

• Roles can assign accounts to groups, give the privileges and manage account entitlements.

78

• Roles can mandate specific account attribute values, e.g. clearance levels, compartments, etc.

• Roles may contain custom logic (scripts).

• Roles may be hierarchical: there may be roles within roles.

• Roles may be assigned for a specified time.

• Roles may be conditional and parametric.

• … and much much more.

Roles are really the essence of identity management. We will be dealing with roles in almost all the
parts of this book.

There Is Much More
Eric the Engineer has done a few basic steps to configure midPoint as an identity management
system for his company. But this is still a very basic configuration. Careful readers have already
noticed a lot of things that need to be done. E.g. employee full name is not automatically generated.
Employee numbers are used as identifiers and we would like to have something that is more user-
friendly. We would like to automatically assign the Employee role instead of doing that manually.
And so on. There are still a lot of things to improve. Fortunately, all of that is very easy to do with
midPoint once you know where to look. And we will be dealing with all these things in the rest of
this book. New functionality will be administered to the ExAmPLE solution in small doses in each
chapter – together with a proper explanation of midPoint principles. MidPoint is a very flexible and
comprehensive system and there are still a lot of things to learn. This chapter covered only a
minuscule part of midPoint functionality.

What MidPoint Is Not
Now you probably have some idea what midPoint is. However, it is also very important to
understand what midPoint is not. Identity and Access Management (IAM) field is a combination of
many technologies and it may sometimes be quite confusing. That is perhaps the reason why the
midPoint team occasionally gets questions about midPoint functionality that simply do not make
much sense.

First of all, midPoint is not an authentication server. MidPoint is not designed to validate your
username and password. Yes, midPoint maintains data about users (including passwords). But the
data model that midPoint maintains is quite complex. It is not meant to be exposed to applications
directly. That would not be efficient.

If you want midPoint to manage users but you also want your applications to have a centralized
authentication services there is a solution: publish the data to the LDAP server. Connect LDAP
server to midPoint as a resource and let midPoint populate and maintain the LDAP sever data. The
application will not talk to midPoint directly. They will talk to the LDAP server. This is better for
everybody: LDAP is a standard protocol well supported in many applications. LDAP servers are also
extremely fast and scalable ad nauseam. Therefore use the combination of midPoint and an LDAP
server of your choice. That’s what people usually do and it works perfectly.

As midPoint is not an authentication server it obviously is not a Single Sign-On (SSO) server either.

79

If you want SSO you will need a dedicated SSO server. There are plenty of SSO servers to choose
from in both the closed-source and open-source worlds. You will also need a scalable directory
system (LDAP) to store the data for the SSO server. And you will probably still need midPoint to
manage the data.

One of the things that seems to be shrouded in a lot of confusion is authorization. To get the record
straight from the beginning: midPoint is not an authorization server. It is not a policy decision point
(PDP) and it definitely is not a policy enforcement point (PEP). You cannot rip authorization out of
your application and just “use midPoint for that”. That does not work.

You can think of midPoint as a policy management point (PMP). MidPoint has a lot of sophisticated
authorization-related logic inside its core. But that logic is not designed to answer questions such as
"Is subject S authorized to execute operation O on object X?". MidPoint logic is different. MidPoint is
not concerned with making authorization decisions. It is concerned about managing the
authorization policies. MidPoint sets up the authorization policies in target applications. And the
applications evaluate these policies themselves. This is a much more efficient and more reliable
method. Unlike authentication, the authorizations decisions are done all the time. Authorization is
evaluated at least once per every request. If the application makes these decision internally then
there is no need to a round-trip to the authorization server. Performance is significantly increased.
And there is no single point of failure. MidPoint failure will not interrupt authorization flow
because the application has all the data inside. One less component to cause a failure. And still, the
policies are centrally managed by midPoint. When a policy changes midPoint updates all the
affected applications. You get all the benefits without the usual drawbacks.

MidPoint does what it is supposed to do: it manages identities, entitlements, organizational
structures and policies. But midPoint does not do things that are not necessary. It does not do the
things that other technologies already do well. MidPoint does not reinvent the wheel. There is no
need for this. MidPoint is not the wheel. MidPoint sits above all the wheels. MidPoint is the
chauffeur.

80

Chapter 3. Installation and Configuration
Principles

The Guide is definitive. Reality is frequently inaccurate.

— The Hitchhiker's Guide to the Galaxy, The Restaurant at the End of the Universe by Douglas Adams

This chapter provides instructions for installation and initial configuration of a midPoint system.
The instructions describe installation on Linux system because that is by far the most common
operating environment for midPoint deployments. However, midPoint is platform-independent, it
can run on any environment where Java is running. Any experienced engineer will have no trouble
adapting these instructions to fit a different operating system.

MidPoint installation described in this chapter is a very basic one. It is ideal for initial exploration
of midPoint, development of midPoint configurations, demonstrations and similar purposes. It is a
very convenient installation, and we use it every day for development work. However, to use
midPoint in a production deployment the installation need to be slightly adjusted. The adjustments
are mentioned in this chapter, but the full description of the production-ready installation is
provided in later chapters. This chapter gives you midPoint installation that is ideal to get you
started.

Requirements
MidPoint will run on almost any machine. All you need is approximately 4GB RAM. That’s perhaps
the only real limiting factor. If you look for more formal system requirements definition, then you
will find that in midPoint docs (see Additional Information chapter at the end of the book).

From the software side you will need:

• Java 17 or Java 11 runtime environment (JRE) or development environment (JDK). Any JRE or
JDK should work. You can use the packages from your operating system distribution. Or you can
download Java and install it as a standalone package. Both should work well. Just do not forget
to set your PATH and JAVA_HOME environment variables to point to the Java installation.

• MidPoint distribution package. Download the latest version of midPoint from the Evolveum
website. You are looking for an archive that looks like midpoint-4.4-dist.zip. This archive
contains everything that you will need to run midPoint.

We recommend using the latest available versions of all software packages when dealing with
midPoint. We are trying really hard to always keep midPoint up-to-date with the rest of the
technologies.

Installation
MidPoint is Java web application distributed in a stand-alone package. The distribution package
contains everything that midPoint needs to run – except for Java platform itself. Therefore, as long
as the Java platform is installed all that is needed to run midPoint is to start it:

81

1. Extract the files from the distribution package to a location where you want to install midPoint.

2. Locate start.sh (Unix) or start.bat (Windows) script in midPoint distribution package. It should
be located in bin directory.

3. Execute the start script

And that is pretty much it. MidPoint will start. It will initialize the embedded web container,
database and all the other midPoint components. That can take a minute or two. After the
application is initialized you can access it by connecting to midPoint HTTP port, which defaults to
8080. You can start working with midPoint now.

MidPoint User Interface
Use the following URL to access midPoint user interface:

http://hostname:8080/midpoint

Log in with the following credentials:

Username: administrator
Password: 5ecr3t

Now you are logged-in as the administrator. This user has superuser privileges therefore you can
see everything, and you can do anything in the midPoint user interface.

MidPoint user interface is structured. It has the same layout and controls for all the user interface
areas:

Primary tool for user interface interaction is the menu. MidPoint user interface is functionally
divided into three parts, therefore there are also three parts of the menu:

• Self-service user interface deals with the things that the user can do for oneself: displaying list
of account, changing password, requesting a role and so on. This is relatively simple part of the
user interface. It is often accessible to all the users.

82

http://hostname:8080/midpoint

• Administration user interface deals with management of other users, roles, organizational
structures and similar midPoint objects. This is a very comprehensive and considerably
complex part of the user interface. Usually only privileged users have access to this part of the
user interface. This part of user interface is often used to support delegated administration and
role management therefore it is also meant for security officers, resource owners, role
engineers and similar expert users.

• Configuration user interface deals with configuration of midPoint system itself. It is used to
customize midPoint behavior, set fundamental policies and rules that form the foundation of
midPoint deployments. This part of user interface is usually used only by identity management
engineers.

The menu can be hidden by clicking on the button at the top of the screen. The top bar also contains
the title of the current user interface page and breadcrumbs. Breadcrumbs show where you
currently are in the user interface and how you got there. The breadcrumbs can be used to "find
your way home" and back to the previous page. The use of browser [ Back ] button is not
recommended. Please use the [ Back ] buttons that are present in midPoint user interface or use
breadcrumbs.

User Interface Areas
MidPoint user interface is quite rich. Following list provides short description of the most
important parts of the user interface.

• Home page gives a brief status about users own accounts, requests, work items and so on. This
is a page designed to be the first page that will be displayed to the end user after log in to
midPoint.

• Profile page allows users to see or edit their own profile.

• Credentials page allows users to change their own credentials, such as password.

• Role request page allows users to select the roles that they need and then request assignment
of the roles.

• Dashboard pages shows a couple of dashboards designed to provide a lot of useful information
at the first sight. The built-in system dashboard shows statistics about midPoint installation.

• User pages list users in midPoint, allows to create and edit users.

• Organizational structure pages show the organizational structure trees. Many parallel
organizational structures can be managed here, such as tree-like functional organizational
structure, flat project-oriented structure, role catalogs and so on.

• Role pages allow to list and manage roles. Roles can be created and defined in this part of the
user interface.

• Service pages allow to list and define services, such as devices, servers, applications and so on.

• Resource pages list and manage resources. New resource can be defined here, associated with
the connector, tested, etc.

• Cases pages list the things that the users have to do. Work items are created if user has to
approve something or if there is some manual step in the process.

83

• Certification pages deal with access certification (re-certification, attestation). Certification
campaigns can be created and managed here.

• Nodes page lists processing nodes in midPoint cluster.

• Server task pages show the tasks that are running on midPoint servers. These may be
scheduled synchronization tasks, import tasks, running user requests – everything that runs on
the servers and cannot be executed immediately in a synchronous way.

• Report pages allow defining and running reports. These pages typically deal with scheduled
printable reports.

• Configuration area contains many pages that manage midPoint configuration: system default
configuration, repository objects, logging, bulk actions and so on.

• Archetype pages define specific object types that can be used to customize behavior of
midPoint objects.

User Interface Concepts
MidPoint user interface is using the same concepts and controls in all its parts. For example all the
lists of all the objects (users, roles, …) look like this:

Each row represents one object: user, roles, service, task, etc. There is also a color-coded object icon.
The search bar at the top can be used to look for a specific object or to filter the object view. Right
side is reserved for action buttons. Buttons in the table header trigger actions that apply to all
selected objects. Buttons in each table row trigger actions that apply only to that individual object.
The buttons in the bottom-left corner execute global actions, such as creating or importing new
object, exporting objects and refreshing the view. Paging controls are in the bottom-right corner.

MidPoint has a unified color-code that makes the navigation easier. Users, roles and other object
types have their specific color and icon. This indicates the object type and it is used whenever
possible: menu, information boxes, lists, box title accents and so on. The primary colors and icons
are shown in the dashboard:

84

All user-related controls are red, all controls that deal with organizational structure are yellow.
Roles are green. And so on. This color code is applied consistently through the midPoint user
interface.

Similar color code applies to object icons when displayed in user lists. However, the color that is
used there does not indicate object type but rather an archetype. Archetypes are sub-types that are
often used to distinguish similar objects. For example archetypes can be used to sort users to
employees, contractors, customers and so on. Look and behavior of "archetyped" objects is
configurable. Default midPoint configuration contains just a couple of archetypes. Those archetypes
apply red color to system users and roles. Objects that do have any archetype behave in a different
way. Their color indicate status of the object:

• Black icons indicate normal state. It suggests that there is nothing special to see here.

• Gray icons indicate non-active state. It suggests that the object is disabled, archived or there is
another reason why the object is not active.

• Blue icons indicate typical end-user access. It suggests that the object has an access, but the
access is limited only to safe, non-privileges operations. E.g. users with the end-user role.

• Yellow icons indicate management capabilities. E.g. users that are managers of organizational
units.

All objects are equal in midPoint. MidPoint will handle users, roles, organizational
units and services in the same way. The lists used to display these objects are the
same, the pages that display object details are the same. All the objects have
properties, they can be enabled/disabled in the same way, they are subject to
authorizations in the same way and so on. It is a midPoint philosophy to design
several powerful principles and then apply them over and over again.

Object Details Page
When a user clicks on a name of any object in the object list then object details page appears. The
detail pages for common midPoint objects such as user or role are very similar to each other. They
have the same layout and controls. E.g. user details page looks like this:

85

The screen below the information area is divided into several panels. There is a summary panel at
the top of the page. This is an information area which shows user photo (or icon) and provides
some basic information such as user identifier and title. It also shows where the object belongs in
the organizational structure. There is also a couple of "tags" that show interesting details about the
object: whether the object is enabled, whether it has special privileges and so on.

Below the summary panel, there is a panel with operation controls. There are buttons to save the
changes, go back to the previous page, controls to set operation options and so on.

The data are displayed in details panel. However, midPoint data structures are often quite complex.
Displaying the data in their full complexity would make it very difficult to understand. Therefore,
the data are divided into several tabs, each tab containing a portion of the data. Navigation tabs are
displayed left to the main details panel. The tabs allow easy navigation through data structures.

The first tab is perhaps the most interesting one. It contains fields that show basic object properties:
the attributes of the object. Properties are displayed, and they can be edited – depending on the
authorizations of currently logged-in user. The other tabs shows more complex information about
the object. E.g. activation tab shows whether the object is enabled or disabled, it shows the
activation dates and other activation details. The password tab provide password management
functionality. And so on.

The view control buttons present in the details panel can be used to adjust the way the information
is presented. These buttons control sorting of the fields, can toggle metadata display and there may
be additional control buttons for more complex fields. MidPoint shows only some fields by default,
to make the presentation easier to read. For example, most empty fields are not shown by default.
There is a small [ Show empty fields ] button under the fields than can be used to display empty
fields.

The content of the details panel changes its form, adapting to the type of displayed information.
Basic properties are shown as a series of editable fields. Content of some tabs is similar to the Basic
tab, displaying a set of fields. Other tabs provide lists of more complex data structures such as
projections, assignments and personas.

86

MidPoint user interface often needs to present objects that are internally quite complex. It does not
make sense to present all the details at once. These objects need to be presented in quite a compact
form that can be expanded to show the details. This applies to list of user’s accounts, assignments,
role inducements, etc. The objects are initially displayed as in a form of a simple list, displaying
only the basic data:

The list above shows user’s projections. Those are usually accounts that are linked to user object.
Click on account name shows account details:

87

Account details display is shown in place of user details. This may be slightly confusing. But account
details can be often complex, therefore all the available screen space is needed to display them. The
[ Cancel ] and [ Done ] buttons at the bottom can be used to return back to list of projections. Click
on [ Done ] button will not start the operation yet, it only changes the view. Therefore, do not
confuse those buttons with [ Back ] and [ Save ] buttons located in the control panel.

Perceptive reader is certainly curious about the big red question mark in the
corner of the account icon. This corner of the account icon is a place where a
special marker would be displayed to indicated disabled accounts. There would be
no such marker for enabled accounts. Such visual indicators are very helpful
when managing identities of larger user bases. However, this is an LDAP account.
There is no standard way to disable an account in LDAP world. Many LDAP servers
implement their own proprietary mechanisms, and the OpenLDAP server that we
are using has no such mechanism at all out-of-the-box. Hence the question mark,
indicating that the activation status of the account is not known.

Each tab provides the information in an editable way, provided that the user has adequate
privileges to edit the information. When the data are edited, the changes can be confirmed by using
the [ Save ] button in the operations panel. Saving the changes is a universal way how to start
almost any operation: change of user properties, assignment of roles, change of password, user
disable, etc. When you make edits in any of the tabs on the details page then nothing really happens
yet. MidPoint just remembers what you are editing. The operation is executed only when you click
the Save button. This is our method how to execute several changes in one operation. It may
require some time to get used to it. Just do not forget to click the [ Save ] button.

88

Operation options are used to modify the behavior of the operation. These options may force
execution of operations that fail to pass midPoint internal checks. There is an option to reconcile
the data even if midPoint thinks that reconciliation is not needed. And so on. Checking or
unchecking these options influences the way how midPoint executes the operation.

MidPoint Configuration Basics
The principle of midPoint configuration is quite different from what would a typical system
administrator expect. There are almost no configuration files in midPoint. MidPoint is storing vast
majority of its configuration in its configuration database. There are several reasons for this:

• MidPoint configuration is complex. MidPoint configuration is not what a typical system
administrator would think of like a "configuration". It contains numerous resource definitions
that in turn contains mappings that in turn may contain scripts. There are roles, policies,
templates, … and these objects are too complex to be expressed in simple configuration files.

• MidPoint configuration is scalable. It is no exception that a midPoint deployment has
thousands of role definitions or organizational units, tens of resource definitions and a
significant number of templates and policies. All of that needs to be stored efficiently, so
midPoint can handle deployments that manage millions of identities. The configuration also
needs to be searchable. Managing thousands of roles in plain text files simply won’t work.

• MidPoint configuration needs to be available. There are midPoint deployments with several
nodes working together in a cluster. Configuration change done on one node has to be seem by
other nodes. Simple configuration files would not work here.

Therefore midPoint has a completely different approach to configuration. The configuration is
stored in a form of well-defined structured objects in the midPoint database. We call that database
midPoint repository.

Configuration Objects
Everything is an object in midPoint. Every piece of configuration is represented as a structured
object and stored in midPoint repository. Object may look like this:

<role oid="8ebab0bc-7e7e-11e6-a7bc-57de1cd45ecc">
 <name>Basic User</name>
 <description>Basic user role. Almost all users have it.</description>
 <requestable>true</requestable>
 <inducement>
 <targetRef oid="f92e67c2-7e7e-11e6-a306-7bf6aa2e8c61" type="RoleType"/>
 </inducement>
</role>

Every object has its identifier. We call that identifier OID which stands for "object identifier" (it has
nothing to do with LDAP or ASN.1 OIDs). OID is usually randomly-generated universally unique
identifier (UUID). OID value has to be unique in a whole system. This identifier is persistent – it is
assigned to the object and it should never change. OID is used for internal purposes and it is almost

89

never displayed to midPoint user.

Every object has a name. Name is human-readable and it can change any time. The value of name is
usually displayed to users. This is the values that ordinary users understand as an identifier.

And then there are other object properties. Or rather items. Each type of midPoint object has a
slightly different set of these items. That’s what we call schema. The items may be simple properties
such as string, integer or boolean values. But there also may be complex structures and references
between objects. MidPoint data model is quite rich. It is in fact so rich that its description will take
better part of this book, because description of the data model is also description of midPoint
features.

You can see midPoint configuration objects in midPoint user interface by navigating to
Configuration > Repository Objects and selecting object type. The following picture shows objects of
type "Role":

XML, JSON and YAML
The objects are stored in the midPoint repository in a native form which is hidden from midPoint
users. However, the objects also have a human-readable representation. They can be represented
in XML, JSON and YAML forms. All the objects can be imported into midPoint in any of those forms.
They can be exported from midPoint in any of those forms. They can be even edited directly in
midPoint using embedded editor. Just click on any object in the Repository objects page:

The ability to export, import and edit objects in XML/JSON/YAML form is absolutely essential,

90

because:

• It is human-readable (or rather administrator-readable). The configuration can be created,
edited and maintained in your favorite editor and then imported into midPoint. It can be
reviewed. It can be copied and pasted. Especially that. No system administrator can live
efficiently without an ability to copy and paste.

• It is transferable. It can be exported from one system (e.g. development environment) and
easily transferred to another system (e.g. testing environment). It can be easily backed-up and
restored. It can be easily shared, e.g. in a form of configuration samples.

• It is versionable. The exported configuration can be easily put under any ordinary version
control system. This is essential for deployment projects and configuration management.

Therefore the midPoint configuration has the best of both worlds. It is stored in database, so it can
be processed efficiently, it can be made available and so on. But it also has a text form, so it can be
easily managed.

The XML, JSON and YAML forms are considered to be equivalent. Objects can be written in any of
these forms.

XML form of role object

<role oid="8ebab0bc-7e7e-11e6-a7bc-57de1cd45ecc">
 <name>Basic User</name>
 <description>Basic user role. Almost all users have it.</description>
 <requestable>true</requestable>
 <inducement>
 <targetRef oid="f92e67c2-7e7e-11e6-a306-7bf6aa2e8c61" type="RoleType"/>
 </inducement>
</role>

JSON form of role object

{
 "role" : {
 "oid" : "8ebab0bc-7e7e-11e6-a7bc-57de1cd45ecc",
 "name" : "Basic User",
 "description" : "Basic user role. Almost all users have it.",
 "requestable" : true,
 "inducement" : {
 "targetRef" : {
 "oid" : "f92e67c2-7e7e-11e6-a306-7bf6aa2e8c61",
 "type" : "RoleType"
 }
 }
 }
}

91

YAML form of role object

role:
 oid: "8ebab0bc-7e7e-11e6-a7bc-57de1cd45ecc"
 name: "Basic User"
 description: "Basic user role. Almost all users have it."
 requestable: true
 inducement:
 - targetRef:
 oid: "f92e67c2-7e7e-11e6-a306-7bf6aa2e8c61"
 type: "RoleType"

Most of the examples in this book are in XML notation. The XML form is almost always simplified
for clarity: there are no namespace definitions, no namespace prefixes and so on. The complete
files with all the details can be found in midPoint distribution package, midPoint source code or in
other places. See Additional Information chapter for more details.

Maintaining MidPoint Configuration
When it comes to maintenance of midPoint configuration there are two practical methods how to
do that.

First method is to maintain the configuration in midPoint: use midPoint wizards and user interface
tools to create new objects and modify them. Export the objects in regular intervals, so they are
backed up, placed under version control and so on. This is an easy method to start with. But sooner
or later you will probably figure out that you need the ability to copy and paste parts of the
configuration. That you need to share the configuration with other team members. And that no
user interface is ever as efficient as an experienced engineer with a good text editor.

Then there is a second method: maintain the configuration files in text form outside midPoint.
Import them to midPoint as needed. The objects can be imported in midPoint user interface by

going to Configuration › Import object page. There are also import buttons in almost all the object
list tables that also lead to that page.

It is much easier to maintain a proper version control and a good teamwork using the import
method. It also seems to be more efficient once you get used to midPoint: pieces of configuration
can be copied from samples, documentation or from other projects. This makes the work efficient.
Although work with midPoint is "just" configuration and there is usually almost no programming,
this method of work is quite close to the methods that software developers use. And we know that
these methods work quite efficiently.

If you maintain the configuration files out of midPoint, you can import them individually using
midPoint user interface. This may seem like quite an uncomfortable way. But it works surprisingly
well even for a mid-size projects. However, there is also a much better way. There is MidPoint
Studio, an integrated development environment (IDE) based on IntelliJ IDEA. MidPoint Studio
allows you to maintain the configuration files in form of development project. You can edit the files
with all the usual luxury of IDE such as syntax highlight and autocompletion. Studio allows easy
download and upload of changed configuration files to midPoint instance. As the IntelliJ platform

92

has good integration for version control systems and other development tools this seems like an
ideal approach for large and complex projects.

Looking Around MidPoint Installation
Now we have a running midPoint installation, and you should have some understanding of how to
configure it. But before we plunge into the details about configuration let’s have a look at midPoint
installation. There are few things that need to be understood before going on. It will save a lot of
time later on.

MidPoint needs its own database to work. We call that database midPoint repository. The database
is used to store the configuration, users, resource definitions, account links, audit trails and a lot of
other things. Proper relational database (PostgreSQL) is strongly recommended for production
deployment. But for development and demonstration purposes midPoint contains an embedded
database engine (H2 database). This embedded database is initialized by default when midPoint is
installed. And it is that embedded database that is used to store the configuration objects right now
in your fresh midPoint deployment. This database does not need any special configuration, the
database schema is applied automatically, and it is started and stopped together with midPoint.
Therefore, it is ideal for demonstration and development purposes.

Vast majority of midPoint configuration is stored in the database. But there are few things that
cannot be stored there. Such as connection parameters to the database itself. For that purpose
midPoint has a small configuration file called config.xml. MidPoint also needs a place where to
store other data that cannot be in the database, such as cryptographic keys, connector binaries and
so on.

MidPoint needs a special directory on a filesystem for that purpose. We call it midPoint home
directory. New directory with the name var is created in directory where midPoint distribution
package was installed, i.e. at the same level as the bin directory where midPoint start start scripts
are located. Assuming that midPoint was installed in /opt/midpoint directory then midPoint home
will be located in /opt/midpoint/var directory.

The location of midPoint home directory can be changed by using the midpoint.home Java system
property. This is done by specifying -Dmidpoint.home in the JVM command-line. Or in case that the
default midPoint start scripts are used MIDPOINT_HOME environment variable can be used to set the
location of midPoint home directory.

When midPoint starts for the first time it starts with an empty database. MidPoint populates the
database with a minimal set of configuration objects. This set contains objects such as the Superuser
role and user administrator. These objects get imported automatically because if they are not there
you will not be able to log into the new midPoint instance. These objects are imported only if they
are not already present in the database. If you modify them later then midPoint will not overwrite
them.

Logging
Logging is perhaps the most important mechanism to diagnose any issues with midPoint. Logging
should be the thing that comes to your mind anytime you cast a puzzled look at midPoint user

93

interface. We try to make midPoint user interface convenient to use and we pay a lot of attention to
good error reporting. But there are always some limits. The error that the user interface displays
may be just a result of a long chain of causes and effects. Error messages in the user interface may
not directly point to the primary cause. Or maybe there is no error at all, just midPoint does not do
what it is supposed to do. That is the point where logging comes to the rescue.

MidPoint is using Java logging facilities to log its messages. MidPoint log file name is midpoint.log
and it is stored in the log subdirectory in midPoint home directory
(/opt/midpoint/var/log/midpoint.log). The default logging level is set up more-or-less to suit normal
midPoint operation. This means that the messages on level INFO and above are logged while the
finer levels are not logged. If you want to diagnose midPoint issues you will need to switch the
logging levels to DEBUG, or in extreme cases even to TRACE. The logging levels can be adjusted in

midPoint user interface. Navigate to Configuration › System › Logging.

MidPoint is not a simple system. There are complex interactions, there is usually a lot of custom
configuration, customizations, expressions and so on. Diagnostics of midPoint issues is in itself no
easy task. Therefore, there is a dedicated Troubleshooting chapter in this book.

94

Chapter 4. Resources and Mappings
The pessimist complains about the wind; the optimist expects it to change;
the realist adjusts the sails.

— William Arthur Ward

Reading and writing resource objects, attribute synchronization, mapping of attribute values, their
transformation using scripts – these are the basic midPoint features. These features are absolutely
essential for any self-respecting IDM deployment and all IDM engineers should be more than
familiar with them. And this is exactly the purpose of this chapter: describe the necessary
configuration to use midPoint as a provisioning engine.

It is not very realistic to expect that all the systems will agree on the same interface,
communication protocol and schema for identity management. There were several attempts to
unify the IAM landscape, but none of them was entirely successful. The LDAP protocol was created
in the 1990s. But even for such a mature protocol the LDAP implementations are sill not 100%
interoperable. The situation is even worse for identity provisioning protocols. There were several
attempts to specify a standard provisioning protocol, but all of them failed to deliver complete
interoperability. The worst pain point of identity integration is undoubtedly the schema. Every
application has its own data model for representation of accounts, groups, privileges and other
identity-related objects. Even if the application tries to expose that data model using some kind of
standard schema there will always be small (but important) differences. MidPoint provides a
practical solution to this problem. Application interfaces and their schemas need to be aligned or
mapped to a common identity schema that you choose to use for your deployment. This chapter will
tell you how to do it.

Identity Resource Definitions
Identity resource is one of the most important concepts in midPoint. Any system connected to
midPoint is an identity resource. Identity resources (or just resources for short) are typically target
systems where midPoint manages accounts. Moreover, source systems such as HR databases are
also considered to be resources. There is no strict distinction between the source and target
resource in midPoint. Both source and target resources are defined in exactly the same way.
Resource can even act as both source and target at the same time.

MidPoint needs a way how to communicate with the resource. MidPoint has to know
communication protocol, hostname, passwords, etc. For that purpose midPoint has resource
definition objects. These are ordinary midPoint configuration objects stored in midPoint repository.
Resource definition usually contains:

• Name of the resource and its description

• Reference to the connector which is used to communicate with the resource

• Connector configuration properties that define resource host name, port, communication
settings and so on. Those properties are used to initialize the connector.

• Definition of object types that are interesting for midPoint. This is typically a definition that

95

describes how a typical account looks like. But there may be much more: groups, roles,
organizational units, …

• Object type definitions typically contain mappings. Mappings define how attributes are
synchronized from midPoint to resource or from resource to midPoint.

• Synchronization settings that define what midPoint should do if it discovers unknown account,
if the account is deleted on the resource and so on.

Resource definition looks like this in its XML form (simplified):

<resource oid="b4101662-7902-11e6-9f14-53e18426fe81">
 <name>LDAP</name>
 <connectorRef oid="028159cc-f976-457f-be70-9e9fa079bcf7"/>
 <connectorConfiguration>
 <configurationProperties>
 <port>389</port>
 <host>localhost</host>
 <baseContext>dc=example,dc=com</baseContext>
 ...
 </configurationProperties>
 </connectorConfiguration>
 <schemaHandling>
 <objectType>
 <kind>account</kind>
 <default>true</default>
 <objectClass>ri:inetOrgPerson</objectClass>
 ...
 </objectType>
 </schemaHandling>
</resource>

Resource definition is a very rich (and powerful) configuration object. It is maybe the richest
configuration object in the entire midPoint system. Creating resource definition from scratch is
usually no easy task. There is a lot of things to consider: connector configuration, identifier
conventions, mandatory attributes, attribute value formats and so on. What we usually do is to
locate a resource definition sample for a similar resource. Then we modify the sample to suit our
needs. However, you need to understand how the resource definitions work to do this efficiently.
Next few sections will explain the structure and function of resource definitions.

Believe it or not, there are people that do not like XML/JSON/YAML. There are also people that really
want to start creating the resource from scratch. For all those people there is a resource wizard in
the midPoint user interface. The wizard can be used to create and edit resource using a graphical
user interface.

96

However, even if the resource wizard is your preferred way, it may still be easier to start with an
existing sample. Find the sample that is the best match for your situation, import it in midPoint and
then use the wizard to modify it.

There are many resource samples to start from. Most of them are located in midPoint distribution
package. But there are other places to look for samples. Please see Additional Information chapter
for suggestions.

Connectors
Every resource needs a connector to work. Connectors are small pieces of Java code that are used to
communicate with the resource. MidPoint looks for available connectors when it starts up.
MidPoint will automatically create new configuration object for each connector that it discovers
during the startup. The list of discovered connectors can be seen in midPoint user interface in

Configuration › Repository objects › All objects and select Connector in the type field located at
the top of the screen. The connector objects look like this:

<connector oid="028159cc-f976-457f-be70-9e9fa079bcf7">
 <name>ConnId com.evolveum.polygon.connector.ldap.LdapConnector v2.0</name>
 <framework>http://midpoint.evolveum.com/xml/ns/public/connector/icf-1</framework>
 <connectorType>com.evolveum.polygon.connector.ldap.LdapConnector</connectorType>
 <connectorVersion>2.0</connectorVersion>
 <connectorBundle>com.evolveum.polygon.connector-ldap</connectorBundle>
 <namespace>http://midpoint.evolveum.com/xml/ns/…</namespace>
 <schema>
 ...
 </schema>
</connector>

The resource definition needs to point to the appropriate connector object. Therefore select the
right connector from the connector list and remember its OID. Then use the connector OID in the
resource configuration like this:

97

<resource>
 <name>My LDAP Server</name>
 <connectorRef oid="028159cc-f976-457f-be70-9e9fa079bcf7"/>
 ...
</resource>

This is a straightforward way how to link connector and resource. However, it is not the most
convenient one. MidPoint creates connector objects automatically. Therefore the OIDs of the
connector objects are not fixed. Every midPoint instance will have different OID for the discovered
connectors. Therefore, if we want a resource that is always using the LDAP connector in all the
midPoint instances we cannot do that by just using OIDs. But there is another way. You can use
search filter instead of fixed OID:

<resource>
 <name>My LDAP Server</name>
 <connectorRef type="ConnectorType">
 <filter>
 <q:equal>
 <q:path>connectorType</q:path>
 <q:value>com.evolveum.polygon.connector.ldap.LdapConnector</q:value>
 </q:equal>
 </filter>
 </connectorRef>
 ...
</resource>

The detailed explanation of the search filters will come later. For now it is important to know just
few basic principles. When this resource definition is imported, midPoint notices that there is no
OID in the connectorRef reference. It also notices that there is a search filter. Therefore midPoint
executes that search filter. In this case it looks for an object of ConnectorType type that has property
connectorType with value com.evolveum.polygon.connector.ldap.LdapConnector. Therefore midPoint
finds LDAP connector regardless of the OID that was generated when midPoint discovered that
connector. Then midPoint takes the OID of the object that it has found. The OID is placed to the
connectorRef reference, so midPoint can find the connector directly and it does not need to execute
the search every time the resource is used.

This is the method that is frequently used to bind resource definition to a specific connector type. It
has the advantage that it works in all midPoint deployments. Therefore it is also used in the
configuration samples.

Bundled and Deployed Connectors
Each class of resources needs its own connector. There is an LDAP connector that supports all the
common LDAP servers. There are connectors that work with generic database tables. These
connectors are quite generic. But most connectors are built for a specific application or software
system: Linux servers, SAP R/3, Siebel, etc.

98

There is a handful of connectors that are so generic that they are used in almost all midPoint
deployments. These connectors are bundled with midPoint. That means that they are part of the
midPoint application package and they are always available. These three connector bundles are
part of midPoint:

• LDAP Connector bundle, which contains:

◦ LDAP connector that works with most LDAPv3-compliant servers.

◦ Active Directory connector that can work with Microsoft Active Directory over LDAP
protocol.

• DatabaseTable connector bundle with a connector that can connect to a generic relational
database table.

• CSV connector bundle with a connector that works with comma-separated (CSV) text files.

These connectors are always available in midPoint. Other connectors must be deployed into
midPoint. Connector deployment is a very straightforward process:

1. Locate the connector binary (JAR file).

2. Copy the binary into the icf-connectors directory which is located in midPoint home directory.

3. Restart midPoint

MidPoint will scan the icf-connectors directory when it starts up. It will discover any new
connectors and create a connector configuration objects for them.

Connector Configuration Properties
Connector needs a configuration to be able to work with the resource. This configuration usually
consists of connection parameters such as hostname, port, administrative username, password,
connection security settings and so on. The connector configuration properties are specified in the
resource definition object. In a simplified from it looks like this:

<resource oid="690f9f44-8027-11e6-a248-3b5fe08dea36">
 <name>My LDAP Server</name>
 <connectorRef oid="028159cc-f976-457f-be70-9e9fa079bcf7"/>
 <connectorConfiguration>
 <configurationProperties>
 <port>389</port>
 <host>localhost</host>
 <baseContext>dc=example,dc=com</baseContext>
 ...
 </configurationProperties>
 </connectorConfiguration>
 ...
</resource>

There may be a very broad range of configuration properties - and every connector has its own set.
While working just with the text representation of the resource definition you will need to find out

99

the names of the configuration properties by looking at the samples, connector documentation or
maybe even connector source code. It may look difficult but this is a perfectly viable approach.
However, there are other ways. Firstly, there is the resource wizard. The wizard knows all the
connector configuration properties and it will present the properties in a configuration form. The
wizard takes the definition of the configuration properties from the connector schema. The
connector schema is a definition of the properties that the connector supports: their names, types,
multiplicity and so on. The connector schema is stored in the connector configuration object under
the schema tag. Therefore even if you are working only with the XML/JSON/YAML files you can
have a look at that schema to figure out what connector configuration properties are supported.

The connector schema also defines the connector namespace. Generally speaking namespaces in
midPoint are used to isolate schema extensions that might conflict, and they are also used for data
model versioning. The use of namespaces is optional in almost all parts of midPoint - but not yet in
all the parts. Connector configuration is one of the few parts where namespaces should still be
used. And it also makes some sense, as namespaces are used here as an additional safety
mechanism. To keep a long story short, the configuration properties should be properly namespace-
qualified:

resource-openldap-minimal.xml

<resource oid="690f9f44-8027-11e6-a248-3b5fe08dea36">
 <name>LDAP Minimal</name>
 <connectorRef oid="028159cc-f976-457f-be70-9e9fa079bcf7"/>
 <connectorConfiguration
 xmlns:icfc="http://midpoint.evolveum.com/xml/ns/public/connector/icf-
1/connector-schema-3"
 xmlns:icfcldap="http://midpoint.evolveum.com/xml/ns/public/connector/icf-
1/bundle/com.evolveum.polygon.connector-
ldap/com.evolveum.polygon.connector.ldap.LdapConnector">
 <icfc:configurationProperties>
 <icfcldap:port>389</icfcldap:port>
 <icfcldap:host>localhost</icfcldap:host>
 <icfcldap:baseContext>dc=example,dc=com</icfcldap:baseContext>
 ...
 </icfc:configurationProperties>
 </connectorConfiguration>
 ...
</resource>

The use of namespaces will be completely optional in later midPoint versions. For now just copy the
namespace URIs from the samples. You do not have to completely understand what is going on. Just
one thing: the namespace of the configuration properties should be the same as the namespace
defined in the connector object. This is a long URI that is composed of connector bundle name and
connector name.

For example: http://midpoint.evolveum.com/xml/ns/public/connector/icf-1/bundle/
com.evolveum.polygon.connector-ldap/com.evolveum.polygon.connector.ldap.LdapConnector

If the namespace does not match then the connector will refuse to work. This is a safety mechanism
that prohibits accidental use of configuration from one connector in another connector where the

100

http://midpoint.evolveum.com/xml/ns/public/connector/icf-1/bundle/com.evolveum.polygon.connector-ldap/com.evolveum.polygon.connector.ldap.LdapConnector
http://midpoint.evolveum.com/xml/ns/public/connector/icf-1/bundle/com.evolveum.polygon.connector-ldap/com.evolveum.polygon.connector.ldap.LdapConnector

configuration properties may have the same name but a completely different meaning.

Testing the Resource
Minimal resource definition has just the name, connector reference and connector configuration
properties. After that the resource should show the first signs of life. Therefore select a suitable
sample file now. Strip it down to the minimum, modify connector configuration properties and
import the resource into midPoint. You should be able to see your resource in the list in Resources >
List resources. The icon next to your resource is most likely black - not green and not red. Green
icon means that the resource is working, red icon means that there is an error, black means "I do
not know yet". Click on the resource label. The resource details page should appear. There is a Test
Connection button at the bottom of the page. Click on that button. It may take a while now. MidPoint
is initializing the connector with the configuration properties that you have specified. Then the
connector will be used to check connection to the resource. If the parameters were correct and
midPoint can reach the resource you will see the green lights:

If there are any errors during connector initialization, configuration or network connection you
will see the errors here. In that case correct the configuration properties and try again. If
everything works well then the resource icon turns green. Now we have a minimal working
resource.

There are a few more things that you can do with such a minimal resource. For example, you can
look at the resource content. Navigate to the resource details page and switch to Uncategorized tab.
Select one of the object classes that the resource supports. Just click inside the Object class input box
and the suggestions will appear. Now click on the Resource button on the right side. MidPoint
connects to the resource, lists all the objects of the given object class and displays the list. Now you
can click on any object to see the details.

101

That is a very useful feature for several reasons. Firstly, you can check that not just the resource
connection works, but that the connector can actually retrieve the objects. Secondly, you will get
some idea about the object classes that the resource supports. And thirdly, by looking at several
objects you can get a basic overview of how the data are structured: what attributes are used and
what are the typical values. You will appreciate that information later on when we will be setting
up mappings.

Resource Schema Basics
The only resource object that early identity management systems dealt with was an account. That is
not sufficient anymore. Good identity management system needs to manage may different types of
resource objects: accounts, groups, organizational units, privileges, roles, access control lists and so
on. In midPoint these are the object classes: types of resource objects that are made accessible to
midPoint by the connector. A minimal resource supports at least the account object class, but a
typical resource supports more object classes. Each object class may have a completely different set
of attributes: different names, different types, some may be mandatory, some optional.

The collective definition of the object classes and their attributes is what we call resource schema.
Obviously, resource schema is different for every resource. Even resources that are using the same
connector may have different resource schema (e.g. two LDAP servers with different custom
schema extensions). MidPoint is a smart system and it is capable of automatic resource schema
discovery. MidPoint will reach out to the resource and retrieve the schema when the resource is
used for the first time. Retrieved resource schema is stored under the schema tag in resource
definition object. You can have a look and examine the schema there. But beware, the schema may
be quite rich and big.

Resource schema is an absolutely crucial concept. MidPoint takes advantage of resource schema
whenever it needs to work with resource objects such as accounts or groups. MidPoint uses

102

resource schema to validate mappings. The schema is used for automatic type conversions. And
most importantly of all: resource schema is used to display resource objects in user interface.
MidPoint adapts to resource schema automatically. Not a single line of custom code is needed to do
that.

Hub and Spoke
MidPoint topology is a star (a.k.a. "hub and spoke") with midPoint at the center. This is both
physical and logical topology of midPoint deployments.

This means that the account A can be synchronized with midPoint user and then midPoint user can
be synchronized with account B. But account A cannot be synchronized directly to account B. This is
a deliberate decision that was made very early in midPoint design, and we have very good reasons
for it.

Accounts and user that represent the same person are linked together. This link is a relation that
midPoint creates and maintains. Therefore, midPoint knows who is the owner of a particular
account. MidPoint also knows which accounts the user has. That is how midPoint knows which
account needs to be synchronized with which user. It is critical for the links to be correct otherwise
midPoint cannot reliably synchronize the data. For that reason, midPoint takes great care to
maintain the links. And that is not always an easy task. There are strange corner cases such as
renamed accounts or accounts that were deleted by mistake and re-created. But midPoint is built to
handle such cases. The links are always maintained. And it is the link that allows midPoint to list all
user’s accounts in the user interface.

103

The user in midPoint is known as focus in midPoint terminology. The accounts are known as
projections. You can imagine a light projector that sends many light beams from its focal point to
create a projection on the screen. This is the metaphor that we have chosen when building
midPoint. And for the lack of better words this terminology remains in use even now. We will get
back to the concept of focus and projections many times in this book. For now you just need to
remember that projection means an account.

MidPoint knows which account belongs to which user by following links that it maintains. But how
does midPoint know which attributes to synchronize? How to transform the values? And which
side is the authoritative one? Mappings take care of that. Mapping is like a flexible data replication
recipe. MidPoint allows to define mappings for each attribute in any direction. The mappings are
used to control the synchronization on a very fine granularity.

Perhaps the best way to summarize synchronization principles is to illustrate them using a couple
of examples. The first example is a modification of user properties in midPoint user interface.
When the Save button is pressed then midPoint user interface sends the modification to midPoint
core engine. The synchronization code in midPoint core follows the links to find all the accounts
that belong to this specific user. Then the mappings are applied to synchronize the changed user
properties to the accounts. Account changes are propagated to the resources and user changes are
stored in midPoint repository.

104

The second example is slightly different. This case starts with a change of account data. This may be
a change of an employee record in HR system. MidPoint detects that change and reads the changed
account. MidPoint follows the link to find the user to which the account belongs. Then it follows
other links from the user to find all the other accounts that may be affected. Similarly to the
previous case the mappings are applied. The mappings from the HR account to the user are applied
first. The result is a modification of user properties. Then a process identical to the previous case
takes place. User modifications are automatically applied to all affected accounts.

105

Those two cases look to be quite different. First case is a manual change of data by system
administrator. Second case is an automatic data feed from the HR system. But as you can see the
principles that are used to implement those two cases are almost exactly the same. This is the
consequence of midPoint philosophy: radical reuse of functionality and generic application of
principles. You just need to define what you want to do (the policy). MidPoint takes care that it is
done when it needs to be done.

106

Why the star topology?

The star or "hub and spoke" were (and still are) the big buzzwords of system
integration. And the basic idea makes a lot of sense. If every node needs to be
synchronized with every other node then the number of required connections
grows quite steeply. It is in fact proportional to the square of the number of nodes.
Mathematicians say that is has O(n2) complexity. However, if you rearrange the
connections so that they all point to the central "hub" then the number of
connections is significantly reduced. It is proportional to the number of nodes:
O(n) complexity. This is a huge difference, especially in deployments with many
resources. However, this approach works well only if the star topology is both
physical and logical. I.e. it makes very little sense to connect all resources to a
central “hub” if that hub still internally needs O(n2) policies to synchronize the
data. That would only hide the complexity in a black box, but the complexity is still
there. However, midPoint is different. MidPoint is a real "hub". This is the reason
why midPoint does not support synchronization of accounts directly with each
other. We want to have simple, clean and maintainable system, both externally
and internally.

Schema Handling
Resource schema is a very important concept. It defines what object classes are supported by the
resource and how they look like. But it is important to know not only how the objects look. It is also
important to know what to do with them. And that is what the schema handling is all about.

Schema handling is a part of the resource definition object. It specifies which object classes from the
resource schema are actually used by midPoint. And most importantly of all it specifies how they
are used. This is the place where mappings are stored. This is the place where account-group
associations are defined. This is the place where schema can be augmented and tweaked. Simply
speaking, this is the place where most of the resource-related configuration takes place.

Schema handling section contains definition of several object types. Each object type refers to one
"thing" that midPoint works with: default account, testing account, group, organizational unit and
so on. Let’s start with something simple and let’s define just one object type now: default account. It
looks like this:

<resource oid="b4101662-7902-11e6-9f14-53e18426fe81">
 <name>My LDAP Server</name>
 ...
 <schemaHandling>
 <objectType>
 <kind>account</kind>
 <default>true</default>
 <objectClass>ri:inetOrgPerson</objectClass>
 </objectType>
 </schemaHandling>
</resource>

107

This may seem trivial, but even such a minimal definition is important for midPoint. This definition
tells midPoint that default account on this resource has inetOrgPerson object class. Resources such
as LDAP servers may have dozens of object classes. Most of them are not used at all. There are often
several alternative object classes that can be used to create accounts. It is important to tell midPoint
which object class is the right one. And that’s what this definition does. Once this definition is in
place, the accounts appear on the Accounts tab of the resource details page (they were visible only
on the Generics tab before). This is a sign that the definition works correctly.

A clever reader surely noticed definition of kind in the above example. Setting kind to account
indicates that this object type definition represents (surprisingly) an account. MidPoint supports
many types of objects. But two types have a special place: accounts that represents the users and
entitlements that give privileges to the accounts. MidPoint can handle the objects in a smart way if it
knows that it is either account or entitlement. And the kind definition tells just that. There is also
optional intent setting that can be used to define subtypes. But more on that later.

The schema handling section can also be used to augment (or even override) some parts of the
resource schema. E.g. following example sets a display name for this object type. The display name
will be used by the user interface when it displays the account.

<resource oid="b4101662-7902-11e6-9f14-53e18426fe81">
 <name>My LDAP Server</name>
 ...
 <schemaHandling>
 <objectType>
 <kind>account</kind>
 <displayName>Default account</displayName>
 <default>true</default>
 <objectClass>ri:inetOrgPerson</objectClass>
 </objectType>
 </schemaHandling>
</resource>

However, the most powerful feature that is used in the schema handling is the ability to deal with
attributes. Following sections are all about that.

Attribute Handling
Resource objects such as accounts or groups are mostly just a bunch of attributes. Almost all of the
IDM magic is about setting the correct attribute to the correct value. The schema handling section
of the resource definition is the place where the basic attribute behavior is defined.

The object type definition contains sections that define behavior of each attribute that we care
about:

108

<resource oid="b4101662-7902-11e6-9f14-53e18426fe81">
 <name>My LDAP Server</name>
 ...
 <schemaHandling>
 <objectType>
 <kind>account</kind>
 <default>true</default>
 <objectClass>ri:inetOrgPerson</objectClass>
 <attribute>
 <ref>ri:dn</ref>
 <!-- behavior of "dn" attribute defined here -->
 </attribute>
 <attribute>
 <ref>ri:cn</ref>
 <!-- behavior of "cn" attribute defined here -->
 </attribute>
 ...
 </objectType>
 </schemaHandling>
</resource>

There is an attribute element for every attribute that we need. Lot of details can be defined here:
display name of the attribute that will be used by the user interface, limitations and schema
augmentation, override settings and so on. But the most important things that go there are the
mappings. In the simplest form a mapping looks like this:

<resource oid="b4101662-7902-11e6-9f14-53e18426fe81">
 <name>My LDAP Server</name>
 ...
 <schemaHandling>
 <objectType>
 <kind>account</kind>
 <default>true</default>
 <objectClass>ri:inetOrgPerson</objectClass>
 ...
 <attribute>
 <ref>ri:cn</ref>
 <outbound>
 <source>
 <path>$focus/fullName</path>
 </source>
 </outbound>
 </attribute>
 ...
 </objectType>
 </schemaHandling>
</resource>

109

This means that the value of the cn attribute will be taken from the fullName property of the focal
object (which is typically a user). This a very simple mapping, there is no value transformation, no
condition – nothing complicated at all. This is how a lot of mappings look like. But mappings can
also be very powerful and complex. That will be described in next section.

The attribute sections are used to set up the attributes that a typical user account on the resource
has. Those will assign identifiers, set up full name, set description and telephone number attributes
and things like that. It is a very convenient approach to have this directly in the resource definition.
We can simply assign the accounts to the user without specifying any details. MidPoint evaluates
the mappings in attribute sections to populate account attributes with the correct values. Now it is
perhaps a good time to have a look at some sample resource definitions to get a feel how a real-
world resource definition looks like. The samples are located in the midPoint distribution package
or you can find them on-line. See Additional Information chapter for more details.

The "ri" namespace.

You may have noticed that "ri" namespace prefix is used whenever we refer to the
object classes or attributes. In a strict sense this is the correct notation. Object
classes and attributes are defined in resource schema and the "ri" is the
namespace of that schema. While the use of namespaces should be optional in
almost all parts of midPoint, we are still using the "ri" namespace in samples.
Mostly due to the nostalgic reasons. By the way, "ri" stands for "resource instance".

Mappings
Mapping is a very flexible mechanism that takes one or more input properties, transforms them
and puts the result in another property. Mappings are used all over midPoint. But perhaps the most
important use of mappings is in the schema handling part of the resource definition where they set
up account attribute values. We have already seen a very simple mapping that simply copies the
values from one place to another. Now it is the time to look at mapping in its entirety.

Mapping consists of the three basic parts:

• Source part defines the data sources of the mapping. These are usually understood as mapping
input variables. Source defines where mapping gets its data from.

• Expression part defines how the data are transformed, generated or passed on to the "other
side". This is the most flexible part of the mapping as it contains the logic. There is a broad
variety of possibilities, including support for scripting expressions.

• Target part defines what to do with the results of the mapping, where the computed values
should go.

The three parts of the mapping as well as the basic principle is illustrated in the following diagram:

110

The diagram shows a mapping that takes employeeNumber user property and transforms it to
description account attribute by using a simple Groovy script expression.

The source part of the mapping defines that there is a single source which is based on
employeeNumber user property. Source definitions are important for the mapping to correctly process
relative changes (deltas), mapping dependencies, etc. The source definition tells mapping that the
value of employeeNumber user property should be passed to an expression.

The expression part contains a simple Groovy script that prepends the prefix emp# to the employee
number value specified by the source definition. The expression part of the mapping is very flexible
and there is a lot of ways that can be used to transform a value, generate new value, use a fixed
value, pass a value without any change and so on.

The target part defines how the result of the expression should be used. In this case the result is to
be used as a description account attribute. The target definition is necessary so the mapping can
locate appropriate definition of the target property and therefore make sure that the expression
produces a correct data type and that other schema constraints are maintained (e.g. single vs
multiple values).

This mapping can be expressed in XML:

<mapping>
 <source>
 <path>$focus/employeeNumber</path>
 </source>
 <expression>
 <script>
 <code>'emp#' + employeeNumber</code>
 </script>
 </expression>
 <target>
 <path>$projection/attributes/description</path>
 </target>
</mapping>

Not all parts of the mapping are mandatory. If the expression is not present then "as is" expression

111

is assumed. Such expression simply copies the source to target without any transformation. Some
parts of the mapping may be implicitly defined by the surrounding context. E.g. target or source is
implicit if the mapping is used to define attribute behavior in the schema handling section.
Therefore it is usually sufficient to define either source or target for mappings in schemaHandling:

<schemaHandling>
 ...
 <attribute>
 <ref>ri:sn</ref>
 <outbound>
 <source>
 <path>$focus/familyName</path>
 </source>
 </outbound>
 </attribute>
 ...
</schemaHandling>

This is the notation that you have seen in the previous section. Mapping source is explicitly
specified as the familyName property of the user. Mapping target is implicitly set to be the attribute
for which the mapping is defined. As no expression is explicitly defined it defaults to a simple copy
of the value without any transformation (asIs).

Mapping notation can even be shortened a bit more in this case. It is quite clear that the mapping
source will be one of the properties of the focal object (user). Therefore the $focus prefix can be
omitted:

<schemaHandling>
 ...
 <attribute>
 <ref>ri:sn</ref>
 <outbound>
 <source>
 <path>familyName</path>
 </source>
 </outbound>
 </attribute>
 ...
</schemaHandling>

Those examples are still very simple. Mappings can do much more – as you will learn later on. But
there is one more thing that we need to explain here. Mappings are designed to work with more
than just a single source. Following diagram illustrates a mapping that takes two arguments: given
name and family name. The mapping produces full name by concatenating these value with a space
in between. This is the kind of mapping that is frequently used to construct user’s full name from
its components. While the mapping may seem simple there are some sophisticated mechanisms
hidden inside.

112

The mapping is represented in the XML form as follows:

<mapping>
 <source>
 <path>givenName</path>
 </source>
 <source>
 <path>familyName</path>
 </source>
 <expression>
 <script>
 <code>givenName + ' ' + familyName</code>
 </script>
 </expression>
 <target>
 <path>fullName</path>
 </target>
</mapping>

There are two sources specified by the source definitions: user property givenName and another user
property familyName. The mapping is using script expression to combine the values into a single
value which is used to populate user’s fullName property.

This example also illustrates that the mappings are smart. The mapping may be evaluated only if
one of the sources changes or if a full recompute is requested. In case that neither givenName not
familyName changes there is no need to re-evaluate that expression. This is one of the reasons for
requiring explicit source definition in the mappings. Without such definitions it is not (realistically)
possible to reliably determine when and how the expression should be re-evaluated.

113

$user and $account variables.

Variables $focus and $projection were introduced in midPoint 3.0 as a
consequence of the generic synchronization feature. The objects that the
expression works with might not be just user or account. A much broader range of
objects may be used. Therefore generic concepts of focus and projections were
introduced and the variable names were changed to reflect that. The old variables
$user and $account can still be used, but their use is deprecated. Despite that they
are still used in some older examples. It is never easy to completely eliminate the
burden of history, is it?

Mappings are used all over midPoint, in many places and situations. Sometimes a mapping needs to
be really authoritative. It has to enforce the value to the target. But sometimes we want to provide a
default value and the mapping should never change the target value once it is set. Therefore
mapping can be set to various levels of strength: from weak to strong. Following table describes
how that works:

Strength Description

weak Mapping is applied only if the target has no
value. Weak mappings are usually used to set
default values.

normal Mapping is applied only if there is a change in
source properties. Normal-strength mappings
are used to implement the last change wins
strategy. If the value was modified in midPoint
then the mapping is applied and target is
modified. If the target is modified directly then
the mapping does not overwrite the target value
– until the next change in midPoint. This is the
default behavior of mappings. If no strength is
specified then normal is assumed.

strong Mapping is always applied. Strong mappings
enforce particular values.

The strength can be specified in any mapping by using the strength tag:

<attribute>
 <ref>ri:sn</ref>
 <outbound>
 <strength>strong</strength>
 <source>
 <path>$focus/familyName</path>
 </source>
 </outbound>
</attribute>

When it comes to mapping strength then the following rule of the thumb may be useful: If you want

114

to enforce policy use strong mappings. If you just want to set a default value use weak mapping. If
you are not sure what you are doing then normal mappings will probably work just fine.

Expressions
Expression is the most flexible part of the mapping. There are approximately dozen different type
of expressions ranging from the simplest as is expression through the scripting expressions all the
way to a special purpose expressions that search through midPoint repository. Expression type is
determined by the element that is used inside the expression section of the mapping. We refer to
those elements as expression evaluators. You can find detailed description of expression evaluators
in midPoint docs. We are going to deal only with few types that are most frequently used now:

Expression Evaluator Element Description

As is asIs Copies the value without any
transformation.

Literal value Stores literal (constant) value in
the target.

Generate generate Generates a random value.

Script script Executes a script, stores script
output in the target.

The simplest expression evaluator is asIs. It simply takes the source and copies that to the target. It
obviously works only if there is just one source. It is also the default expression evaluator. If no
expression is specified in the mapping then asIs is assumed. It is used like this:

<attribute>
 <ref>ri:sn</ref>
 <outbound>
 <source>
 <path>familyName</path>
 </source>
 <expression>
 <asIs/>
 </expression>
 </outbound>
</attribute>

Literal expression evaluator is used to place a constant value in the target. This expression does not
need any source at all. It always produces the same value. It looks like this:

115

<attribute>
 <ref>ri:o</ref>
 <outbound>
 <expression>
 <value>ExAmPLE, Inc.</value>
 </expression>
 </outbound>
</attribute>

The generate expression evaluator is used to generate a random value. As such it is used almost
exclusively to generate passwords. We will deal with that expression later when we will be dealing
with credentials.

Script Expressions
The most interesting expression evaluator is undoubtedly the script expression evaluator. It allows
to execute arbitrary scripting code to transform the value. Basic principle is simple: values from
source properties are stored in the script variables. Script is executed and it produces an output.
The output is stored in the target.

We have already seen a mapping that has a scripting expression:

<mapping>
 <source>
 <path>givenName</path>
 </source>
 <source>
 <path>familyName</path>
 </source>
 <expression>
 <script>
 <code>givenName + ' ' + familyName</code>
 </script>
 </expression>
 <target>
 <path>fullName</path>
 </target>
</mapping>

There are two sources: givenName and familyName. The values of these user properties are placed in
variables used by the script. The variables that have the same names: givenName and familyName.
Then the script may do whatever it does with the variables. At the end the script has to return a
value. The script above is written in Groovy, therefore the return value is the value of the last
evaluated expression. In this case it is the only expression in the script which concatenates the two
variables with a space in between. Script return value is placed in the output, which in this case is
fullName user property.

116

Scripts are often used to transform the values before they are stored in account attributes. One very
common case is construction of LDAP distinguished name (DN). The DN is a complex value in the
form of uid=foobar,ou=people,dc=example,dc=com. However it is easy to construct such value using a
simple script:

<attribute>
 <ref>ri:dn</ref>
 <outbound>
 <source>
 <path>name</path>
 </source>
 <expression>
 <script>
 <code>
 'uid=' + name + ',ou=people,dc=example,dc=com'
 </code>
 </script>
 </expression>
 </outbound>
</attribute>

(A clever reader surely has a suspicious look on his face now. Of course, this is not entirely correct
way how to compose LDAP DN. But please bear with us. We will correct that later.)

Midpoint supports three scripting languages:

• Groovy: This is the default scripting language.

• JavaScript (ECMAscript)

• Python (must be explicitly installed)

All three languages can be arbitrarily mixed even in a single midPoint deployment. Although quite
understandably such a practice is not recommended. The language can be selected for each
individual expression by using language URI:

<expression>
 <script>

<language>http://midpoint.evolveum.com/xml/ns/public/expression/language#python</langu
age>
 <code>
 "Python is %s, name is %s" % ("king", name)
 </code>
 </script>
</expression>

When writing scripting expression, please keep in mind that some characters must be properly
escaped in the text format that you are using (XML, JSON or YAML). E.g. the ampersand character (

117

&) so frequently used for logical operations needs to be escaped as & in XML.

Scripting expressions can do almost anything. And there is still more to them that meets the eye.
This section provides only the very basic description to get you started. Will get back to the
scripting expressions many times in this book.

Activation
The term activation is used in midPoint to denote a set of properties that describe whether an
object is active. This includes properties that describe whether the user is enabled, disabled,
archived, since when he should be enabled, to what date he should be active and so on. The simple
enabled/disabled flag might have been sufficient in the 1990s. But that was a long time ago. We
need much more than that. Therefore the activation is quite a rich data structure in midPoint. We
are going to describe just the basic idea now, the details will follow later.

The most important activation concept is administrative status. Administrative status defines
"administrative state" of the object (user). I.e. the explicit decision of an administrator whether the
user is enabled or disabled. Except for administrative status there are also validity times, lockout
status, various timestamps and metadata. But we will get to that later.

The important thing to realize is that both user and the accounts have activation properties - and
they are almost the same. The user and account activation are using the same property names,
meaning and data formats. This is important, because you would probably want account activation
to follow user activation. E.g. if user is disabled then also all his accounts should be disabled. This is
very easy to do in midPoint because the user and account activation are compatible. Therefore all it
takes is a very simple mapping. There is a special place in the resource schema handling section for
that:

<resource oid="b4101662-7902-11e6-9f14-53e18426fe81">
 <name>My LDAP Server</name>
 ...
 <schemaHandling>
 <objectType>
 <kind>account</kind>
 <default>true</default>
 <objectClass>ri:inetOrgPerson</objectClass>
 <!-- attribute handling comes here -->
 <activation>
 <administrativeStatus>
 <outbound/>
 </administrativeStatus>
 </activation>
 </objectType>
 </schemaHandling>
</resource>

It is as simple as that. Just an empty mapping represented by empty outbount element. User has
administrativeStatus property, account has administrativeStatus property, therefore midPoint

118

knows what is the source and target of the mapping. The values of the administrativeStatus
property has the same type and meaning on both sides. Therefore the default asIs mapping is just
fine. All that midPoint needs to know is that the mapping exists at all. That we want to map the
value. That is a reason for having empty outbound element there. MidPoint will fill in all the details.

When this mapping is in place and the user gets disabled, the account will be disabled as well.
When the user gets enabled, the account will follow suit.

Credentials
Credential management is important part of identity management. MidPoint is built to easily
synchronize credentials to many accounts. Similarly to activation, credential data structures of user
and accounts are aligned. Therefore all that is needed to synchronize password to an account is a
simple empty mapping:

<resource oid="b4101662-7902-11e6-9f14-53e18426fe81">
 <name>My LDAP Server</name>
 ...
 <schemaHandling>
 <objectType>
 <kind>account</kind>
 <default>true</default>
 <objectClass>ri:inetOrgPerson</objectClass>
 <!-- attribute handling comes here -->
 <credentials>
 <password>
 <outbound/>
 </password>
 </credentials>
 </objectType>
 </schemaHandling>
</resource>

When the user password in midPoint is changed the changed password will be propagated to all the
resources that have a mapping like this.

Complete Provisioning Example
This section describes a complete working example of connection to the LDAP directory. The
configuration below is used to automatically create accounts in OpenLDAP server. Entire
configuration is contained in a single resource definition file. Following paragraphs explain
individual parts of the file. Simplified XML notation is used for clarity. Complete file in a form
directly usable in midPoint can be found at the same place as all the other samples in this book (see
Additional Information chapter for details).

Resource definition begins with object type, OID, name and description. These are self-explanatory:

119

<resource oid="8a83b1a4-be18-11e6-ae84-7301fdab1d7c">

 <name>OpenLDAP</name>

 <description>
 LDAP resource using a ConnId LDAP connector. It contains configuration
 for use with OpenLDAP servers.
 This is a sample used in the "Practical Identity Management with MidPoint"
 book, chapter 4.
 </description>
 ...

Connector reference comes next. We want to point to the LDAP connector. Here we use dynamic
reference that is using search filter to locate the connector:

 ...
 <connectorRef type="ConnectorType">
 <filter>
 <q:equal>
 <q:path>c:connectorType</q:path>
 <q:value>com.evolveum.polygon.connector.ldap.LdapConnector</q:value>
 </q:equal>
 </filter>
 </connectorRef>
 ...

The reference is resolved when this object is imported to midPoint. The resolution process takes the
search filter and it looks for connector object with the connectorType specified in the filter.

Connector configuration goes next. This block specifies connector configuration properties such as
hostname, port, passwords and so on.

120

 <connectorConfiguration>
 <icfc:configurationProperties>
 <icfcldap:port>389</icfcldap:port>
 <icfcldap:host>localhost</icfcldap:host>
 <icfcldap:baseContext>dc=example,dc=com</icfcldap:baseContext>
 <icfcldap:bindDn>
cn=idm,ou=Administrators,dc=example,dc=com</icfcldap:bindDn>
 <icfcldap:bindPassword><t:clearValue>secret
</t:clearValue></icfcldap:bindPassword>
 <icfcldap:passwordHashAlgorithm>SSHA</icfcldap:passwordHashAlgorithm>
 <icfcldap:vlvSortAttribute>uid,cn,ou,dc</icfcldap:vlvSortAttribute>
 <icfcldap:vlvSortOrderingRule>2.5.13.3</icfcldap:vlvSortOrderingRule>
 <icfcldap:operationalAttributes>memberOf</icfcldap:operationalAttributes>
 <icfcldap:operationalAttributes>
createTimestamp</icfcldap:operationalAttributes>
 </icfc:configurationProperties>
 <icfc:resultsHandlerConfiguration>
 <icfc:enableNormalizingResultsHandler>
false</icfc:enableNormalizingResultsHandler>
 <icfc:enableFilteredResultsHandler>
false</icfc:enableFilteredResultsHandler>
 <icfc:enableAttributesToGetSearchResultsHandler>
false</icfc:enableAttributesToGetSearchResultsHandler>
 </icfc:resultsHandlerConfiguration>
 </connectorConfiguration>

The last part of this block defines that the ConnId framework result handlers should be disabled.
ConnId result filtering is a legacy mechanism and most connectors do not need that any more. It
may even be harmful in many cases. Unfortunately this mechanism is turned on by default.
Therefore most resource configurations contain this part to explicitly turn all the handlers off.

These parts alone should already define a minimal resource. If you define just the name, connector
reference and connector configuration you should be able to import the resource to midPoint. The
connection test should pass and you should be able to browse resource content. However there is
absolutely no IDM logic or automation yet. That is what we are going to add next.

Element that usually follows connector configuration is schema. However if you look at almost any
file that contains resource definition you will find no such element. The schema element is
automatically generated by midPoint when midPoint connects to the resource for the first time.
Therefore there is no need to include it in the definition.

What we have to include in the definition is the way how midPoint handles the schema. This is
defined in schemaHandling section. Our schemaHandling section contains just one objectType
definition. We are going to define how to handle ordinary user accounts on our OpenLDAP server.

121

 ...
 <schemaHandling>
 <objectType>
 <kind>account</kind>
 <displayName>Normal Account</displayName>
 <default>true</default>
 <objectClass>ri:inetOrgPerson</objectClass>
 ...

This is the place where we define the kind of objects that we are going to handle. In this case it is
account. This object is default account. Which means that it will be used in case that the account
type is not explicitly specified. There is also specification of a display name. Display name is not
used in automation logic. It is used by the user interface when referring to this definition. And
finally, there is specification of the object class. The inetOrgPerson object class will be used to create
new accounts. The object class specification determines what attributes the account can have.

The objectType definition also includes a specification of attribute handling. There is one section for
each attribute that we want to handle in automated or special way. It starts with the most
important attribute: LDAP distinguished name (DN):

 ...
 <attribute>
 <ref>ri:dn</ref>
 <displayName>Distinguished Name</displayName>
 <limitations>
 <minOccurs>0</minOccurs>
 </limitations>
 <outbound>
 <source>
 <path>$focus/name</path>
 </source>
 <expression>
 <script>
 <code>
 basic.composeDnWithSuffix('uid', name,
'ou=people,dc=example,dc=com')
 </code>
 </script>
 </expression>
 </outbound>
 </attribute>
 ...

The ref element specifies name of the attribute that we are going to work with. In fact this is a
reference to automatically-generated schema part of resource definition. Definition of display name
follows. Display name is used by the user interface as a label for the user interface elements (fields)
that work with this attribute. This definition sets a nice "Distinguished Name" label instead of
cryptic "dn" which would be used by default.

122

Let’s skip the limitation definition now. We will come back to that later.

The outbound mapping definition follows. This is where the automation logic is specified. This is
the place where the DN value is computed. The name property of the user object is the source for
this mapping. The name property usually contains username (login name). This value is used by
scripting expression in this mapping. The expression is supposed to create a DN in the form:

uid=username,ou=people,dc=example,dc=com

The expression here is a clever one. It does not do the work all by itself. It invokes a library function
to compose the DN. It may look like a good idea to use simple string concatenation to construct a
DN. However, that will fail in case that the DN components contain certain characters that need to
be escaped in the final DN. The composeDnWithSuffix library function takes care of that and creates a
proper DN.

The outbound mapping will be evaluated whenever we need to construct a DN. This obviously
happens when a new object is created. But the same mapping is used when a user is renamed (i.e.
his username changes). This is the reason that the mapping needs specification of source. Rename
is often quite tricky and complicated operation. It may not be cheap and in some applications it
may not be entirely reversible. We definitely do not want to trigger DN changes unless they are
really needed. The specification of the mapping source tells us when the DN change is needed. In
this case it tells us to change the DN in the name property of the user object changes.

Now it is the right time to go back to the limitations section. The dn attribute is defines as
mandatory attribute by the schema. And that is perfectly correct: LDAP object cannot be created
without a DN. MidPoint is using schema for everything. Therefore when midPoint displays a form
to edit this LDAP account it will check that DN has a value because it is a mandatory attribute.
However, normally we do not want users to enter the DN in the user interface forms. We want to
compute DN automatically. And that is exactly the point of the outbound mapping. Yet midPoint
does not know when the expression computes a value and when it does not. The expression is a
generic piece of Groovy code. As far as midPoint can see the expression can produce any value,
including empty one. Therefore even if there is an expression, midPoint sticks to the schema and it
still requires that DN value is entered by the user. However we have written the expression and we
know that it will produce a value for any (reasonable) input. Therefore we want to tell midPoint
that the DN is no longer mandatory – that it is OK for user to enter no DN value in user interface
forms. And that is exactly what the limitations section does. This section overrides the
automatically generated schema and it turns the dn attribute from mandatory to optional.

And that is all. Now we have defined the behavior of the dn attribute. We can use similar approach
to define the behavior of other attributes as well. E.g. the handling of the cn attribute has similar
definition:

123

 ...
 <attribute>
 <ref>ri:cn</ref>
 <displayName>Common Name</displayName>
 <limitations>
 <minOccurs>0</minOccurs>
 </limitations>
 <outbound>
 <source>
 <path>$focus/fullName</path>
 </source>
 </outbound>
 </attribute>
 ...

In this case there is outbound mapping, but it has no explicit expression. Which means that the
value is taken from the source without any change ("as is"). Therefore the attribute cn will have the
same value as user property fullName.

It is also possible to define an attribute without any mapping:

 ...
 <attribute>
 <ref>ri:entryUUID</ref>
 <displayName>Entry UUID</displayName>
 </attribute>
 ...

This means that midPoint will not provide any automatic handling for the entryUUID attribute. This
definition is used just to set a user-friendly display name for the attribute.

Mappings and expressions have almost unlimited flexibility. E.g. the following definition sets a
static value for the description attribute:

 ...
 <attribute>
 <ref>ri:description</ref>
 <outbound>
 <strength>weak</strength>
 <expression>
 <value>Created by midPoint</value>
 </expression>
 </outbound>
 </attribute>
 ...

This mapping has no source because the source does not make any sense for static value. Static

124

values are always the same. You can also notice that this mapping is weak. It will be used to set the
description attribute only if that attribute does not have any value already. It will not overwrite
existing values.

The inetOrgPerson object class has much more attributes than those defined in the schemaHandling
section. Those attributes will be automatically displayed in the user interface. MidPoint will use the
generated resource schema to determine their names and types. MidPoint will display these
attributes, the user can change them and midPoint will execute those changes. But apart from that
midPoint will not do any special handling on those attributes. It is all right not to enumerate all the
attributes in schemaHandling section. You only need to define those attributes which you want to
handle in a special way.

There are two more definitions to describe before our example is complete. First definition is the
activation definition. It is very simple:

 ...
 <activation>
 <administrativeStatus>
 <outbound/>
 </administrativeStatus>
 </activation>
 ...

This is a definition that specifies handling of the activation administrative status. This status
property specifies whether account is enabled or disabled. Activation properties are somehow
special in midPoint. MidPoint understands the meaning and the values of activation properties.
MidPoint also expects that user activation and account activation will usually be mapped together.
Therefore it is enough to tell midPoint that you want such mapping. MidPoint already knows the
source (user activation) and the target (account activation). If the user is disabled then the account
will get disabled. If the user is enabled than the account will get enabled.

Clever reader is surely scratching his head now. There is no LDAP standard that
specifies how to enable or disable accounts. In addition to this, OpenLDAP does not
even have a concept of disabled account at all! Therefore how does midPoint know
how to disable an LDAP account? To tell the truth, midPoint does not know it. We
have taken a bit of a poetic license here as we wanted to demonstrate a simple
activation mapping. But in this case it will not work just by itself. OpenLDAP
resource simply does not have this capability. However there is a way. Activation
capability can be simulated. We will deal with that later. For now let’s just marvel
in the beauty of this very elegant activation mapping that does absolutely nothing.

The last thing that we need for the resource to work well is to define a mapping for credentials. In
this case it is a password mapping:

125

 ...
 <credentials>
 <password>
 <outbound/>
 </password>
 </credentials>
 ...

Similarly to activation, the credentials are handled in a special way in midPoint. MidPoint
understands how credentials work, what their values are and how they are used. MidPoint also
expects that user credentials such as passwords will usually be mapped to the account credentials.
Therefore all that midPoint needs to know is that you want to do that mapping. It can automatically
determine the source and target. The account will have the same password as the user. User’s
password is used when a new account is created. And when user changes his password the change
is also propagated to the account.

That is it. Now you have your first (almost) working resource. You can import the definition to
midPoint and test it. Simply assign the resource to a user. The OpenLDAP account will be created -
the DN and all the essential attributes will be automatically computed. When midPoint creates an
account for a user it remembers who is the owner of that account. Therefore it can easily delete the
account when needed. Unassign the resource and the account will get deleted. This is how
automated provisioning and deprovisioning works. No real programming is needed. Just a
declarative specification and a line or two of very simple scripting. Such configuration can be done
in a couple of minutes. And it is essentially the same process for all the applications. Just the
connector is different. The connector has different configuration properties, the attribute names
are different - but the principles and the tools are the same. It is easy to connect many
heterogeneous applications in this way. The connectors and the mappings are hiding the
differences. In the end all the "resources" look the same to midPoint. The same principles are used
to manage them. Therefore the management can be done efficiently even at a large scale.

Yet this configuration is still extremely simple. We are just scratching the surface of what midPoint
can do. There is much more to see in the next chapters. But we need to explain more of the
fundamental midPoint concepts before getting there.

Shadows
Linking users and accounts is one of the basic principle of any decent identity management system.
However, it is surprisingly difficult to implement such link. There are numerous methods how to
reliably identify accounts and they vary from system to system. Some systems identify accounts
only by username - which makes reliable detection of renames quite difficult. Other systems
improve on that by introducing another identifier, an identifier that is persistent. Identifier value is
assigned by the resource and it never changes. However, username is still used as secondary
identifier and it has to be unique. Yet another system has compound identifiers that consist of two
or more values. Some system have globally-unique identifiers while other systems have identifiers
that are only unique in their own object class. Some systems have hierarchical structured
identifiers, others have flat unstructured identifiers. Some identifiers are case-sensitive strings,
others are case-insensitive, some identifiers follow complex normalization rules and yet another

126

identifiers are binary and completely opaque. To make long story short: reliable identification is
really complicated.

We do not want to pollute user object with all the delicate details of account identification.
Therefore we have created a separate midPoint object that hides all the resource-related details and
identification complexities. We call it simply shadow because it behaves as a shadow of the real
account. When midPoint detects new account a shadow is automatically created to represent the
account in midPoint repository. When midPoint detects that account has changed (e.g. it was
renamed) then midPoint automatically updates the shadow. When the account is deleted midPoint
also deletes the shadow. Technically, shadow is still an ordinary midPoint object. Therefore shadow
has object identifier (OID). Other objects can simply point to the shadow using ordinary object
reference. And that is exactly how user-account links are implemented:

The shadow objects contain all the data that are needed to reliably identify an account - or any
other resource object such as group or organizational unit. Shadow also points to the
corresponding resource definition to make the identification complete. Shadows are multi-purpose
objects and they have many uses in midPoint. Shadows record meta-data about resource objects.
They are used to hold cached values of the attributes (this functionality is still experimental in
midPoint 4.0). Shadows can be used to hold the state of the resource objects for which midPoint
does not have on-line communication channel and the operations are executed manually (a.k.a.
"manual resources"). Therefore shadows are quite complex objects. Following picture provides
more substantial example of a shadow.

127

Do not worry if that picture looks a bit scary. Shadows may be complex, but they are almost always
invisible to midPoint users. Shadows are automatically and transparently maintained by midPoint
core. Under normal circumstances, MidPoint takes all that is needed to maintain the shadow and no
special configuration is needed for that. We describe the mechanics of the shadow objects here
mostly for the sake of completeness. But there may be situations when this knowledge may be
useful. These are usually situations when midPoint was mis-configured and the shadows were
created incorrectly. In that case you may need to purge all shadows and start over. But beware:
shadows are used to link users and accounts therefore if you purge the shadows you will lose the
links. Yet, even that is usually not that painful. The synchronization methods described in the next
chapter may be used to easily re-create the links.

128

Chapter 5. Synchronization
It is a capital mistake to theorize before one has data.

— Sherlock Holmes, The Adventures of Sherlock Holmes by Arthur Conan Doyle

Data are the lifeblood of any software system. Ensuring proper management of the data is one of
the primary responsibilities of a software architect. But data management can be very tricky – as
any experienced software architect knows only too well. One of the important principle of software
architecture is often formulated as "do not repeat yourself". This applies to code as it applies to
data: though shall not repeat the data. There is one original, authoritative value. And there should
not be any copies of that value. Ever. There is just one universal source of truth. If there are no
copies then the data are always consistent. No copies mean no contradictions. Just one truth,
precise and crystal-clear. Keep data in one place, and one place only.

That is the theory.

However, practice has a different opinion to offer. In practice there are many incompatible
technologies. Applications built on relational databases cannot directly use data from directory
services. Even relational databases do not fit together easily. Each application is designed with a
different data model in mind. There are data translation and bridging technologies that work as
adapters to resolve compatibility issues. You make a query, the query is intercepted by an adaptor,
the adaptor translates the query, executes it in a remote database, gets the results, translates them,
and provides them to you. All of that in real time. Those are elegant solutions. Yet, there is a cost to
pay. The adapters add latencies, and they almost always have a negative impact on performance.
Even worse, transaction handling and data consistency is very problematic. Such adapters are
additional components on a critical path and their failures are very painful. The resulting system is
often operationally fragile: failure of even a minor component means a failure of the entire system.
Not to speak about the enormous complexity and cost of the solution.

On the other hand, copying all the data into my application database is so convenient. The
application can access the data easily, using just one homogeneous mechanism. Failure of other
components are not affecting the critical path. It is all so much better for performance. Copying the
data solves almost all the troublesome issues. Except for one small detail: the problem of keeping
the data up to date. That is where the synchronization mechanisms come in.

However hard you may try, it is almost impossible to avoid maintaining copies of the data. Identity
data are no exception. In fact identity data are often the most heavily affected. That makes a lot of
sense. Applications are built for users to use them. Therefore, almost every application keeps some
kind of data about users. In addition to that, such data are usually very sensitive from security and
privacy point of view.

We cannot avoid copying the data. The best thing that we can do is to keep the copies managed and
synchronized. Some applications have built-in support for LDAP or directory synchronization.
However, those mechanisms are usually quite weak and fragile. For example, many applications
provide capability for on-demand synchronization with directory service on login time. It usually
works like this:

1. User enters username and password to application login dialog.

129

2. The application connects to the directory service to validate the password.

3. If the password is correct then the application retrieves user data from the directory.

4. The application stores copy of user data locally.

5. Business as usual. Local copy of the data is used ever since.

This approach works quite well at the beginning. Yet, after a while, the data begin to stink. Users
are renamed, but the local copies are not updated. Users are deleted, but the local copies stay
around forever. There are local accounts and privileges that are not reflected back to the directory
service, and therefore remain undetected for years. Which means that we have a serious security
and data protection problem here. Even worse, we do not even know that the problem is there.

Some applications have more advanced synchronization processes that can do better than this.
However, an application that does synchronization well is still an extremely rare sight. There is a
good reason for this. Synchronization is much harder than it seems. There may be data
inconsistencies on both sides. There may be network communication errors and configuration
errors. Data models are evolving in time. Policies are changing. It is no easy task to reliably
synchronize the data in such environment. Therefore, there is a special breed of systems that
specialize in synchronization of identity data: identity management systems.

Synchronization in MidPoint
Synchronization is one of the basic mechanisms of midPoint. Synchronization mechanisms are
integral part of midPoint design from its very beginning. Many of the things that midPoint normally
does are in fact just different flavors of synchronization. There are obvious cases such as
reconciliation process, synchronizing account attributes with data in midPoint repository. However,
there are also less obvious cases, such as ordinary provisioning operation when midPoint needs to
create a new account for a user. Even that case is in fact a synchronization: midPoint user
properties are synchronized with a new empty account on the resource. Majority of midPoint
operations are directly or indirectly using the synchronization principles.

Reuse

Reuse of the mechanisms is one of fundamental principles of midPoint design.
When we have designed midPoint, we have not invented a separate mechanism
for every midPoint feature. We have rather designed few very generic principles
that are re-used at many places in midPoint. Synchronization is one of these
principles. There is one code that implements the core of the synchronization
logic. That code is used whenever we need to "align" objects that relate to each
other. The same code is used for user-account reconciliation, ordinary
provisioning, role-based provisioning, live synchronization, data consistency …
almost everywhere.

MidPoint synchronization is almost a continuous functionality spectrum that can be tweaked and
tuned to match specific needs. Yet, the synchronization mechanisms can be divided to several
broad and slightly overlapping categories:

• Live synchronization is almost real-time synchronization mechanism. MidPoint continually
scans the resource for changes. If changes are detected, then those changes are immediately

130

processed by midPoint. The actual latencies depend on the capabilities of the resource, but
usual numbers range from few seconds to few minutes. Only recent changes are processed by
live synchronization. Therefore, it is a very efficient mechanism which usually has fast
responses even in large-scale deployments.

• Reconciliation is a process that compares the data and corrects them. When an account is
reconciled, midPoint computes the attribute values that the account should have. The computed
values are compared to the real values that the account has. Any differences are corrected.
Reconciliation is quite heavy-weight mechanism, comparing all the accounts one-by-one. It is
also a very reliable mechanism. It can correct mistakes that were missed by live
synchronization, it can correct data after major failures and corruptions, and so on.
Reconciliation is usually executed in regular intervals. However, due to its heavyweight nature,
it is usually executed during off-peak times (nights and weekends).

• Import is usually a one-time process to get data from the resource to midPoint. Import is used
to populate midPoint with initial data, or it may be used to connect a new resource to midPoint.
Import is almost the same as reconciliation with only a few minor differences. However, its
purpose is different and therefore there is usually also a slightly different configuration of
import policies (mappings). Import is usually not scheduled, it is manually triggered when
needed.

• Opportunistic synchronization is a very special kind of animal which is quite unique to
midPoint. Opportunistic synchronization is triggered automatically when midPoint discovers
that something is not in order. For example if midPoint tries to modify an account, but it
discovers that the account is not there. Synchronization mechanism is triggered at that point,
just for that single account. This usually means that the account is re-created. The opportunistic
synchronization is also triggered when midPoint tries to create a new account, but the account
is already there. This approach makes midPoint a self-healing system. If midPoint runs into a
problem, it can often correct the problem by itself.

Individual mechanisms differ in a way data inconsistency is discovered: livesync will actively look
for new changes, reconciliation will compare the data one-by-one and opportunistic
synchronization will discover inconsistency by pure chance. Yet, all the mechanism react to
inconsistency in the same way. There is only one policy that specifies how to fix the system. Of
course, there may be slight deviations in the behavior. For example, we usually want import to
behave in slightly different way than reconciliation. MidPoint allows that. Yet, there is just one big
synchronization mechanism overall. This has a very good reason. It does not really matter how the
problem was discovered. What really matters is that the problem gets fixed. We do not want to
maintain four separate configurations for that. Having one policy is enough. MidPoint knows which
part of the configuration need to be applied in each specific situation, and it does it automatically.
This unifying approach significantly simplifies the configuration of midPoint synchronization
mechanisms. That is also a reason why the boundaries of individual synchronization mechanisms
are quite fuzzy. In fact this is just a single big mechanism with several facets.

Source Systems, Target Systems And Other Creatures
The tale of idealistic identity management deployment starts with a human resources (HR) system.
The HR system is supposed to have records for all the identities, therefore it is authoritative source
system. Identity management system pulls in all the data from HR database, recomputes them and

131

creates accounts on target systems. And they lived happily ever after.

Now, let’s get back to reality. The HR database is indeed an authoritative source of data in many
real-world cases. However, it is a limited source. It contains only data about employees, and it has
only partial information about them. For example there is no username. Username has to be
generated by IDM logic. There is no initial password. Organizational structure assignment is often
incomplete, missing or unreliable. Therefore, HR database is only a partially-authoritative source.
There may be additional authoritative sources for contractors, partners, suppliers, support
engineers and other identities that need to access our systems. These are additional source systems.
Then there is a directory system, which is often Microsoft Active Directory. This should be a target
resource in theory. Yet, there often are pieces of authoritative information in here. For example an
algorithm to generate a username may be based on the usernames that are already used in the
Active Directory. The data in Active Directory may also be needed to create a unique e-mail address.
Directory systems are also used as a semi-authoritative sources for telephone numbers, office
numbers and so on. Therefore, such systems are both target and source systems. Then there are
"pure" target systems. These are not supposed to be authoritative in any way. Identity management
system will only write to these. Or … will it? What happens when a conflicting account already
exists on such system, and therefore we cannot create a new account for a new employee? And how
do we check if there are no accounts that are not supposed to be there? It turns out that even the
"pure" target systems contain valuable sources of information after all.

The reality brings a wild mix of source, target, semi-source, target/source and quasi-target systems
that are almost impossible to put into a pre-defined boxes. Therefore, midPoint does not bother to
define a concept of "source" or "target" resource. All resources can be both sources and targets, and
the authoritativeness of each attribute can be controlled on a very fine level. Almost every real-
world situation can easily fit into this model.

Inbound and Outbound Mappings
MidPoint is firmly based on the principle of reuse. Previous chapter explained that behavior of
attributes during provisioning is controlled by mappings. Therefore, it is perhaps no big surprise
that the behavior of attributes during synchronization is also controlled by mappings. In fact,
provisioning is just a special case of synchronization. Following picture explains the combined
mechanism.

132

There are two types of mappings:

• Inbound mappings map data flowing into midPoint. These mappings take the data from the
source resources, transform them and apply the result to the user object.

• Outbound mappings map data flowing out of midPoint. These mappings take user properties,
transform them and apply the result to account attributes in target systems.

The mappings themselves are almost the same regardless whether they are inbound or outbound.
They have sources, targets, expressions, conditions, etc. Just the sources and targets are reversed:

Inbound mapping Outbound mapping

Direction resource → midPoint midPoint → resource

Mapping source resource object (e.g. account) focal object (e.g. user)

Mapping target focal object (e.g. user) resource object (e.g. account)

That is it. Think about the same mappings that were used in previous chapter, just flip the
direction. Now the mapping will take data from the account and the results will be applied to user
object. Like this:

<attribute>
 <ref>ri:lastname</ref>
 <inbound>
 <target>
 <path>$focus/familyName</path>
 </target>
 </inbound>
</attribute>

This mapping will take the value of lastname attribute from the resource and store the value in
familyName property of midPoint user.

133

The rest is the same as outbound mappings. All the expressions and evaluators can be used for
inbound mappings in the same way as for outbound mappings. For example a Groovy expression
can be used to sanitize the value before it is stored in midPoint:

<attribute>
 <ref>ri:lastname</ref>
 <inbound>
 <expression>
 <script>
 <code>lastname?.trim()</code>
 </script>
 </expression>
 <target>
 <path>$focus/familyName</path>
 </target>
 </inbound>
</attribute>

The same approach can also be taken for activation, and even for password mappings. However,
there is one difference for password mappings. Password is usually write-only value. When the
password is written, it is usually hashed, and the original value cannot be retrieved any longer.
Then there are resources such as HR systems that do not store employee passwords at all, because
those are not really accounts that we are reading. Those are just regular database entries that the
connector presents as accounts. Inbound password synchronization is almost never easy, and it
often requires a lot of planning and ingenuity. However, there is one method that is used quite
often. The initial user passwords are usually randomly generated. As this is a very common case
midPoint can do this easily:

<credentials>
 <password>
 <inbound>
 <strength>weak</strength>
 <expression>
 <generate/>
 </expression>
 </inbound>
 </password>
</credentials>

This mapping generates random password for a user. Both the mapping and generate expression
evaluators are quite smart. The mapping knows that the target is user password, without any need
to explicitly specify that. In addition to that, generate expression evaluator will take user password
policy into consideration. It does not make sense to generate any random password. If we do not
consider password policy, then we can generate password that is too short, too long, too weak to
pass the policy or too strong to be useful in any way. Therefore, generate expression will look for
password policy, and generate a random password that just matches requirements for password
length and complexity.

134

There are more important details to see here. The inbound password mapping is weak. There is
good reason for this. We do not want existing midPoint password to be replaced by randomly
generated password. We only want to set a random password in case that it is an initial password,
the first password ever. That is exactly what a weak mapping does: it sets new value only if the
target does not have any existing value. Therefore, this mapping will not overwrite passwords that
are already set.

There is no direct account-account synchronization in midPoint. As explained
before, midPoint follows a star topology (a.k.a. "hub and spoke"). Therefore, the
synchronization is either from account to user (inbound) or from user to account
(outbound). The effect of account-account synchronization is achieved by
combining inbound and outbound synchronization mechanisms.

Correlation
It is all quite easy to import all HR records into an empty midPoint. Set up inbound mappings, start
import task, wait a bit and all is done. But practical situations are much more complex.
Synchronization algorithm usually do not run on a green field. Live synchronization and
reconciliation are supposed to work with pre-existing midPoint users. Import is usually not trivial
either, for example in cases when we try to import data from an additional data source into a
running midPoint deployment. Some users in the import set are new, but there may be accounts for
existing users. We need to tell the difference between brand-new account and an account that
belongs to an existing user. We need to handle those situations in a different way. Of course,
midPoint has an easy solution for this: correlation mechanism.

Correlation expression is a method to connect newly-discovered accounts and existing users. It
works like this: whenever midPoint discovers new account it will try to link that account to an
existing user. Correlation expression is used to do this. Correlation expression is in fact a
parametric search query. Such search query is constructed for every new account, and it is used to
look for users that the account belongs to. The easiest form of the correlation expression is to
search users using an identifier:

<correlation>
 <q:equal>
 <q:path>employeeNumber</q:path>
 <expression>
 <path>$projection/attributes/empno</path>
 </expression>
 </q:equal>
</correlation>

This correlation query takes the value of empno attribute of the account. This value is placed into the
search query that midPoint computes in memory. Given an account with empno attribute set to 007,
the resulting search filter looks like this:

135

 <q:equal>
 <q:path>employeeNumber</q:path>
 <q:value>007</q:value>
 </q:equal>

MidPoint looks for users that match this search filter. If there is a user with employeeNumber property
set to 007 then such user is considered to be an owner of the account.

MidPoint has its own data representation mechanism and object structure. Therefore, midPoint
also has its own query language that is designed to work with the object structure. The query
language is not difficult to learn as it follows the structure of other common query languages. The
language itself is described later in the book and in midPoint documentation. But do not worry
about this too much now. Vast majority of correlation expressions is very simple. In fact, it is
usually just a single equal clause just like that one used in the example above.

Using search queries for correlation may seem a little bit too complex. Yet, it is necessary. The
correlation expression must be a search filter because that is the only efficient way how to find
single user in a large set of other users. We cannot scan the users one-by-one. We need to utilize the
search power of the database for this.

Synchronization Situations and Reactions
Correlation expression can be used to find an owner for a new account. That is a part of the
solution, but not entire solution. If the owner is found, then the action is quite obvious: link the
account to the user and proceed as usual. But what to do if the owner is not found? This resource
may be an authoritative resource, and therefore we want to create a new user based on the
account. On the other hand, this may be a reconciliation with a target resource, and we have just
found an illegal account. We probably want to disable such account in this case. Moreover, what to
do if more than one owner is found? This can all become quite complicated. Therefore, midPoint
has a concept of synchronization situations to make all the possible cases understandable and
manageable.

Whenever midPoint deals with a change on an account, the situation of that account is determined.
The situation reflects whether this account is already linked to the user, whether we know the
candidate owner, whether we cannot determine the owner and so on. Individual situations are
explained in the following table.

Situation Description

linked The account is properly linked to the owner.
This is the normal situation.

unlinked The account is not linked to the owner, but we
know who the owner is. Correlation expression
told us who the owner is. In this case midPoint
thinks that the link should exist, but it is not
linked yet.

136

Situation Description

unmatched The account is not linked, and we do not even
know who the owner is. The correlation
expression has not returned any candidates.

disputed The account is not linked, but there are more
potential owners. The correlation expression
returned more than one candidate.

collision The account is linked to more than one owner.
This should not happen under normal
circumstances. This is usually caused by faulty
customizations or software bugs.

deleted There was an existing account, but it was
deleted on the resource.

After synchronization situation is determined, midPoint continues by figuring out what a proper
reaction is. The reaction may be quite clear for some situations (e.g. unlinked), but there is a lot of
variability for other situations (e.g. unmatched). This variability is a reason that midPoint allows to
set a reaction for each situation individually. There are several pre-defined reactions:

Action Description

Add focus New midPoint user will be created, and it will be
linked to the account. This is usually a reaction
configured for authoritative resources, used in
situation when a new account is discovered.

Delete focus MidPoint user that owns the account will be
deleted. This is usually a reaction configured for
authoritative resources, used in situations when
midPoint detects that an account was deleted.

Inactivate focus MidPoint user that owns the account will be
disabled. This is also used for authoritative
resources. This is a milder reaction that deleting
the user.

Link The user-account link will be created.

Unlink The user-account link will be removed. The
account will no longer be linked to the user.

Delete shadow The account will be deleted. This is the usual
reaction when illegal account is detected on non-
authoritative resource.

Inactivate shadow The account will be disabled. Usually a milder
reaction to an illegal account.

If no reaction is explicitly configured for a situation, then midPoint does nothing. The situation is
recorded in midPoint repository, but no other action is taken. This is part of midPoint philosophy:

137

not to change the data unless an action was explicitly configured.

The reactions can be defined in the synchronization section of resource configuration:

<synchronization>
 <objectSynchronization>
 <correlation>...</correlation>
 <reaction>
 <situation>linked</situation>
 <synchronize>true</synchronize>
 </reaction>
 <reaction>
 <situation>deleted</situation>
 <action>
 <handlerUri>http://midpoint.evolveum.com/xml/ns/public/model/action-
3#deleteFocus</handlerUri>
 </action>
 </reaction>
 <reaction>
 <situation>unlinked</situation>
 <action>
 <handlerUri>http://midpoint.evolveum.com/xml/ns/public/model/action-
3#link</handlerUri>
 </action>
 </reaction>
 <reaction>
 <situation>unmatched</situation>
 <action>
 <handlerUri>http://midpoint.evolveum.com/xml/ns/public/model/action-
3#addFocus</handlerUri>
 </action>
 </reaction>
 </objectSynchronization>
</synchronization>

Most of the configuration is perhaps self-explanatory. This is a typical authoritative resource. If
there is a new account on the resource, and we do not have an owner (situation: unmatched), then
create a new user (action: addFocus). If the account is deleted from the resource (situation: deleted),
then delete the user as well (action: deleteFocus). If we happen to find an account which should be
linked but it is not (situation: unlinked), then link it (action: link). The only think that deserves
special explanation is the reaction to linked situation. In this case there is not much to do.
Everything seems to be in order. However, there may still be attributes that are not set correctly.
Remember the inbound mappings? The inbound mappings were not even mentioned in this section
yet - for a good reason. The inbound mappings are not evaluated at correlation stage of
synchronization process. Evaluation of inbound mappings happen only after the situations and
reactions are evaluated. We need to properly correlate accounts first, so all the accounts are
properly linked (or unlinked), and the inbound mappings have valid sources and targets. Even
when the accounts are correlated, the evaluation of inbound and outbound mappings do not
happen automatically. MidPoint does not change the data unless it is explicitly configured to do so.

138

There are reactions for unmatched, deleted and unlinked situations. Therefore, in those cases
midPoint assumes that it is expected to fully synchronize everything, and therefore all the
mappings and policies are evaluated automatically. However, there is no reaction for linked
situation. In that case midPoint assumes that it should do nothing, as nothing is explicitly
configured. Hence the synchronize property. This property can be used to force midPoint to do full
synchronization, even if there is no explicit action configured. It can also be used to avoid full
synchronization, even if explicit action is configured.

The figure above illustrates the usual sequence of events during inbound synchronization:

1. Account is stored in the resource database.

2. Appropriate identity connector is used to read account data.

3. Account shadow is created in midPoint.

4. Correlation expression is evaluated to determine account ownership (unless the account is
already linked to a user).

5. Synchronization situation is determined based on account ownership and state of the account.

139

6. Appropriate reaction to the situation is determined based on resource configuration.

7. Inbound mappings are evaluated to map account values to the user.

Please note that the description of this process is slightly simplified for clarity. There are also
obvious deviations from this process. E.g. inbound mappings are skipped in case that the user is
about to be deleted, the mappings are also skipped if the reaction does not include
"synchronization" and so on. However, generally speaking, the sequence above is what usually
happens during inbound synchronization.

MidPoint is an extensible system. There are several prefabricated synchronization
reactions described above. Those reactions can handle the vast majority of
situations that happen during synchronization. However, there is a possibility to
extend the system with completely custom reactions. MidPoint was designed for
this. This is the theory. However, currently this part of midPoint is only partially
extensible. Full extensibility feature was planned, but it was never implemented.
Therefore, extensibility of synchronization reaction is possible, but it might be
quite hard to achieve this in practice, and it may require significant development
effort. However, there is another way. MidPoint development team would
absolutely love to finish this extensibility feature as it was originally planned.
However, existing midPoint customers had so far prioritized other features.
MidPoint subscribers and sponsors are funding the development therefore
midPoint development must follow their priorities. Therefore, if you are interested
in full synchronization reaction extensibility (or any other feature) please consider
purchasing midPoint subscription or sponsoring the feature.

Synchronization Tasks
Now we know how the inbound synchronization works: midPoint reads the account, then
correlation is applied, situation determined and reaction executed. However, we have not yet
discussed the details of the very first step: how does midPoint actually read the account? Nothing
happens without a reason, therefore there must be some active component in midPoint that
actually looks for the new, changed and deleted accounts. That component is a synchronization
task.

MidPoint task is an active process that runs inside midPoint server. This is the first time that we
encountered the concept of a task, but it is definitely not the last one. Tasks are used for numerous
purposes in midPoint. They are used to track long-running operations, approvals and actions that
work on large sets of objects (bulk actions). There are tasks that execute cleanup jobs, compile
reports and provide variety of other functions. The concept of a task is a very powerful and flexible
one. Tasks can be used to track execution of a short one-off operations. Tasks can be used to execute
scheduled actions in regular intervals. Tasks can be used to track long-running processes. We will
be using tasks in almost every chapter of this book.

Tasks are used as an active component to "run" almost all synchronization mechanisms:

• Reconciliation task is listing all the accounts in a specific resource. The task executes
reconciliation process for every account that is found. This means that midPoint computes how
that particular account should look like and then the computed values are compared with real

140

account attributes. Reconciliation is quite a heavyweight task. This task is usually scheduled for
regular execution using quite a long execution interval (days or weeks).

• Live synchronization task is looking (polling) for changes in a specific resource. The task will
look for accounts that were created, modified or deleted recently. The task will get a description
of the change, and pass that to midPoint synchronization mechanisms. Live synchronization is
designed to be fast and efficient, to provide almost real-time reaction to changes. This task is
almost always scheduled for regular execution in very short intervals (minutes or seconds).

• Import from resource task is listing all the accounts from a specific resource. The task will
pretend that the accounts were just created. This usually motivates midPoint to create users
based on those accounts or link these accounts to existing users. This task is usually not
scheduled, it is almost always executed manually.

Each type of synchronization task is detecting changes using a different mechanism. However, once
the task detects the change or reads the account, then the processing is the same for all tasks. All
the tasks lead to the same algorithms based on the same configuration and policies. Therefore, it
does not matter whether it has all started in reconciliation or live synchronization task. It will all
end up in the same correlation-situation-reaction-mapping process.

The tasks are necessary to initiate the synchronization. They are the active part, the spark that
starts the synchronization process. Without the tasks the synchronization does not really work.
There are ways the synchronization can "happen" even without a task, e.g. as a reaction to user
interface operation or if a new account is discovered during an unrelated operation. Desprite that,
practical deployments need at least one synchronization task to work properly. This task takes care
of the vast majority of synchronization cases.

Strictly speaking a task is quite a strange kind of animal. Tasks have their data and configuration as
most other midPoint objects. Unlike other objects, tasks are active, they run. Therefore, there are
CPU threads associated with the tasks when the tasks are running. There are mechanisms to
monitor task progress. The tasks need to be cluster-aware, they have to fail over to a different
midPoint node if one node fails. The tasks are quite rich, and they may be a bit tricky to handle.
Fortunately, midPoint is making task handling reasonably simple. Tasks are represented as
ordinary midPoint objects. Therefore, tasks can be imported to midPoint in XML/JSON/YAML form
as any other object. Tasks can be easily edited in their XML/JSON/YAML form to change the
scheduling, modify the parameters and so on. Of course, there are some special functions that only
the tasks have (such as suspend and resume). Such functions cannot be directly controlled using the
XML/JSON/YAML format. However, the vast majority of task management can be done using the
very same methods that are used to control other midPoint objects.

Tasks can be created by taking the XML/JSON/YAML file and importing that to midPoint. That is the
way synchronization tasks are often managed. When an XML-formatted resource definition is
created, then there is often an associated synchronization task. Which means that both resource
and all the necessary synchronization tasks can be imported together. Synchronization tasks can
also be created from midPoint user interface. They are usually created by using special-purpose
Defined tasks tab in resource detail pages.

141

Once the synchronization tasks are created, they can be managed in the same way as other tasks
are managed: in the Server tasks part of the midPoint user interface.

Synchronization Example: HR Feed
This section describes complete working example that feeds HR data into midPoint. The ExAmPLE
company HR system is an old and complex system. Therefore, the easiest integration method is to
use structured text exports. The system can export employee data in a form of a comma-separated
text file (CSV). The HR system is set up to export fresh data every night. MidPoint takes this export
file, crunches the content, and updates the data about users.

This configuration is done in three steps. First, we will use a simple setup to import the data into
midPoint. This is an operation that is executed only once. Then the configuration will be updated to
run scheduled reconciliation task. Reconciliation compares all the data records every time, and it
makes any necessary updates. Even though this method would be perfectly acceptable for the
company of this size, we are still goging set up a live synchronization task.

The core of the configuration is contained in a single resource definition file. Following paragraphs
explain individual parts of the file. There are few additional configuration files for reconciliation
and live synchronization tasks. Simplified XML notation is used for clarity. The complete file in a
form that is directly usable in midPoint can be found at the same place as all the other samples in
this book (see Additional Information chapter for details).

The resource representing HR system is configured as data source. It will be used to "pull" the data
inside midPoint. However, as we have described previously, there is no fundamental difference
between source and target resources in midPoint. Therefore, this HR resource starts in entirely
ordinary way. There is a reference to the CSV connector and the connector configuration:

142

resource-csv-hr.xml

<resource oid="03c3ceea-78e2-11e6-954d-dfdfa9ace0cf">
 <name>HR System</name>
 <connectorRef>...</connectorRef>
 <connectorConfiguration>
 <configurationProperties>
 <filePath>/var/opt/midpoint/resources/hr.csv</filePath>
 <encoding>utf-8</encoding>
 <fieldDelimiter>,</fieldDelimiter>
 <multivalueDelimiter>;</multivalueDelimiter>
 <uniqueAttribute>empno</uniqueAttribute>
 <passwordAttribute>password</passwordAttribute>
 </configurationProperties>
 </connectorConfiguration>
 ...

The next section is schema handling configuration. That is where it becomes slightly more
interesting. The schema handling section contains inbound mappings for HR account attributes:

143

resource-csv-hr.xml

 ...
 <schemaHandling>
 <objectType>
 <objectClass>ri:AccountObjectClass</objectClass>
 <attribute>
 <ref>ri:empno</ref>
 <inbound>
 <target>
 <path>$focus/name</path>
 </target>
 </inbound>
 <inbound>
 <target>
 <path>$focus/employeeNumber</path>
 </target>
 </inbound>
 </attribute>
 <attribute>
 <ref>ri:firstname</ref>
 <inbound>
 <target>
 <path>$focus/givenName</path>
 </target>
 </inbound>
 </attribute>
 <attribute>
 <ref>ri:lastname</ref>
 <inbound>
 <target>
 <path>$focus/familyName</path>
 </target>
 </inbound>
 </attribute>
 ...

The account attribute empno is mapped to midPoint user properties name and employeeNumber.
Account attributes firstname and lastname are mapped to givenName and familyName properties
respectively. This is perhaps self-explanatory.

The next part of the configuration specifies mappings for activation and credentials:

144

resource-csv-hr.xml

 ...
 <activation>
 <administrativeStatus>
 <inbound/>
 </administrativeStatus>
 </activation>

 <credentials>
 <password>
 <inbound>
 <strength>weak</strength>
 <expression>
 <generate/>
 </expression>
 </inbound>
 </password>
 </credentials>
 ...

Activation is a very specific concept in midPoint. MidPoint knows activation attributes and their
meaning. Therefore, there is no need to specify a lot of details. That makes activation mapping a
very simple thing. It simply specifies that the administrative status should be mapped in the
inbound direction. And that is it.

However, the mapping for credentials needs a bit of explanation. What midPoint sees as HR
accounts are not exactly accounts. They are usually just records in the HR database. Nobody is
using these HR records to log into the HR systems. Therefore, there is no password associated with
them. Yet, we need a password for the users in midPoint. Therefore we are going to generate the
passwords. For that we are going to use the weak mapping with generate expression that was
explained above.

The mappings are undoubtedly important. The mappings specify how are the account data
reflected to midPoint user. HOwever, the mappings do not specify whether the accounts should be
created or deleted. Mappings control the data, but they do not control the lifecycle. It is the next
configuration section that makes this resource really authoritative:

145

resource-csv-hr.xml

 ...
 <synchronization>
 <objectSynchronization>
 <enabled>true</enabled>
 <correlation>
 <q:equal>
 <q:path>employeeNumber</q:path>
 <expression>
 <path>$projection/attributes/empno</path>
 </expression>
 </q:equal>
 </correlation>
 <reaction>
 <situation>linked</situation>
 <synchronize>true</synchronize>
 </reaction>
 <reaction>
 <situation>deleted</situation>
 <synchronize>true</synchronize>
 <action>

<handlerUri>http://midpoint.evolveum.com/xml/ns/public/model/action-
3#deleteFocus</handlerUri>
 </action>
 </reaction>
 <reaction>
 <situation>unlinked</situation>
 <synchronize>true</synchronize>
 <action>

<handlerUri>http://midpoint.evolveum.com/xml/ns/public/model/action-
3#link</handlerUri>
 </action>
 </reaction>
 <reaction>
 <situation>unmatched</situation>
 <synchronize>true</synchronize>
 <action>

<handlerUri>http://midpoint.evolveum.com/xml/ns/public/model/action-
3#addFocus</handlerUri>
 </action>
 </reaction>
 </objectSynchronization>
 </synchronization>
 ...

Given the information in this chapter, this configuration should be quite easy to read. This is how a

146

typical authoritative resource works. If there is a new account on the resource, and we do not have
an owner (situation: unmatched) then we create a new user (action: addFocus). If there is a new
account for which we can find existing owner (situation: unlinked), then simply link it (reaction:
link). If the account is linked already (situation: linked), then we just synchronize the data. In fact,
we will synchronize data for all the other situations as well. Except the last one. If the account is
deleted in the HR system (situation: deleted), then we want to delete midPoint user as well
(reaction: deleteFocus). As the user gets deleted there is no point in synchronizing the data.
MidPoint knows that and skips application of mappings.

The ownership of the accounts that are not already linked is determined by the correlation
expression. In this case, the expression will be comparing account attribute empno with user
property employeeNumber. If the values match then the user is considered to be an owner of the
account.

There is one more detail in this resource that we have skipped:

resource-csv-hr.xml

 ...
 <projection>
 <assignmentPolicyEnforcement>none</assignmentPolicyEnforcement>
 </projection>
 ...

This is a setting that adjusts the behavior of midPoint assignments. As was already mentioned, all
resources in midPoint are created equal. The source resources must follow the same rules as target
resources. One of the fundamental rules of midPoint is that there should not be any account
without a specific reason to exist. In midPoint terminology, every account exists because there is an
assignment that justifies its existence. While this approach is exactly what we want for the vast
majority of (well behaving) resources, it is not exactly ideal for source resources. Those resources
work the other way around. The HR account is in fact a cause for midPoint user existence, not its
effect. Therefore, there is really useful assignmentPolicyEnforcement setting that controls the
behavior of assignments. This setting is used in a variety of scenarios, mostly for data migration,
and to tame resources that just won’t behave in a civilized manner. However, in this case the
setting is used to turn off the assignment enforcement for this resource entirely. As this resource is
an authoritative source, the assignment enforcement does not make much sense. Behavior of this
resource is defined by the synchronization section of resource configuration.

Resource configuration is complete now. This configuration sets up the connector, mappings and
synchronization policies. The configuration is the same for all the synchronization flavors: import,
reconciliation and live sync - they will all use the same settings. When it comes to configuration, the
only difference between those synchronization flavors is the way how the synchronization tasks
are set up. If an import task is set up, then import of resource accounts will be executed. If
reconciliation task is set up, the reconciliation will be executed. It is all in the tasks.
Synchronization tasks can be easily set up using those convenient buttons in the user interface.
However, we like to make our lives a bit painful in our part of the world. Therefore, we are going to
go hardcore, and we import the tasks in the XML form.

First task is an import task. This task lists all the accounts in the HR CSV file. The task pretends that

147

each of the accounts was just created. If the task is executed for the first time, then resulting
situation of the accounts is going to be either unmatched or unlinked. Therefore, the task creates new
midPoint users or links the accounts to existing users.

task-hr-import.xml

<task oid="fa25e6dc-a858-11e7-8ebc-eb2b71ecce1d">
 <name>HR Import</name>
 <assignment>
 <!-- Import task archetype -->
 <targetRef oid="00000000-0000-0000-0000-000000000503" type="ArchetypeType"/>
 </assignment>
 <ownerRef oid="00000000-0000-0000-0000-000000000002"/>
 <executionState>runnable</executionState>
 <schedule>
 <recurrence>single</recurrence>
 </schedule>
 <activity>
 <work>
 <import>
 <resourceObjects>
 <!-- HR Resource -->
 <resourceRef oid="03c3ceea-78e2-11e6-954d-dfdfa9ace0cf"/>
 <kind>account</kind>
 </resourceObjects>
 </import>
 </work>
 </activity>
</task>

This is a very basic structure of a task. Similarly to all midPoint objects, a task has a name. Then
there is an assignment of Import task archetype. We will describe archetypes later. For now, it is
only important to know that this classifies the task as import task, so the user interface can place
the task in proper categories. Task needs definition of an owner. The owner is a user that is
executing the task. This is important, because authorizations of task owner determine what the task
is allowed to do. This is also the identity that will be recorded in the audit log. In this case
administrator is owner of this task. Task execution status tells whether the task is running, it is
suspended or finished. Tasks are often executed periodically, therefore they need a schedule. In this
case, we will start with task that is executed just once, to test the configuration. Hence the single
recurrence, which specifies that the task runs only once. Then there is definition of activity. Activity
specifies what the task really does. In this case the activity specifies that this is a synchronization
task which imports accounts from the resource. The resource is specified by the resourceRef
reference in the activity specification. This points to our HR resource.

When this XML definition is imported to midPoint, the server tries to execute the task. That means
that import of accounts from the HR resource starts immediately. Progress of the task can be
monitored in the Server tasks section of midPoint user interface. The import task is not a recurring
task, it will run only once. If you need to re-run the task, you can do that from midPoint user
interface. However, the task will not get executed again, unless you explicitly tell midPoint to do so.

148

This is how typical import tasks work. They are usually executed when a new resource is connected
to the system. Once everything is set up, correlated and linked, then the import task is not needed
any more.

A clever reader may ask what happens when the import task is executed more
than once. The answer is simple: not much. Even if the task pretends that the
accounts were just created, midPoint is not fooled easily. In fact, it is hard to
believe that the account was just created if midPoint already has shadow for that
account, and it is linked to a user, isn’t it? Therefore, midPoint is going to stay calm
and carry on. If there is any change in the account attribute, the change will be
reflected to the user. That is it. No big drama here.

Import task will get the data from the resource into midPoint. As import is not a recurring task, it
will not keep the data synchronized. Import tasks are not designed to do so. Fortunatelly, there are
other tasks that are designed for continuous synchronization. Reconciliation task is one of these.
Reconciliation task lists all the accounts on a resource and compares that with data in midPoint.

task-hr-recon.xml

<task oid="bbe4ceac-a85c-11e7-a49f-0f5777d22906">
 <name>HR Reconciliation</name>
 <assignment>
 <!-- Reconciliation task archetype -->
 <targetRef oid="00000000-0000-0000-0000-000000000501" type="ArchetypeType"/>
 </assignment>
 <ownerRef oid="00000000-0000-0000-0000-000000000002"/>
 <executionState>runnable</executionState>
 <schedule>
 <recurrence>recurring</recurrence>
 <cronLikePattern>0 0 1 ? * SAT</cronLikePattern>
 <misfireAction>executeImmediately</misfireAction>
 </schedule>
 <activity>
 <work>
 <reconciliation>
 <resourceObjects>
 <resourceRef oid="03c3ceea-78e2-11e6-954d-dfdfa9ace0cf"/>
 <kind>account</kind>
 </resourceObjects>
 </reconciliation>
 </work>
 </activity>
</task>

Definition of a reconciliation task is almost the same as the definition of import task. However,
there are crucial differences. First of all, there is different activity. This is what makes this task a
reconciliation task. Then, the task is recurring. This means that midPoint will repeat execution of
the task. Therefore, there is also execution schedule, so the server knows when to execute the task.
Reconciliation tasks are usually resource-intensive, therefore we usually want to execute them at a

149

very specific off-peak times. For that reason the execution schedule is defined using a cron-like
pattern. UNIX-friendly readers will be surely familiar with this. The format is:

seconds minutes hours day-of-month month day-of-week year

The string 0 0 1 ? * SAT means that this task will be executed every Saturday at 01:00:00am. There
is also definition of misfire action. Misfire is a situation when the server is down at the time when
the task is supposed to run. In this case, if the server is down in the early hours of Saturday, this
task will be executed as soon as the server starts up.

Reconciliation task is a real workhorse of identity management. It can be used for almost any
resource. It is very reliable. It is often used to fix data problems, apply new policies, look for
missing accounts, illegal accounts and so on. It is indeed a really useful tool. Yet, it has its downside.
Reconciliation iterates through all the accounts, it recomputes all the applicable policies for every
account, one-by-one. Therefore, it may be quite resource-intensive. It may be even quite brutal if
the policies are complex, user population is high and the resources are slow. This can take hours or
even days in extreme cases. Even for smaller deployments, reconciliation is not entirely easy. The
problem is not in midPoint. MidPoint can be usually scaled up to handle the load. However, listing
all the accounts often may put unacceptable load on the resources. Therefore reconciliation is not
executed often. Daily, weekly or even monthly reconciliation seems to be a common approach.
Reconciliation is reliable, but it is not entirely what we would call "real-time". But of course,
midPoint has a faster alternative.

Live synchronization is the way to go for real-time synchronization. Or rather almost real-time
synchronization. Practical latencies for live synchronization are in the range of seconds or minutes,
which is fast enough for most practical cases. Live synchronization is also quite resource-efficient.
Overall, it is much faster and much lighter than reconciliation. Unfortunately, live synchronization
is not available for all resources. Live synchronization depends on the ability to get recent changes
from the resource in a very efficient way. Therefore, it is only available for resources that record
the changes. The specific mechanism to record the changes may vary from resource to resource. It
may be as basic as a simple modification timestamp, or it may be a complex real-time change log.
The mechanism has to be good enough for the connector to discover recent changes, and it must be
efficient enough for the connector to do that every couple of seconds. If such mechanism is
available, and the connector knows how to use it, then setting up live synchronization is easy. All
that is needed is synchronization task.

150

task-hr-livesync.xml

<task oid="7c57adc2-a857-11e7-83ac-0f212d965f5b">
 <name>HR Live Synchronization</name>
 <ownerRef oid="00000000-0000-0000-0000-000000000002"/>
 <executionState>runnable</executionState>
 <schedule>
 <recurrence>recurring</recurrence>
 <interval>10</interval>
 </schedule>
 <activity>
 <work>
 <liveSynchronization>
 <resourceObjects>
 <resourceRef oid="03c3ceea-78e2-11e6-954d-dfdfa9ace0cf"/>
 <kind>account</kind>
 </resourceObjects>
 </liveSynchronization>
 </work>
 </activity>
</task>

This task definition should be easy to understand by now. There is a different activity that makes
this a live synchronization task. There is also a different type of scheduling. We do not want to
execute this task at a specific time. We rather want to execute it all the time, at regular intervals. In
this case the interval is set to 10 seconds. That is all. We have live synchronization running. If the
HR CSV file is changed now, the changes will get automatically processed by midPoint.

Setting up synchronization flavors is just a matter of setting up the tasks. The rest of the
configuration is the same for all flavors. Therefore, it is very easy to run both live synchronization
and reconciliation for the same resource. Just create two tasks. In fact, this is quite a common setup.
Live synchronization is used to get the changes quickly and efficiently. Reconciliation is used to
make sure all the changes were processed and that the policies are applied consistently.

Now we have the HR feed up and running. However, there are still few issues. A clever reader
would surely notice that this is not a very good HR resource. MidPoint users created from this HR
feed have given name and family name, but the full name field is empty. But do not worry. We will
sort that out in later chapters, with the help of object template. Also, the users have employee
number as their username. This may be in fact a very good approach for some deployments as it
avoids the need to rename accounts. However, it is not a very user-friendly approach. Therefore,
most deployments need to generate more convenient usernames. This is easy to do with midPoint,
and we will also address that later. There is still a lot of things to learn before we get to a complete
synchronization set up.

HR Feed Recommendations
All resources are created equal in midPoint. However, source resources almost always have a
slightly special standing. Even though midPoint mechanisms are the same for all resources, the
data coming from the sources often have significant impact on the entire solution. There is this

151

traditional computer engineering wisdom: garbage in, garbage out. An error in data feed may cause
a lot of problems everywhere. Therefore, it is important to get the data sources right. This is usually
one of the first steps in an IDM project.

Unfortunately, source data feed is usually quite difficult to set up correctly - and it is almost
impossible to get it right at the first try. There may be good old configuration problems, which are
usually easy to fix. There may be data compatibility problems, such as presence of non-ASCII
national characters where they are not expected. Worst of all, source data may be of poor quality,
there may be inconsistencies, typos, the data may be out of date, not reflecting the reality very well.
These problems are the most difficult to correct, as the right way to correct them is to modify the
data at its source. That takes time, meetings, mail messages, management decisions, processes,
excuses, delays and a lot of patience. Therefore, setup of a data source is usually an iterative
process. The process usually goes like this:

1. Set up initial source resource definition based on the information you have. Set up connector
and test connection. Check that you can see the accounts. Set up mappings and synchronization
policy.

2. Test the import process on a couple of individual accounts. Navigate to the resource details
pages, click on Accounts tab to list accounts, choose an account and click on the small
btn:Import[] button in the table row. Import of that individual account starts immediately. Just
that one account. It is easier to see the errors (see step 6) by using this method.

3. Fix any errors that you see and repeat step 2.

4. Create an import task and run import of all accounts.

5. Examine task errors. You can use task details page to get the summary.

6. If there are no errors, then examine the users. If everything seems right then it is time to
congratulate yourself. You have a good import. However, this is unlikely to happen on the first
few attempts.

7. You will probably need to have a look into system logs to learn the details of individual import
failures. MidPoint heavily relies on logs for detailed error analysis. See the Troubleshooting
chapter of this book to learn how to adjust log levels and how to get understand the log
messages.

8. Some errors are likely to be caused by the errors in your mappings and policies. These are
usually easy to fix. However, there are usually worse errors as well – errors caused by wrong or
unexpected input data. The right way would be to fix the data. But that is not always possible (in
fact it is almost never a feasible option for a quick fix). Fortunately, most of the input data
errors can be fixed (read: "worked around") in midPoint with a bit of ingenuity. Just use the
power of the mappings. For example, clean up the unexpected characters, white space or data
formats using scripting expressions.

9. Rinse and repeat. If the errors you get are not severe then you may simply re-run the import
task. This often works just fine. But if the problem was in a mapping that completely ruined all
the data then it is perhaps best to start with a blank slate. We are all just humans and this
situation happens quite often, especially in the beginning while you are still learning.

Therefore, there is a special feature to help you out. Navigate to Configuration › Repository
Objects. There is a small unassuming expand button in the top-right part of the screen. That
button opens a context menu. Select Delete all identities item. That is what we lovingly call

152

"laxative button". A brief dialog will pop up asking you to specify which identities exactly are to
be deleted (users, shadows, …). This is a very convenient way how to get back to a black slate,
but keep all the configuration (resources, templates, tasks).

10. Goto step 2. Repeat until done.

If the initial IDM deployment step includes an HR feed, we strongly recommend to start with that
HR feed. It is significant benefit to have authoritative HR data in the midPoint to start with. It is
usually easier to correlate other resources to midPoint users later on, if the users were created
from a reasonably reliable HR data. Also, it will usually take some tweaking to get the HR import
right. The possibility to easily clean up midPoint and get to a clean slate is extremely useful.
HOwever, this "wipeout" approach is possible only if the HR feed is the first resource that is
connected to midPoint.

A clever reader would notice, that we assumed that the source feed will be taken from a CSV file.
This is indeed the case in many deployments. The CSV file is usually produced as an automatic
scheduled export of HR system data, running every night. If a new employee or contractor is about
to join the company, there is usually no hurry. This information is entered into the HR system at
least a few days in advance, therefore daily CSV export is perfectly acceptable. However, there may
be cases when we want a faster response. Maybe we do not even want additional burden of dealing
with CSV exports. Of course, there is a solution. In theory, any connector can be used for source
resource. There are specialized connectors that are taking data directly from the HR system. For
example, there is a connector for Oracle HCM system. Unfortunately, there is no connector that can
take data from SAP HR system yet.

Synchronization and Provisioning
Synchronization and provisioning are intimately related. Everything that we have explained about
provisioning in the previous chapter also applies to synchronization. In fact, provisioning and
synchronization are just applications of the same basic mechanisms. Provisioning starts with
modification of a user. Synchronization starts a bit earlier: inbound mappings are used to map
values from source system to the user. The result of inbound mapping evaluation is modification of
the user object. According to midPoint principles, it does not matter how the user was modified.
The reaction is the same: accounts are provisioned, modified or deleted.

The synchronization (inbound processing) and provisioning (outbound processing) usually happen
in one seamless operation. For example, the HR connector detects update in the last name of an
employee. That modification is applied to midPoint user, therefore the family name of midPoint
user is updated. The operation continues by evaluating all templates, roles and outbound mappings.
The outbound mappings usually map the family name change to the resource attributes. Therefore,
the resource accounts linked to the user are immediately updated. All of that happens in a single
operation. That is how midPoint works. MidPoint is not a human. It will never procrastinate (unless
explicitly instructed do to so). MidPoint will not postpone the operation for later if the operation
can be executed immediately. MidPoint tries to get the data right on the first try. Therefore, there
are no specialized propagation or provisioning tasks that you might know from older IDM systems.
MidPoint does not need them.

There are other advantages in doing everything in one operation. It is all one operation, therefore
midPoint knows all the details: what was the cause, what is the effect, what exactly has been

153

changed. Such context is extremely important for troubleshooting. Some IDM systems decouple the
cause from the effect. Such a divided approach may have its advantages, but it is an absolute
nightmare when an engineer needs to figure out why a certain effect happened. For that reason,
midPoint has both the cause and the effects bundled together in a single operation. Therefore, it is
much easier to figure out what is going on. Having the cause and effect connected in one operation
makes it possible to neatly record entire operation in the audit trail. Then there is another huge
advantage: midPoint knows exactly what has been changed. This means that midPoint does not
only know the new value of a property. MidPoint also knows the old value and values that were
added or removed. This is a complete description of the change that we call a delta. This is recorded
at the beginning of the operation, and propagated all the way until the operation is done. Therefore
the mappings can be smart. This approach enables a lot of interesting behavioral patterns. For
example, it is quite easy for midPoint to implement the "last change wins" policy. In this case
midPoint will simply overwrite only those attributes that are really changed in operation. MidPoint
can leave other values untouched. In fact, this is the default behavior of midPoint. It is a very useful
behavior during deployment of a new IDM system.

Careful processing of the operations allows configurations that are not feasible with older IDM
systems, e.g. a resource that is both a source and a target. In fact a lot of IDM systems can have
resource that is both a source and a target - as long as it is a source for one attribute and a target for
another attribute. However, midPoint can live with a resource where the same attribute is both a
source and a target. In fact there may be many sources and many targets for the same property at
the same time. This is a very useful configuration, indeed. Just think about telephone number
property. It is usually something that the user sets up himself. This may be set up by some kind of
specialized self-service, it may be updated by a call center call, the user may update that in his
Active Directory profile … there are many ways how this information is changed. Yet, we want this
property to be consistent. We want telephone number to be the same everywhere. We do not care
where it was changed. We just want to propagate the last change from anywhere to all the other
systems. MidPoint can easily do this. Just specify both inbound and outbound mappings for the
same attribute:

<attribute>
 <ref>ri:mobile</ref>
 <outbound>
 <source>
 <path>$focus/telephoneNumber</path>
 </source>
 </outbound>
 <inbound>
 <target>
 <path>$focus/telephoneNumber</path>
 </target>
 </inbound>
</attribute>

In this case the change in user property telephoneNumber will be propagated to the account attribute
mobile (outbound change). But also a change in the account attribute mobile will be propagated back
to user property telephoneNumber (inbound change). Last change wins.

154

A clever reader certainly grumbles something about infinite loops now. No need to not worry here.
MidPoint can see complete operation context, both inbound and outbound sides. Therefore,
midPoint knows when to stop processing the operation. There are even mechanism how to avoid
loops caused by connectors detecting changes caused by the connector itself. MidPoint will break
those loops automatically.

Synchronization and provisioning are in fact almost the same mechanism applied
in a different direction. Then why there are two sections in the resource
configuration? Why there is schemaHandling and synchronization? Why not just
one? The answer is simple: history. Rome was not built in a day, and no software is
created perfect on day one. Similarly to other software systems, midPoint went
through an evolutionary process of continuous improvement. MidPoint had a very
good design at the beginning. Looking back at the initial design, now it is quite
clear that almost all of midPoint developments were correctly foreseen and
accounted for in the design. However, there are occasional mistakes. The initial
midPoint data model design expected that there will be major differences between
synchronization and provisioning mechanisms. Therefore, there were two
sections, one for each mechanism. As midPoint was developed, evolutionary
process improved the initial design, and we have found a way how to unify
synchronization and provisioning mechanisms into one. However, we have not
modified the initial data model because we wanted to keep compatibility. Having
two sections instead of one is only a cosmetic imperfection. It does not cause any
major trouble. On the other hand, incompatible change would certainly affect
continuity of midPoint deployments. We highly value midPoint continuity and
upgradeability. Therefore, the two sections remained to this day. However, they
will not remain there forever. We are not going to dwell on old mistakes for too
long. These two section will be reunited once there is a proper time to make
incompatible changes. Which will probably happen in the future when the time
comes to release midPoint 5.0.

Synchronization Strategies
Synchronization is simple, in theory. However, as usual, the devil is in the details. Similarly to
provisioning, there is no one single "synchronization protocol" that would work for all the source
systems. Every system type has its own way to synchronize data. Some systems (such as LDAP
servers) even have several mechanisms to choose from. Then there are source systems that have no
practical way to implement efficient synchronization. We would refer to such methods as
synchronization strategies.

Specific details of each synchronization strategy should be an internal matter of connector
implementation. The strategy is configured on connector level, and the details should be,
theoretically, hidden inside the connector. MidPoint would not know and would not need to know
what synchronization strategy is used. That might work in an ideal world. Yet, we live in a practical
world, and there are many details that leak through the synchronization abstraction.

Let us use LDAP as an example. LDAP is, theoretically, a standard. However, the standard does not
specify any synchronization mechanism. There is experimental RFC 4533, however it is not widely
adopted. Yet, synchronization capabilities are necessary, and every major LDAP server provides

155

some synchronization mechanism. Some mechanisms are quite good, some are not. There is an
ancient "Retro change log", going back to Netscape/iPlanet LDAP servers, that is still used today.
Active Directory, in a very typical way, has its own "DirSync" synchronization mechanism.
OpenLDAP has yet another mechanism based on the access log. There is RFC 4533, which is used so
rarely, that there was no request to implement it in midPoint LDAP connector. And then there is a
catch-all synchronization mechanism that looks for recent changes based on modifyTimestamp
attribute.

In theory, all the synchronization strategies above should be equivalent. But they are not. For
example, some variants of "Retro change log" synchronization cannot reliably detect rename
operations. There may be problems with delete operations as well, especially if coupled with
rename operations. Almost every mechanism has its quirks. And then there is the modifyTimestamp,
which is the most problematic of all.

Unfortunately, it is quite common to use a synchronization strategy based on last modification
timestamp. Not just for LDAP, but also for database tables and other types of source systems. This is
perhaps understandable, as this is a very simple mechanism. However, it has a lot of problems. The
obvious problems can be caused by de-synchronized time on network, although in the age of
Network Time Protocol (NTP) this should not be a problem at all. The other problem is a timestamp
granularity. If the timestamp is granular to one second, that can be a big problem. One second is a
very long time for a computer. A lot can happen in one second. Therefore, the connector has to
include the "boundary" second to both consecutive synchronization runs, which means that the
records may be processed twice. Going for millisecond granularity makes the problem less severe,
but the problem is still there.

However, the worst problem is that this strategy cannot detect deleted objects. Deleted objects are
not there anymore, they do not have last modification timestamp, therefore they will not be
included the search. This means that there must be a reconciliation process running together with
live synchronization. But wait a minute, it is usually recommended running reconciliation anyway,
as a form of "safety net", isn’t it? It is, but the difference is in the timing. It is one thing to run
reconciliation once a week to make sure that no records were missed. Yet, it is a completely
different thing to run reconciliation every hour to make sure deleted objects are properly handled.
This makes a huge difference, especially for deployments with millions of entries. Strategies based
on last modification timestamp may look like a good idea at the beginning. However, they usually
turn into a major liability in the long run. Avoid them if you can.

The bottom line is, that synchronization strategies are not created equal. In fact, the individual
strategies tend to have vastly different characteristics. Our advice is to learn how each
synchronization strategy works, what are the limitations and when it fails. Also, avoid the use of
strategies based on last modification timestamp if there is any other viable alternative.

Mapping and Expression Tips and Tricks
Mappings and expressions form a very powerful mechanism. In fact, most of midPoint
configuration is about setting up correct mappings. However, with great power comes great
responsibility, and mappings may look a bit intimidating at a first sight. Fortunately, there are some
tips and tricks that make the life with mappings and expressions a bit easier.

Most mappings are aware of the context in which they are used. Therefore, paths of mapping

156

sources and targets can be shortened - or even left out entirely. Activation and credential mappings
used in the HR feed example are the obvious cases. Yet, even paths in ordinary mappings may be
shortened. For example take the outbound mapping source:

 <outbound>
 <source>
 <path>$focus/telephoneNumber</path>
 </source>
 </outbound>

As the mapping knows that its source is a focus (user) the definition may be shortened:

 <outbound>
 <source>
 <path>telephoneNumber</path>
 </source>
 </outbound>

Typical midPoint deployment has tens or hundreds of mappings. Deployments with thousands of
mappings are definitely feasible. There are two things that can make maintaining the mappings
easier. Optionally, you can specify the mapping name. Mapping name will appear in the log files
and some error messages. It may be easier to identify which mapping is causing problems, or it
may help locate the trace of mapping execution in the log file. Mapping can also have a description.
The description can be used as a general-purpose comment or a documentation explaining what
the mapping does.

<attribute>
 <ref>ri:mobile</ref>
 <outbound>
 <name>ldap-mobile</name>
 <description>
 Mapping that sets value for LDAP mobile attribute based on
 user’s telephone number.
 </description>
 <source>
 <path>$focus/telephoneNumber</path>
 </source>
 </outbound>
</attribute>

Mappings can become quite complex. There may be multi-line scripting expression in the mapping,
and it may not entirely obvious what is the input and output. Therefore, each mapping and each
expression have an ability to enable tracing:

157

<attribute>
 <ref>ri:mobile</ref>
 <outbound>
 <trace>true</trace>
 <source>
 <path>$focus/telephoneNumber</path>
 </source>
 <expression>
 <trace>true</trace>
 <script>
 <code>...</code>
 </script>
 </expression>
 </outbound>
</attribute>

If tracing is enabled, then the mapping or expression execution will be recorded in the log files.
Tracing can be enabled at both mapping level and expression level. Mapping tracing is shorter. It
provides overview of the mapping inputs and outputs. Expression-level tracing is much more
detailed.

However, even this level of tracing may not be enough to debug expression code. Therefore, there is
a special expression function for logging. Arbitrary messages may be logged by script expression
code:

 <expression>
 <script>
 <code>
 ...
 log.info("Value of foo is {}", foo)
 ...
 </code>
 </script>
 </expression>

Generally speaking, troubleshooting of mappings may be quite difficult as it is often intertwined
with midPoint internal algorithms. Still, there are ways how to do it. The Troubleshooting chapter
provides much more details on this.

Expression Functions

Expressions in general, and scripting expressions in particular, are the place where most midPoint
customization takes place. Scripting expressions are able to execute any code in a general-purpose
programming language. Script can transform the data in any way, or it can execute any function.
Quite naturally, there are functions that are frequently used in the scripts. Therefore, midPoint
provides convenient scripting libraries full of useful methods ready to be used in scripting
expressions.

158

There are two built-in scripting libraries that are used very often:

• Basic script library provides very basic functions for string operations, object property
retrieval, etc. These are simple, efficient stand-alone functions. These functions can be used in
every expression.

• MidPoint script library provides access to higher-level midPoint functions contain IDM-
specific and midPoint-specific logic. This library can be used to access almost all midPoint
functionality. But there are few places where this library may not work reliably (e.g. correlation
expression).

The libraries are designed to be very easy to use from the scripting code. While the specific details
how to invoke the library depend on the scripting language, the libraries are usually accessible by
the use of basic and midpoint symbols. Function norm() from the basic library can be invoked in a
Groovy script like this:

 <expression>
 <script>
 <code>
 ...
 basic.norm('Guľôčka v jamôčke!')
 ...
 </code>
 </script>
 </expression>

Invocation of the libraries from JavaScript and Python is almost the same, and we are sure that a
clever reader will have no trouble figuring that out. What is more difficult to figure out is which
functions the libraries provide. For that purpose there is a page in midPoint docs that lists all the
libraries and this page also has a link to library function documentation. Look for Script Expression
Functions page in midPoint docs.

Only two libraries were mentioned in this section so far. However, this is not a whole story. A clever
reader has certainly figured out that the logging function described in previous section is also a
scripting library. And there may be more libraries in the future.

Resource Capabilities
The systems that midPoint connects to are not created equal. In fact, those systems significantly
differ in their capabilities. Most systems can create accounts. However, not all of them can delete
accounts. There are systems that keep the accounts forever, the accounts can be only permanently
disabled. Yet another systems cannot enable or disable accounts. While most systems support
password authentication, other system do not. There is a lot of natural diversity in the provisioning
wilderness. The connector may introduce additional limitations as well. Even if target system
supports a particular feature, connector may not have appropriate code to use it. MidPoint needs to
take all these differences into consideration when executing synchronization and provisioning
operations.

MidPoint refers to these features of the systems and connectors as resource capabilities. Although

159

https://docs.evolveum.com/midpoint/reference/expressions/expressions/script/functions/
https://docs.evolveum.com/midpoint/reference/expressions/expressions/script/functions/

capabilities may look quite complex, they are essentially just a list of things that a connector and
resource can do. MidPoint is aware of the resource capabilities, and their limitations. Therefore,
midPoint can work with resource data correctly. E.g. midPoint will not try to modify account on a
read-only resource.

Capabilities are usually automatically discovered by midPoint, and everything just works out of the
box. There is usually no extra work to maintain the capabilities. Yet, sometimes there is a need to
tweak the capabilities a bit. Maybe the connector cannot detect resource capabilities well enough.
Maybe there is a read-only resource, but the connector has no way of knowing this. In that case, the
write capabilities have to be manually disabled in midPoint. For that reason there are two sets of
capabilities:

• Native capabilities are capabilities detected by the connector. Those are always automatically
generated by midPoint. Those capabilities should not be modified by administrator.

• Configured capabilities are the capabilities modified by the administrator. Configured
capabilities are used to override native capabilities. Configured capabilities are usually empty,
which means that only native capabilities are used.

There are many ways how the capabilities can be tweaked by the administrator. Yet, there is one
case that is particularly interesting for synchronization and provisioning: simulated activation
capability.

MidPoint connectors can be tailored specifically for a particular system. E.g. there are often
connectors that are developed specifically for one custom enterprise application. At the other side
of the spectrum are generic connectors, that can fit a wide variety of systems and applications.
LDAP, CSV and database table connectors are examples of such generic connectors. Such connectors
are very useful, they are used in almost every midPoint deployment. However, there is no
standardized way to disable an account in database table or a CSV file. Various columns and
various values are used to represent account activation status. Quite surprisingly, there is no
standardized way to disable an account in LDAP directory either. That is bad news for midPoint.
MidPoint takes a significant advantage from knowing whether account is disabled or enabled. We
had to do something about this "disable ambiguity". And we did.

There is way to tell midPoint which attribute and what values are used to represent account
activation status. Configured activation capability is used for that purpose:

 <capabilities>
 <configured>
 <cap:activation>
 <cap:status>
 <cap:attribute>ri:active</cap:attribute>
 <cap:enableValue>true</cap:enableValue>
 <cap:disableValue>false</cap:disableValue>
 </cap:status>
 </cap:activation>
 </configured>
 </capabilities>

160

Configured capability above specifies resource attribute active as the attribute that controls
account activation status. If this attribute is set to value true then the account is enabled. If the
attribute is set to value false then the account is disabled. That is it. Once this configured capability
is part of resource definition, then midPoint will pretend that the resource can enable and disable
accounts. Attempt to disable account will be transparently translated to modification of active
attribute. Moreover, it also works the other way around. If an account has attribute active set to
false value, midPoint will display that account as disabled. No extra logic or mapping is needed to
achieve that. The capability does it all.

Synchronization Example: LDAP Account Correlation
Previous example demonstrated the use of synchronization for HR data feed. That is the most
obvious use of synchronization mechanisms. However, midPoint synchronization can do more
tricks than just feeding data to midPoint. Synchronization can be used even for target resources. In
that case the synchronization is usually used for several purposes:

• Initial migration: This is a process of connecting new resource to midPoint. There are usually
accounts that already exist in the resource at the time when a resource is connected to
midPoint. It is likely that at least some accounts correspond to the users that are present in
midPoint (e.g. users created from the HR feed). Therefore, the accounts from the resource need
to be correlated to the users that already exist in midPoint. Synchronization is the right
mechanism for this.

• Detection of illegal accounts: Security policies are usually set up in such a way that only those
people that need an account on a particular resource should have that account. This is known
as the principle of least privilege. However, in typical IDM deployment, there is nothing that
would prohibit system administrator to create any accounts at will. This freedom is often even
desirable, because there are emergency situations where full control over the system is crucial.
Yet, even for emergency cases, we want to make sure that the situation is aligned with policies
when the emergency is over. MidPoint can easily do that, by scanning the target systems in
regular intervals. Synchronization mechanisms can be used to detect accounts that do not have
any legal basis and delete or disable such accounts. Again, synchronization mechanism can do
that easily.

• Attribute value synchronization: Accounts in target resources are usually created as a result
of midPoint provisioning action. However, account attribute values are in fact copies of the data
in midPoint. Attribute values can easily be changed by system administrator, may be set to old
values during data recovery procedure or they can get out of sync by a variety of other means.
MidPoint can make sure that the attributes are synchronized and that they stay synchronized
for a long time. Synchronization mechanisms are ideal for this purpose.

Older IDM systems used synchronization mostly to get data from the source resources to IDM
system. Synchronization in midPoint is much more powerful than that. It can be applied both to
source systems and target systems, it can pull data, push data, detect inconsistencies and fix them.
Synchronization is a general purpose mechanism, it is a real work-horse of identity management
with midPoint. This is the principle of reuse again. Synchronization mechanism can be reused for
variety of purposes.

In this example we will be using synchronization to connect existing LDAP server to midPoint. We

161

assume that our midPoint is already connected to the HR system. We have imported the HR data.
Now we have midPoint users created for all our employees. Then there is this LDAP server. It is
really important LDAP server. This server is used by company intranet portal and also by a variety
of smaller web applications. Those applications are using the LDAP server for user authentication
and access authorization. The LDAP server was deployed many years ago. Initially it was populated
by the HR data. However, the LDAP server was managed manually by a system administrator
during all these years. Therefore, it is expected that there will be some accounts that belong to
former employees. Also, it might have happened that some accounts are missing. It is quite likely
that a lot of the accounts have wrong data.

First task is to set up the connector for this resource. As LDAP servers are used for identity
management purpose all the time, MidPoint comes with a really good LDAP connector. All we need
is to set up the resource to use that connector:

resource-openldap.xml

<resource oid="8a83b1a4-be18-11e6-ae84-7301fdab1d7c">
 <name>OpenLDAP</name>

 <connectorRef type="ConnectorType">
 <filter>
 <q:equal>
 <q:path>connectorType</q:path>
 <q:value>com.evolveum.polygon.connector.ldap.LdapConnector</q:value>
 </q:equal>
 </filter>
 </connectorRef>
 ...

What we can see here is a slightly more sophisticated method to reference the connector. So far we
have seen only a direct connector reference by OID. This works well for almost all the references in
midPoint, because OID never changes. However, connectors are somehow elusive objects. Objects
that represent connectors are dynamically created by midPoint when a connector is discovered.
Therefore, the OID is generated at random when midPoint discovers new connector. There is no
practical way how a system administrator can predict that OID. Yet, we still want our resource
definitions to refer to a particular connector when we import the definition. Therefore, there is an
alternative way to specify object references. This method is using a search filter instead of direct
OID reference. When this resource definition is imported to midPoint, then midPoint will use that
filter and look for LDAP connector. If that connector is found, then the OID of that connector is
placed in the reference (connectorRef). Therefore, the next time midPoint will be using this
resource, it can follow the OID directly. This is a very convenient method. However, there are few
limitations. Firstly, the filter is resolved only during import. Which means that it is resolved only
once. If the connector is not present at import time, then the reference needs to be corrected
manually. Secondly, this approach works if there is only one LDAP connector deployed to midPoint.
This is usually the case. However, the connector framework can contain several connectors of the
same type in different versions. This is a very useful feature for gradual connector upgrades, testing
of new connector versions and so on. Yet, in case that the filter matches more than one object, the
import will fail. In that case the connector reference has to be set up manually.

162

Once we have proper reference to LDAP connector we need to configure the connection:

resource-openldap.xml

 ...
 <connectorConfiguration>
 <icfc:configurationProperties>
 <cc:port>389</cc:port>
 <cc:host>localhost</cc:host>
 <cc:baseContext>dc=example,dc=com</cc:baseContext>
 <cc:bindDn>cn=idm,ou=Administrators,dc=example,dc=com</cc:bindDn>
 <cc:bindPassword><t:clearValue>secret</t:clearValue></cc:bindPassword>
 ...
 </icfc:configurationProperties>
 <icfc:resultsHandlerConfiguration>
 <icfc:enableNormalizingResultsHandler>
false</icfc:enableNormalizingResultsHandler>
 <icfc:enableFilteredResultsHandler>
false</icfc:enableFilteredResultsHandler>
 <icfc:enableAttributesToGetSearchResultsHandler>
false</icfc:enableAttributesToGetSearchResultsHandler>
 </icfc:resultsHandlerConfiguration>
 </connectorConfiguration>
 ...

This is all very similar to the configuration of the other resource that were already presented in this
book. It should be quite self-explanatory – except perhaps for the configuration of result handlers.
Result handlers are little helpers that come with the ConnId connector framework. The purpose of
the result handlers is to assist simpler connectors in filtering and post-processing search results.
However, LDAP connector is no ordinary simple connector. LDAP connector is mature and full-
featured connector that can do everything without any help from such annoying little creatures as
those result handlers. ConnId result handlers do not add any value here. In fact, they may even be
harmful. LDAP protocol has a lot of peculiarities, such as case-insensitivity that applies to almost all
the aspects of LDAP data – except for some notable exceptions. The connector is aware of those
peculiarities, but the handlers are not. If the handlers are turned on (which is the default) they may
get in the way and ruin the data. Therefore, it is always strongly recommended to explicitly turn off
the handler when a full-featured connector is used.

The XML example above, as all other examples in this book, is simplified and
shortened for clarity. You will not be able to import the example in this form into
midPoint. For a full importable examples see the files that are supposed to
accompany this book. Please see Additional Information chapter.

The basic resource configuration above is sufficient to connect to the resource. Therefore, the test
connection operation on resource details page should be successful. This configuration may also be
used to list the accounts. However, LDAP servers support many object classes and midPoint does
not yet know which object class represents account. Therefore, we need to add schema handling
section to our resource:

163

resource-openldap.xml

 ...
 <schemaHandling>
 <objectType>
 <kind>account</kind>
 <displayName>Normal Account</displayName>
 <default>true</default>
 <objectClass>ri:inetOrgPerson</objectClass>
 <attribute>
 <ref>ri:dn</ref>
 <displayName>Distinguished Name</displayName>
 <limitations>
 <minOccurs>0</minOccurs>
 </limitations>
 <outbound>
 <source>
 <path>$focus/name</path>
 </source>
 <expression>
 <script>
 <code>
 basic.composeDnWithSuffix('uid', name,
 'ou=people,dc=example,dc=com')
 </code>
 </script>
 </expression>
 </outbound>
 </attribute>
 ...

There should be outbound mapping for each mandatory LDAP attribute for the inetOrgPerson object
class. Such mappings are very typical for a target resource definition.

Once we set up the schema handling, we should be able to conveniently list LDAP accounts in
midPoint. However, we need to switch to the Resource view instead of Repository view. The
accounts are stored in the LDAP server and midPoint can access them. Therefore, the accounts are
listed in the Resource view. HOwever, midPoint have not processed the accounts yet. Therefore,
there are no account shadows in midPoint repository yet. That is the reason that the Repository
view is empty. Now we are going to do something about it.

We are going to import (or reconcile) the resource accounts. However, if we try to do this now,
nothing would really happen. The accounts are not linked to users, therefore midPoint will not
synchronize the attributes. MidPoint was not told to do anything with the accounts. Therefore,
midPoint will do nothing. That is one of midPoint principles: midPoint will not change the accounts
in any way unless it is explicitly told to do so. We would rather do nothing than to destroy the data.

Before we can import the accounts, we need to set up the synchronization configuration for this
resource. There are accounts in the LDAP server that should belong to users that already exist in
midPoint. We want to link them. However, we do not want to do the linking manually. We would

164

rather set up a correlation expression that does this automatically:

resource-openldap.xml

 ...
 <synchronization>
 <objectSynchronization>
 <objectClass>ri:inetOrgPerson</objectClass>
 <kind>account</kind>
 <intent>default</intent>
 <focusType>UserType</focusType>
 <enabled>true</enabled>
 <correlation>
 <q:equal>
 <q:path>employeeNumber</q:path>
 <expression>
 <path>$projection/attributes/employeeNumber</path>
 </expression>
 </q:equal>
 </correlation>
 ...

This correlation expression is going to match account attribute employeeNumber and user property
that is also named employeeNumber. Simply speaking: if account and user employee numbers match
then we assume that they should be linked. In that case midPoint decides that synchronization
situation is unlinked (they should be linked, but they are not yet linked). We want midPoint to link
the account in this case, therefore we define appropriate reaction:

resource-openldap.xml

 ...
 <reaction>
 <situation>unlinked</situation>
 <synchronize>true</synchronize>
 <action>

<handlerUri>http://midpoint.evolveum.com/xml/ns/public/model/action-
3#link</handlerUri>
 </action>
 </reaction>
 ...

This will take care of accounts for whose we can find an owner. But what to do with other
accounts? We will do nothing about them just yet. Therefore, we do not need to define any other
reactions. This may be somehow surprising. We do not want illegal accounts in our LDAP server, do
we? Then perhaps we would like to see a reaction to delete unmatched accounts, right? That would
be a good approach, but it is just too early for this. We do not want to delete unmatched account
just now. There may be accounts that are perfectly legal, just the employeeNumber attribute is
missing or mistyped. Data errors like those happen all the time, especially when the data were

165

managed manually. We do not want to over-react and start deleting accounts too early. Therefore,
we will go just with this one synchronization reaction for now.

Now it is the right time to start import or reconciliation task. After the task is finished the situation
may look like this:

For the curious readers, the LDAP server has data equivalent to the content of
ldap-real.ldif file located in book samples.

It looks like we had quite a good data in the LDAP server. Most of the accounts were successfully
correlated and linked to their owners. Yet, there are few accounts that were not correlated. Those
accounts ended up in unmatched situation. You can resolve this situation by manually linking the
unmatched accounts to their users. Simply click on the small triangle button next to the unmatched
entry and select Change owner from the context menu. Then select the right user (Isabella Irvine)
in the dialog that appears. After that the account is linked to the user. Repeat this process to link all
unmatched accounts.

There is one interesting thing in the screenshot above. Have a look at the LDAP account identified
by uid=carol. While most other accounts have their uid value taken from the surname of the user,
this account is an exception. Even though the uid value is obviously wrong, midPoint have linked
the account correctly to the user (Carol Cooper). The reason is that we have set up midPoint to use
employeeNumber for correlation. Even accounts whose usernames violate the convention can be
automatically linked to their owners - as long as there is any reliable piece of information that can
be used for correlation.

When all the accounts are linked to their owners, it is the right time to complete the
synchronization policy. Now we can tell midPoint to delete any unmatched account. That is the case

166

when an illegal account is created in LDAP server. We can also tell midPoint to unlink any account
that was deleted in LDAP server:

resource-openldap.xml

 ...
 <reaction>
 <situation>unmatched</situation>
 <action>

<handlerUri>http://midpoint.evolveum.com/xml/ns/public/model/action-
3#deleteShadow</handlerUri>
 </action>
 </reaction>
 <reaction>
 <situation>deleted</situation>
 <action>

<handlerUri>http://midpoint.evolveum.com/xml/ns/public/model/action-
3#unlink</handlerUri>
 </action>
 </reaction>
 ...

There may be some accounts in the LDAP server that have wrong attribute values. By "wrong" we
mean that the attributes have different values than the values that are computed by the outbound
mappings. However, midPoint will not correct those values just yet. Remember the midPoint
principle that it will not change the account unless we have explicitly told to do so? Those accounts
are in the linked situation, and we have not configured any reaction for this situation. Therefore
midPoint did nothing. Now we need to tell midPoint to synchronize the values:

resource-openldap.xml

 ...
 <reaction>
 <situation>linked</situation>
 <synchronize>true</synchronize>
 </reaction>
 ...

A clever readers is now surely wondering whether we have forgotten something. We have, indeed.
Attribute values are synchronized by running reconciliation process. However, our outbound
mappings will not work in reconciliation. They do not have any explicit definition of strength,
therefore midPoint assumes normal strength. Those mappings are supposed to implement the last
change wins strategy. Therefore, reconciliation cannot overwrite the account data, as midPoint does
not know whether it was account attribute or user property that was the last to change. If midPoint
is not sure about something, then it will assume a conservative position and do nothing. We do not
want to destroy the data. Therefore, what we need to do now is to let midPoint know that we really
mean it, that the mappings are really strong:

167

resource-openldap.xml

 ...
 <attribute>
 <ref>ri:cn</ref>
 <displayName>Common Name</displayName>
 <limitations>
 <minOccurs>0</minOccurs>
 <maxOccurs>1</maxOccurs>
 </limitations>
 <outbound>
 <strength>strong</strength>
 <source>
 <path>$focus/fullName</path>
 </source>
 </outbound>
 </attribute>
 ...

Clever reader is uneasy once again. What is this limitations thing here? Simply speaking, the
limitations specify that the attribute is optional (minOccurs=0) and that it is single-valued
(maxOccurs=1). But, isn’t midPoint supposed to be completely schema-aware and figure that all by
itself? Yes, it is. In fact, that is the reason why we need to override the information from the schema
using this limitations element here. The cn attribute is specified in LDAP schema as a mandatory
attribute. However, we have just specified outbound mapping for that attribute. Even if midPoint
user does not provide any value for attribute cn, we can still determine that value by using the
expression. Therefore, even though LDAP schema specifies attribute cn as mandatory, we want to
present that attribute as optional in midPoint user interface. Hence the minOccurs limitation. The
maxOccurs limitation is immediately obvious to anyone who is intimately familiar with LDAP
peculiarities. In the LDAP world, almost everything is multi-valued by default. Even commonly used
attributes for account identifiers and names are multi-valued. Nobody is really using them as multi-
valued attributes, because vast majority of applications will probably explode if they ever
encounter two values in the cn attribute. Yet, those attributes are formally defined as multi-valued
in LDAP schema, and that is what midPoint gets from LDAP connector. The maxOccurs limitation is
overriding the schema, and forcing midPoint to handle this attribute as if it was single-value
attribute.

That is all. Now you can schedule reconciliation tasks to keep an eye on the LDAP server. The task
will correct any attribute values that step out of line and delete any illegal accounts. This is how
synchronization tasks can be useful, even in case of pure target resources.

However, there is one last word of warning. Those accounts were synchronized and linked to
existing midPoint users. The accounts were not created by midPoint. Therefore, there is nothing in
midPoint that would say that those accounts should exist. In midPoint parlance, there are no
assignments for those accounts. MidPoint makes clear distinction between policy and reality.
Therefore, midPoint is aware that those accounts exist, but there is no policy statement that would
justify their existence. By default, midPoint does nothing, and it will let the accounts live. The
accounts will be created or deleted only if there is an explicit change in the assignments. There is
no such change now, therefore the accounts are not deleted. However, this is quite a fragile

168

situation. Accounts that are linked but not assigned can easily get deleted if midPoint administrator
is not careful. Of course, there are methods to handle such situations. One way would be to create
the assignments together with the links. Those that are interested in this method should look up
keyword "legalize" in midPoint docs. However, there are much better methods how to handle this.
Perhaps the best approach would be to utilize the roles (RBAC). This is the topic of the Role-Based
Access Control chapter later. Yet, there are still more things to learn about synchronization until we
get there.

Peculiarities of Reconciliation
Reconciliation is a process of comparing current state of an account (reality) to a desired state of the
account (policy). Reconciliation does not only compare the accounts, it is actively fixing the
inconsistencies. Reconciliation can correct wrong data on resources. Yet, it also works the other
way. It can correct the data in midPoint. Therefore, reconciliation is one of the most useful tools in
the identity management toolbox.

Reconciliation can be used in a variety of ways. Reconciliation can be initiated for one specific user
by using midPoint user interface. In that case, midPoint compares the values of all user’s accounts
to the values that were computed using the mappings. If there is difference, midPoint corrects
account values. This approach is perfect for testing reconciliation setting using just a single user.
This feature is also useful for fixing values of one specific user.

Reconciliation of a specific user may be useful, but it is an ad-hoc approach. We usually favor
systemic approaches in identity management. Therefore, reconciliation is usually used in a form of
a reconciliation task. Reconciliation task lists all the accounts on the resource, and then it reconciles
each account, one by one. This is a way how to keep all resource accounts continuously
synchronized.

There is a couple of things about reconciliation that can be somehow surprising. Firstly,
reconciliation of an account may cause modification of a user. This happens if there are inbound
mappings for that account. This is perhaps quite expected. However, the operation does not stop
there. If a user is changed, then such change may propagate to other accounts on other resources,
usually by the means of outbound mappings. MidPoint does not like procrastination, and therefore
it will try to apply all the changes immediately. It means that reconciliation of one account may
cause changes to other accounts. Which makes a lot of sense, yet it may be quite surprising.
Secondly, reconciliation will skip any normal-strength mappings. We have already explained the
reasons for that, but this is something that can surprise even an experienced midPoint engineer
from time to time. If we are sure that we want the mapped value to be present in the account all the
time then strong mappings are the way to go.

A curious reader that has already explored midPoint user interface has surely noticed recompute
function. To the untrained eye, recompute does looks almost exactly the same as reconciliation.
However, there are subtle differences. Firstly, recompute will not force the fetch of account data.
When recomputing, the account attributes will be fetched from the resource, unless midPoint
inevitably needs them for the computation. This usually happens if weak or strong mappings are
used. However, if there are normal mappings only, then recompute may skip reading account data.
MidPoint will compare and correct account attribute values only for those accounts that are fetched
from resource during this process. That is how recompute works. The purpose of recompute is to

169

correct data of midPoint users, which means evaluation of object templates and other internal
policies. Correcting account data is more or less just a side effect of recompute.

On the other hand, reconciliation always tries to read all the accounts regardless whether they are
needed for computation or not. Therefore, all the attributes on all the accounts are fixed. That is the
purpose of reconciliation: correct the account data.

There is yet another difference between recompute and reconcile tasks. The purpose of recompute
task is to correct user data. Therefore, recompute task will iterate over midPoint users. Recompute
task will not detect new accounts on the resource, and it may even overlook if an account is deleted.
However, reconciliation task is different. In fact reconciliation task has several stages. Main
reconciliation stage lists all resource accounts. It determines owner of each account, compare the
attributes and corrects them. As this process iterates over real accounts on a resource, it can easily
detect new accounts. When the main stage is completed, then the next phase looks at account
shadows stored in midPoint. The task looks for shadows that have not been processed in the main
phase. Those are accounts that used to be on the resource some time ago, but have disappeared
since. That is how reconciliation detects deleted accounts.

Rule of the thumb for the reconciliation versus recompute dilemma is this:

• Use recompute if you want to update users. For example, use recompute after change of object
templates or role definitions to apply the changes to all users. Recompute is usually initiated
manually, on as needed basis.

• Use reconciliation to keep accounts synchronized. For example, run periodic reconciliation task
to make sure accounts in your LDAP servers are up-to-date.

Deltas
Reconciliation is really useful mechanism. It is reliable and thorough, but it is also quite slow, and it
consumes o lot of computational and network resources. There are good reasons why
reconciliation is such a heavyweight beast. Reconciliation works with absolute state of accounts. It
means that reconciliation is reading all the accounts with all the values of all the attributes. Then it
recomputes everything. Even the attributes and values that were not changed are recomputed. This
is a very traditional and reliable way of computation, and that is also the way how the most of older
identity management systems work.

Yet, there is also a better way. If we know that just one attribute was changed, we can recompute
that single attribute only. We do not need to care about other attributes. Moreover, if we know that
attribute foo has changed in such a way, that there is a new value bar, then it gets even better. We
just need to recompute the value bar, and we need not care about any other values. This is what we
like to call a relative change. We just care about the values that were changed. That is how midPoint
works internally. We could say that MidPoint is relativistic system.

This is where delta comes in. Delta is a data structure that describes the change of a single midPoint
object. Add delta describes a new midPoint object that is about to be created. Modify delta describes
existing midPoint object where some properties have changed. Delete delta describes an object that
is going to be deleted.

This is a very powerful mechanism. Just remember that everything in midPoint can be represented

170

as an object: user, account, resource, role, security policy … everything. Therefore, delta can
represent any change in midPoint. It may be a change of user password, deletion of an account,
change of connector configuration or introduction of a new password policy. If all the changes can
be represented in a uniform way, then they can also be handled in a uniform way. Therefore, it is
easy for midPoint to record all the changes in an audit trail – including configuration changes. It is
easy to route any change through an approval process. And so on. MidPoint can create a relatively
simple mechanisms to handle changes, and then those mechanisms can be applied to any change of
(almost) any object.

Let’s have a closer look at an anatomy of a delta. There are three types of delta: add, modify and
delete. Add delta is quite simple. It contains a new object to be created.

Delete delta is even simpler. It contains just object identifier (OID) of an object to be deleted.

Last one is modify delta. This delta contains a description of modified properties of an existing
object. As the object can change in a variety of ways, modify delta is the most complex of the three.
Modify delta contains a list of item deltas. Each item delta describes how a particular part of an
object changes. For example following delta describes that a new value pirate is added to a user
property employeeType.

171

The item delta may have three modification types: add, delete and replace. Add modification means
that new value or values are added to an item. Delete modification means that value or values are
removed from an item.

In both add and delete cases, the values that are not mentioned in the delta are not affected. They
remain unchanged as they are. However, replace modification is different. This means that all
existing values of the item are going to be discarded, and they are replaced with the value or values
from the delta.

The deltas are designed to work with both single-valued and multi-valued items. In fact, add
modification and delete modification deltas are specifically designed with multi-value items in mind.
Those deltas can work efficiently even in cases that there is a multi-valued attribute that has a very
large number of values. There is a good reason for this. Multi-valued properties are quite common
in the identity management field. Just think about how roles, groups, privileges and access control
lists are usually implemented. Everybody that ever managed a large group in LDAP server will
surely remember that experience in vivid colors. Fortunately, midPoint is designed to handle
situations like these.

Everything in midPoint is designed to work with deltas: user interface, mappings, authorizations,
auditing … all the way down to the low-level data storage components. Mappings are designed in a
relativistic ways. That is one of the reasons why we need to explicitly specify sources of the
mapping. Mapping source definitions are matched with items in the delta to control execution of
the mapping. Deltas permeate entire midPoint computation. Deltas are input to the mappings, and
mapping produce other deltas as output. Therefore, we can have a complete chain: deltas that are
result of inbound mappings is applied to the user object, but those deltas are also input to outbound
mappings. Everything is relativistic in midPoint.

This might seem to be a bit over-complicated at the beginning. But do not worry. You will get used
to it. Clearly, this approach has major advantages.

However, a clever reader does not seem to be impressed. How can this relativistic approach
conserve any significant portion of computational resources? We usually fetch the entire account
from the resource anyway. Therefore, there is no harm to recompute all the attributes. The

172

computation itself is fast, it is the fetch operation that is slow. Isn’t it? The clever reader is, of
course, right. Or rather partially right at the very least. Most resources indeed fetch all the account
attributes in a single efficient operation. For those cases, there is no big increase in efficiency if we
go with the relativistic methods. However, there are exceptions. For example, some resources will
not return all the values of big attributes, e.g. all the members of a large group. Additional requests
are needed to fetch all the values – and there may be a lot of requests if the group is really large.
Relativistic approach has significant benefit in those cases. The benefits will be even more obvious
when we get to the live synchronization in the next section. Yet, performance is not the primary
motivation for the relativistic approach. There is one extremely strong reason to go relativistic:
data consistency. Consistency is something that brings ugly nightmares to many engineers that try
to design distributed system. Identity management solution is in fact a distributed system,
managing data in many independent applications and databases. It is also a very loosely-coupled
distributed system. There is no support for locking or transactions in the connector. Even if there
was some support, the vast majority of resource cannot provide those consistency mechanisms on
their identity management APIs. This means that midPoint cannot rely on traditional data
consistency mechanisms. That is why relativistic approach is so useful. Relativistic computation has
a very high probability of achieving correct result even without locking or transactions. This is
more than acceptable for typical identity management deployments. For those rare cases where
relativistic computation can fluctuate there is always reconciliation as a last resort. Yet, thanks to
the relativistic nature of midPoint, the need for reconciliation is significantly reduced.

That was a lot of long words, but clever reader seems to be satisfied now. At least for a while. For
the readers that are still scratching their heads there is quite a simple summary: relativistic
approach of midPoint can do miracles. For example, midPoint resource can be both sources and
targets, even a single attribute can be both source and target of information. It is the relativistic
approach that allows features like this. The principle of relativity is relatively simple. Yet, its effect
in midPoint is nothing short of being revolutionary.

Live Synchronization
MidPoint has a range of synchronization mechanisms. Slow, brutal but reliable reconciliation is at
one end. Live synchronization is on the other. Live synchronization is a lightweight mechanism that
can provide almost-real-time synchronization capabilities. Live synchronization is specifically
looking for recent changes on a resource. When such changes are detected, live synchronization
mechanisms process those changes immediately. The synchronization delay is usually in order of
seconds or minutes if live synchronization is used properly.

Unlike reconciliation, live synchronization is not triggered manually. That would make very little
sense. Live synchronization works in a long-running task, repeatedly looking for fresh changes in
short time intervals. If a resource is configured for synchronization, then all that is needed to run
live synchronization is to set up a live synchronization task. MidPoint user interface can be used to
do that easily.

An example of live synchronization task was provided in the HR feed section above. Live
synchronization task wakes up at regular intervals. Each time the task waves up, it invokes the
connector. Connectors capable of live synchronization have special operation that is used to get
fresh changes from the resource. The connector can support any reasonable change detection
mechanism – in theory. Yet, two mechanisms are commonly used in practice:

173

• Timestamp-based synchronization: Resource keeps track of last modification timestamp for
each account. The connector looks for all accounts that have been modified since last scan. This
is very simple and relatively efficient method. But it has one major limitation: it cannot detect
deleted accounts. If an account is deleted then there is no timestamp for that account and
therefore the connector will not find it in the live synchronization scan.

• Changelog-based synchronization: Resource keeps a "log" of recent changes. The connector is
looking at the log, and it is processing all the changes that were added to the log since the last
scan. This is a very efficient and flexible method. Yet, it is not simple. Not many systems support
it, and there are often hidden complexities.

All live synchronization methods need to keep the track of what changes are "recent", i.e. which
changes were already processed by midPoint and which were not processed yet. There is usually
some value that needs to be remembered by midPoint: timestamp of last scan, last sequence
number in the change log, serial number of last processed change and so on. Each connector has a
different value with a connector-specific meaning. MidPoint refers to those values as "tokens". The
most recent token is stored in the live synchronization task. That is how midPoint keeps track of
processed changes. There are (hopefuly quite rare) cases when resource and midPoint token get out
of alignment. This may happen in cases such as the resource database is restored from a backup, if
network time gets out of synchronization and so on. If that happen, then deleting the token from
the live synchronization task is usually all it takes to get the synchronization running again.

Live synchronization is fast and very efficient. However, it is not entirely reliable. MidPoint may
miss some changes. This is quite a rare situation, but it may happen. Reconciliation will surely
remedy the situation in such a case. Just remember, all the synchronization mechanism share the
same configuration. It is perfectly acceptable to run live synchronization and reconciliation on the
same resource at the same time. But of course, it would be a good idea to run reconciliation less
frequently than live synchronization.

Conclusion
Synchronization is one of the most important mechanisms in the entire identity management field.
Primary purpose of synchronization is to get the data into midPoint. That is good approach when
an identity management deployment begins: feed your midPoint with data first. Get the data from
the HR system. Correlate the data with Active Directory. Connect all the major resources to
midPoint and correlate the data again. MidPoint does not need to make any changes at this stage. In
fact, it is perfectly good approach to make all the resource read-only at this stage. The point is to let
midPoint see the data. Why do we need that?

• We will see what is the real quality of the data. Most system owners have at least some idea
what data sets are there. However, it is almost impossible to estimate data quality until the data
are processed and verified. That is exactly what midPoint can do at this stage. This is essential
information to plan data cleanup and sanitation.

• We will learn how many accounts and account types are there. It is perhaps quite obvious that
there are employee accounts. Are there also accounts for contractors, suppliers, support
engineers? Are those accounts active? What is the naming convention? Do system
administrators use employee accounts for administration, or are they using dedicated high-
privilege accounts? This information is crucial to set up provisioning policies.

174

• We will learn distribution of accounts and their entitlements. Do all employees have accounts in
Active Directory? Are there any large user groups? How does organizational structure influence
the accounts? This information is very useful to design a role-based access control structures
and other policies.

• We will surely learn some security vulnerabilities. Are there orphaned accounts that should
have been deleted long time ago? Are there testing accounts that were left unattended after the
last night-time emergency? Indeed, there is no security without identity management.

This is a good start. But even if this is all that you do in the first step of the deployment it is still a
major benefit. You will get better visibility, and with that comes better security. You have the data to
analyze your environment, and plan next step of the identity management deployment. You won’t
be blind any longer. That is extremely important. It is indeed a capital mistake to theorize before
one has data.

175

Chapter 6. Schema
If you have built castles in the air, your work need not be lost, that is where
they should be. Now put the foundations under them.

— Henry David Thoreau

So far we have been discussing the things that influence how midPoint interacts with the outside.
Resource definitions, outbound and inbound mappings, even the roles - the primary purpose of
those things is to control how data get into midPoint and out of midPoint. But now it is time to
discuss how midPoint works internally.

Early IDM systems were little more than smart data transformers. They took data from data
sources, modified them in some way, maybe applied a model such as RBAC and then pushed the
data out. There was very little crucial information that was stored inside the IDM system itself. But
that was a long time ago and the world is a different place now. The focus of IDM field has shifted
towards identity governance. It is not enough to transform the data. Policies need to be applied.
Compliance needs to be evaluated. There are processes to follow, paperwork to do, reports to
compile, notifications, reviews and daily status reports. It is perhaps no big surprise that there is a
good deal of management in Identity Management.

Many of the chapters that follow will deal with these management concepts. But we have to start
from the basics. And the goal of this chapter is an explanation of the very foundation of midPoint:
schema. The goal of midPoint is not just a mere data transformation. The goal is to unify the data.
And midPoint schema plays a crucial part in that ambition.

MidPoint Schema
MidPoint is designed as a schema-aware system. For every bit of data that passes through midPoint
we have a complete definition. We know whether this is string, integer or timestamp. We know
whether it is single-valued or multi-valued. We know whether it is optional or mandatory. We know
whether this is a sensitive piece of data that requires extra protection. We know whether it is part
of technical meta-data that we usually do not want to show by default. And often we also know
what label we should use when we are presenting the data and how that label translates to other
languages. We know quite a lot about the data that we work with. All the objects that midPoint
works with are completely defined by the schema. There is a schema for user, role, org, resource,
system configuration and everything else.

Such awareness of the schema brings significant advantages to midPoint. The most obvious
advantage is in data presentation. We know that we need to render a calendar selector because that
particular data property is timestamp. We know that we need to render a text field with a plus
button to add values because that particular property is a multi-valued string. And we know that
some fields should be disabled because those properties are read-only. This behavior is not hard-
coded. Vast majority of midPoint user interface is rendered by interpreting midPoint schema.

This approach is absolutely crucial for any serious IDM system. One of the reasons is that the IDM
system works with data that are retrieved from other systems (resources). It is just not possible to
hard-code midPoint user interface for all the various attributes that all the possible resources could

176

have. A different strategy is needed here, a strategy that is much more dynamic.

When midPoint connects to a new resource for the first time it attempts to retrieve resource
schema. The schema specifies what object classes the resource supports, which attributes the object
classes have, what types are those and so on. MidPoint transforms this schema to its own native
format and stores that in the resource definition. This means that midPoint has the schema
available anytime it is needed for dynamic interpretation. That schema is used to display resource
data in the most natural and user-friendly way. It is also used by automatic data type conversions,
which makes mapping configuration easier.

Data Unification
MidPoint schema is not just a nice way how to create user, role or organizational structure. It has a
much deeper meaning. The primary purpose of a schema is integration, data translation and
unification. A clever reader would certainly remember that we have already talked about star
topology or hub-and-spoke integration pattern. MidPoint is like a hub of the wheel and all the
resources connect to midPoint as spokes. MidPoint is actively discouraging direct resource-to-
resource communication. Everything in midPoint is built for resource-to-midPoint and midPoint-to-
resource communication. MidPoint is always the center – and for a good reason. All resource data
need to be translated to and from a midPoint “data language”. Thus, midPoint creates a common
language that everybody can understand. And this is exactly the purpose of midPoint schema. The
schema of user, role, org and service is designed to contain properties that are often used in
identity-related integration scenarios. Therefore, an engineer who is designing a mapping is quite
likely to find a suitable property in midPoint schema that is prepared to be used.

MidPoint schema forms a lingua franca, a common language that can be translating to various data
dialects used by the resources. But it also provides a basic framework that can be reused for many
midPoint deployments. Therefore, an engineer starting a new deployment does not need to start on
a completely green field. The basic schema will always be there to provide a starting point.

Ever wondered why midPoint is called midPoint? Clever reader would have
figured that out already.

Basic User Schema
When it comes to identity management field, there is one concept that is at the center of
everything: a concept of user. MidPoint is no exception. User is undoubtedly the most important
object in the entire midPoint schema. Therefore it is worth to have a closer look at how this object
looks like. This is going to be a really educative lesson, as it will explain several fundamental
principles of midPoint.

User is represented by schema datatype identified as UserType. Adding the Type suffix to data types
is a common convention in midPoint. There is UserType, RoleType, OrgType, ResourceType and so on.
This convention is partially historic, partially given by XML Schema conventions, partially a
convenience to developers. Regardless of the origins, this convention is used for all the data types
in midPoint schemas. You will get used to it eventually.

UserType is what we call an object definition in midPoint parlance. This means that UserType data

177

structure specifies a complete midPoint object with all the things that any self-respecting object
needs. There is object identifier (OID), name that can be presented in different forms and
languages, free-form description and so on. All midPoint objects have those things.

The UserType data structure has many additional properties, containers and references. Property is a
primitive data item such as string, integer or a timestamp. Container is a complex data structure
that contains a bunch of properties or other containers. Reference is a pointer to another midPoint
object.

Properties are primitive. However, there may be properties that have internal
structure, even quite a complex internal structure. This is sometimes given by
historic reasons. But there are also properties that need to be complex, e.g.
properties that require localizable presentation or properties that provide
protection of data. Yes, this may be confusing. And even a clever reader is officially
puzzled now. However, this distinction is not a big issue for now.

Definition of UserType is summarized in the following table:

Name Type Description

name property Human-readable, mutable
name of the object. It is
typically a username or some
kind of application-level
identifier. The value must be
unique among all the users.
Example: jrandom

description property Free-form textual description of
the object. This is meant to be
displayed in the user interface.
Example: Random account for
testing.

extension container A container for custom schema
extensions. We will discuss that
later.

metadata container Meta-data about object
creation, modification, etc.

lifecycleState property Lifecycle state of the object.
This property defines whether
the object represents a draft,
proposed definition, whether it
is active, deprecated, and so on.
Example: active

178

Name Type Description

assignment container Set of object’s assignments.
Assignments define the
privileges and "features" that
this object should have, that this
object is entitled to. Typical
assignment will point to a role
or define a construction of an
account.
Assignments represent what the
object should have. The
assignments represent a policy,
a desired state of things.

linkRef reference Set of shadows (projections)
linked to this focal object. E.g. a
set of accounts linked to a user.
This is the set of shadows that
belongs to the focal object in a
sense that these shadows
represents the focal object on
the resource. E.g. The set of
accounts that represent the
same midPoint user (the same
physical person, they are
"analogous").
Links define what the object
has. The links reflect real state
of things.

activation container Type that defines activation
properties. Determines whether
something is active (and
working) or inactive (e.g.
disabled).

jpegPhoto property Photo of a user (in a binary
form).

costCenter property The name, identifier or code of
the cost center to which the
user belongs.

locality property Primary locality of the user, the
place where the user usually
works, the country, city or
building that he belongs to. The
specific meaning and form of
this property is deployment-
specific.

179

Name Type Description

preferredLanguage property Indicates user’s preferred
language, usually for the
purpose of localizing user
interfaces. The format is IETF
language tag defined in BCP 47,
where underscore is used as a
subtag separator. This is usually
a ISO 639-1 two-letter language
code optionally followed by ISO
3166-1 two-letter country code
separated by underscore.
Example: en_US

locale property Defines user’s preference in
displaying currency, dates and
other items related to location
and culture. It has the same
format as preferredLanguage.
Example: en_US

timezone property User’s preferred timezone. It is
specified in the "tz database"
(a.k.a "Olson") format.
Example: Europe/Bratislava

emailAddress property E-Mail address of the user, org.
unit, etc. This is the address
supposed to be used for
communication with the user.
Example: random@example.com

telephoneNumber property Primary telephone number of
the user.
Example: +421 123 456 789

fullName property Full name of the user with all
the decorations, middle name
initials, honorific title and any
other structure that is usual in
the cultural environment that
the system operates in. This
element is intended to be
displayed to a common user of
the system. Example: James W.
Random, PhD.

180

Name Type Description

givenName property Given name of the user. It is
usually the first name of the
user, but the order of names
may differ in various cultural
environments. This element
will always contain the name
that was given to the user at
birth or was chosen by the user.
Example: James

familyName property Family name of the user. It is
usually the last name of the
user, but the order of names
may differ in various cultural
environments. This element
will always contain the name
that was inherited from the
family or was assigned to a user
by some other means. Example:
Random

additionalName property Middle name, patronymic,
matronymic or any other name
of a person. It is usually the
middle component of the name,
however that may be culture-
dependent. Example: Walker

nickName property Familiar or otherwise informal
way to address a person.
Example: Randy

honorificPrefix property Honorific titles that go before
the name. Example: Sir

honorificSuffix property Honorific titles that go after the
name. Example: PhD.

title property User’s title defining a work
position or a primary role in the
organization. Example: CEO

employeeNumber property Unique, business-oriented
identifier of the employee.
Typically used as a correlation
identifier and for auditing
purposes. Should be immutable,
but the specific properties and
usage are deployment-specific.

181

Name Type Description

organization property Name or (preferably)
immutable identifier of
organization that the user
belongs to. The format is
deployment-specific. This
property together with
organizationalUnit may be used
to provide easy-to-use data
about organizational
membership of the user.

organizationalUnit property Name or (preferably)
immutable identifier of
organizational unit that the
user belongs to. The format is
deployment-specific. This
property together with
organization may be used to
provide easy-to-use data about
organizational membership of
the user.

credentials container The set of user’s credentials
(such as passwords).

This is a basic outline of the schema for UserType. This description is slightly simplified. Not all the
items that are defined for UserType are shown in the table above. Deprecated items are not shown at
all. Only some operational properties are shown. Some items are simplified or entirely omitted for
clarity.

Following example illustrates the use of midPoint UserType schema:

182

<user>
 <name>alice</name>
 <activation>
 <administrativeStatus>enabled</administrativeStatus>
 </activation>
 <preferredLanguage>en_US</preferredLanguage>
 <assignment>
 <targetRef oid="aaa6cde4-0471-11e9-9b50-c743da469067" type="RoleType"/>
 </assignment>
 <assignment>
 <targetRef oid="4e73ed62-aef9-11e9-a7a8-57334ef1f991" type="RoleType"/>
 </assignment>
 <emailAddress>alice.anderson@example.com</emailAddress>
 <fullName>Alice Anderson, PhD.</fullName>
 <givenName>Alice</givenName>
 <familyName>Anderson</familyName>
 <honorificSuffix>PhD.</honorificSuffix>
 <title>Business Analyst</title>
 <employeeNumber>001</employeeNumber>
 <organizationalUnit>10010</organizationalUnit>
</user>

Operational, Experimental and Deprecated Items
Most of the items in midPoint schema are quite ordinary and they behave as expected. Such as the
fullName property. The property can be set and changed by using midPoint user interface. But then
there are some extraordinary items. Those are automatically determined and controlled by
midPoint core. Those items are essential for correct operation of midPoint. Therefore they are
called operational items. Operational items are usually not directly displayed in the user interface.
They are either completely hidden, displayed indirectly or displayed only when user chooses to
display them.

MidPoint schema has grown and evolved over time. And it is still evolving. Therefore, it is quite
expected that the schema will slightly change over time. However, we do not affect midPoint
deployments by incompatible schema changes. Therefore items are usually not removed from
midPoint schema without a warning. An item that we do not want is marked as deprecated first. At
that point such item is still working as before. However, it is not displayed in the user interface to
discourage use of that item. Deprecated items are removed in one of the subsequent midPoint
releases. This gives enough time for midPoint users to adapt to schema changes.

There is also another kind of schema evolution. Development of most midPoint features is quick
and straightforward. But then there are features that are quite complex or features that involve
some degree of exploration to implement. Those features cannot be implemented in a single
midPoint release. There are also features that are provided to the midPoint community as a
"preview" to gather feedback for further development. All such features are marked as
experimental. Those features are not officially supported, but you are free to use them at your own
risk. Most new features require extensions of midPoint schema. This is also true for those
experimental features. But when going experimental, there is a fair chance that something will

183

change in the future. Therefore, we are explicitly marking parts of the schema as experimental. This
is a warning that those parts are likely to change. We are not promising any kind of compatibility
for experimental parts of midPoint schema. They may change any time, they may even completely
disappear. And there will be no deprecation or any other warning. Simply speaking: if you are
dealing with experimental features, you are completely on your own. Do not come crying when
those things stop working. You have been warned.

Activation
Time is cruel and everything that we do is in some way temporary. Except perhaps for stupidity,
which seems to be utterly endless. But all other things have a beginning and an end. Employees
have hiring date, contracts have end dates, users can be disabled, roles may get replaced and so on.
We use the term activation to encompass all those things that deal with the questions of digital life
and death of the objects.

The activation in itself is multi-dimensional and quite complex. It is composed of several properties
that may change in somehow independent and somehow inter-dependent way. Following list
provides a quick summary of activation properties:

• Activation status defines administrative state of the object, often manually set by system
administrator.

• Validity properties specify when the object should be active. There is activation date and
deactivation date.

• Effective status is a computed operational property that shows the current effective status of
the user. It is computed from other activation properties.

• Lockout status is used for temporary inactivation of user, e.g. in case of numerous failed
authentication attempts.

• Additional operational properties provide (meta) data about the past changes of
administrative status.

The best way to explain how activation works is to describe the meaning and behavior of
individual properties.

Administrative status defines the "administrative state" of the object (user), i.e. the explicit decision
of the administrator. If administrative status is set, this property overrides any other constraints in
the activation type. E.g. if this is set to enabled and the user is not yet valid (according to validity
below), the user should be considered active. If set to disabled the user is considered inactive
regardless of other settings. Therefore this property does not necessarily define an actual state of
the object. It is a kind of "manual override". In fact, the most common setting for this property is to
leave it unset and let other properties determine the state. If this property is not present then the
other constraints in the activation type should be considered (namely validity properties, see
below).

Administrative Status Value Description

no value No explicit override. Other activation properties
determine the resulting status.

184

Administrative Status Value Description

enabled The entity is active. It is enabled and fully
operational.

disabled The entity is inactive. It has been disabled by an
administrative action.

This indicates temporary inactivation and there
is an intent enable the entity later. It is usually
used for an employee on parental leave,
sabbatical, temporarily disable account for
security reasons, etc.

archived The entity is inactive. It has been disabled by an
administrative action.

This indicates permanent inactivation and
there is no intent to enable the entity later.

This state is used to keep the user record or
account around for archival purposes. E.g. some
systems require that the account exists to
maintain referential consistency of historical
data, audit records, etc. It may also be used to
"block" the user or account identifier to avoid
their reuse. It is usually used for retired
employees and similar cases.

If the administrative status is not present and there are no other constraints in the activation type
or if there is no activation type at all, then the object is assumed to be "enabled", i.e. that the user is
active.

Validity refers to state when the object is considered legal or otherwise usable. In midPoint the
validity is currently defined by two dates: the date from which the object is valid (validFrom) and
the date to which an object is valid (validTo). When talking about users these dates usually
represent the date when the contract with the user started (hiring date) and the date when the
contract ends. The user is considered valid (active) between these two dates. The user is considered
inactive before the validFrom date or after the validTo date.

It is perfectly OK to set just one of the dates or no date at all. If any date is not set then it is assumed
to extend to infinity. E.g. if validFrom date is not set the user is considered active from the beginning
of the universe to the moment specified by the validTo date.

The validity is overridden by the administrative status. Therefore, if administrative status is set to
any non-empty value then the validity dates are not considered at all.

Activation is also influenced by object lifecycle. Object lifecycle specifies phases of object’s life, such
as draft, proposed, active and deprecated. There are some lifecycle states in which the object is
considered to be active. And there are other states when the object is considered to be inactive. The

185

later states are important, because object lifecycle can completely override activation. This makes
perfect sense. E.g. when an object is in draft state, it is just being prepared for use. Such object may
have validity dates or administrative status that would normally activate it. But we do not want
draft objects to be active yet. Such object may need a review and approval to transition to active
lifecycle state. Only then it will really become active. This is just a rough overview of the lifecycle
functionality that only scratches the surface. We will deal with object lifecycle details later in this
book.

Activation is quite a complex matter that is spread out in several dimensions. Therefore it may not
be entirely obvious which objects are active and which are not. For that reason midPoint provides
an operational property effectiveStatus which shows the computed "effective state" of the object.
Simply speaking it is a read-only property that tells whether the user should be considered active or
inactive. The effective status is the result of combining several activation settings (administrative
status, validity dates, etc.).

The effective status holds the result of a computation, therefore it is an operational property that is
recomputed every time the status changes. The effective status should not be set directly. The
effective status can be changed only indirectly by changing other activation properties.

Effective Status Value Description

no value Not yet computed. This should not happen under
normal circumstances.

enabled The entity is active.

disabled The entity is inactive (temporary inactivation).

archived The entity is inactive (permanent inactivation).

The effective status is the property that is used by majority of midPoint code when determining
whether a particular object is active or inactive. This property should always have a value in a
normal case. If this property is not present then the computation haven’t taken place yet.

Similarly to effective status, there is yet another operational property validityStatus. This property
reflects the state of validity constraints with respect to current time. The values are before, in and
after, meaning the states before the validity intervals started, inside the validity interval and after
the validity interval ended respectively.

Lockout status defines the state of user or account lock-out. Lock-out means that the account was
temporarily disabled due to failed login attempts or a similar abuse attempt. This mechanism is
usually used to avoid brute-force or dictionary password attacks and the lock will usually expire by
itself in a matter of minutes.

This value is usually set by the resource or by midpoint internal authentication code. This value is
mostly used to read the lockout status of a user or an account. This value is semi-writable. If the
object is locked then it can be used to set it to the unlocked state. But not the other way around. It
cannot be used to lock the account. Locking is always done by the authentication code.

186

Lockout Status Value Description

no value No information (generally means unlocked user
or account)

normal Unlocked and operational user or account.

locked The user or account has been locked. Log-in to
the account is temporarily disabled.

Please note that even if user of account are in the normal (unlocked) state they still be disabled by
administrative status or validity which will make them efficiently inactive.

There is also an informational property lockoutExpirationTimestamp that provides information
about the expiration of the lock. However, not all resources may be able to provide such
information.

There are several operational properties in the activation data structure that provide operational
data about user activation:

Name Type Description

disableReason URI URL that identifies a reason for
disable. This may be indication
that that identity was disabled
explicitly, that the disable status
was computed or other source
of the disabled event.

disableTimestamp dateTime Timestamp of last modification
of the activation status to the
disabled state.

enableTimestamp dateTime Timestamp of last modification
of the activation status to the
enabled state.

archiveTimestamp dateTime Timestamp of last modification
of the activation status to the
archived state.

validityChangeTimestamp dateTime Timestamp of last modification
of the effective validity state, i.e.
last time the validity state was
recomputed with result that
was different than the previous
recomputation. It is used to
avoid repeated validity change
deltas.

Those properties are operational, therefore from the user point of view they are read-only. The
values are automatically computed by midPoint and stored in the database.

187

Let’s see how that works on some examples. The simplest example is perhaps not even worth
mentioning. A user without any activation data structure is considered to be active (enabled). When
such user is stored in midPoint repository, midPoint will automatically compute effective status:

<user>
 <name>alice</name>
 ...
 <activation>
 <effectiveStatus>enabled</effectiveStatus>
 </activation>
</user>

Administrator can disable such user by using administrative status property:

<user>
 <name>alice</name>
 ...
 <activation>
 <administrativeStatus>disabled</administrativeStatus>
 </activation>
</user>

Once again, when such user object is stored after the modification, midPoint computes the value of
effective status:

<user>
 <name>alice</name>
 ...
 <activation>
 <administrativeStatus>disabled</administrativeStatus>
 <effectiveStatus>disabled</effectiveStatus>
 </activation>
</user>

The use of administrative status is usually quite harsh. MidPoint deployments are often using
validity constraints instead. For example, an employee that has employment contract for a year
would look like this:

188

<user>
 <name>bob</name>
 ...
 <activation>
 <validFrom>2019-01-01T00:00:00Z</validFrom>
 <validTo>2019-12-31T23:59:59Z</validTo>
 <validityStatus>in</validityStatus>
 <effectiveStatus>enabled</effectiveStatus>
 </activation>
</user>

Given that this chapter was written in 2019, such user will be active. It will automatically switch to
inactive state after the last day of 2019. However, if there is ever a need to explicitly disable the
user, administrative status can still be used:

<user>
 <name>bob</name>
 ...
 <activation>
 <administrativeStatus>disabled</administrativeStatus>
 <validFrom>2019-01-01T00:00:00Z</validFrom>
 <validTo>2019-12-31T23:59:59Z</validTo>
 <validityStatus>in</validityStatus>
 <effectiveStatus>disabled</effectiveStatus>
 </activation>
</user>

In this case the user is still in its validity interval. Hence the in value of validityStatus. But the
administrative status is explicitly set to disabled. Therefore the resulting effective status is also
disabled.

The concept of activation is not limited to users. Many midPoint objects have activation. Roles can
expire, organizational units can be disabled and so on. Activation is a concept that has a very broad
application in midPoint. Even assignments have activation, which is a crucial element in some
configuration (e.g. multi-affiliation). Assignments are often used to model employment contracts,
student affiliations, service contracts and similar concepts that have time boundaries. This is
usually achieved by a clever use of assignment activation.

Schema Definition
So far we have talked mostly about the use schema (UserType data type). However, the entire
midPoint schema is quite complex. There are many types of objects and there are thousands of data
types overall. It would be almost impossible to manage such a big schema directly in midPoint code.
Therefore the schema is defined in special definition files that are used by midPoint in several
ways. It is used by the user interface to automatically render form fields. It is used by midPoint
expression engine to automatically convert data types. It is even used by midPoint build process
(compilation) to make sure that the schema is properly used in midPoint code. MidPoint is

189

completely schema-aware system from top to bottom.

Schema obviously plays a crucial role in everything that midPoint does. Therefore it may be
interesting to have a look at schema definition. This can be particularly useful for engineers that
are deploying midPoint professionally and that often needs to extend and customize the schema.

MidPoint schema is specified in XML Schema Definition (XSD) format. MidPoint schema is defined
in several parts, but the most important is the "core" schema definition. The schema files reside in
midPoint source code in schema component in the infra subsystem. Therefore schema files can be
found in the resources part under the infra/schema subdirectory of midPoint source code. Schema
files are also included in midPoint distribution package for convenience.

Why XSD? Why did we choose to use the XML Schema Definition format for
midPoint schema? There are historic reasons and there are pragmatic reasons.
Back in early 2010s when midPoint was born XML was perhaps the only sensible
choice to build a complex system. Alternatives such as JSON were young, and their
schema languages ranged from very limited through useless to non-existent.
Therefore, XML and XSD were a natural choice. However, quite early in midPoint
development we have discovered limitations of XSD and especially limitations of
Java libraries that work with XML and XSD. We had to extend XSD with custom
features. Fortunately, XSD allowed that. We also had to rewrite parts of the
XML/XSD-processing code. We have also invented a way how to use XSD to
describe generic data structures (a.k.a. "Prism objects") that can be represented in
XML, JSON and YAML. Therefore, XSD did not really hold us back that much.
Despite all the limitations, XSD worked for us quite well during all those years.
However, we are getting very close to the very limits of what XSD (or any similar
schema language) can do. We are already working on a replacement: Axiom data
modeling language. Axiom is a next-generation language, supporting not just a
data schema, but also meta-data schema. Axiom is still very young, it needs more
work and time to mature. However, it is certainly a future for midPoint.

Every deployment engineer that takes midPoint deployments seriously should be aware of the
schema. Hardcore engineer will surely open the XSD files in their favorite text editor in the
terminal and analyze the definitions line-by-line. Developers could open the XSD files in their IDEs
and have a nice organized look at the schema. But even an ordinary engineer could benefit from
learning the basics of XSD and having a look at a few important data types in midPoint schema.

Schema definition is not just about the properties, containers and data types. Crucial part of the
schema definition is in-line documentation. Most of the data types and items are documented by
using XSD in-line documentation mechanism. Therefore a huge amount of details about midPoint
can be learned by exploring the schema. We have tried to make that process easier by developing
schemadoc mechanism. Schemadoc is a process that takes raw midPoint schema and generates
HTML documentation out of that. This task is part of midPoint build process and generated
documentation is a result of midPoint build. Schemadoc is also available online. Just search for
"schemadoc" in midPoint docs.

Schema is not just a description how midPoint works. MidPoint schema is part of midPoint itself. It
is used when midPoint is compiled. It is parsed when midPoint starts. It is used by midPoint core
and user interface. MidPoint is complex and even the experts can be sometimes wrong. MidPoint

190

documentation is quite extensive, therefore it may be misleading or out of date at places. But not
the schema. Schema is always right. Otherwise midPoint won’t work. Schema is the law.

Schema Extensibility
MidPoint schema is quite rich. Many of the properties that are frequently used in IDM deployments
are already part of midPoint schema. But reality has always a way to bring unexpected things.
Therefore, midPoint deployments won’t get far if midPoint schema cannot be extended.

Vast majority of midPoint schema is available at compile-time. This means that such schema is used
during compilation (build) of midPoint. That "static" part of schema is somehow hardcoded into
midPoint itself and it would be very difficult to change. Therefore we have developed a mechanism
to extend the schema at deployment-time. Small parts of the XSD definition can be provided when
midPoint is deployed. MidPoint will read those definitions when it starts up. The static part of the
schema is extended with those definitions. From that point on the extensions are part of midPoint
schema. The extensions will be used by midPoint user interface, expression-processing code and all
other parts of midPoint.

Our ExAmPLE company was quite happy with the progress of IDM deployment so far. Mappings
were used to synchronize values of user names and all other common attributes. There is plenty of
suitable properties for that in midPoint schema such as givenName and fullName. Even
employeeNumber came very handy. But now they need to customize midPoint schema to better suit
their very specific needs. The company management decided that the people look really cool in
fancy hats. Therefore they will provide a hat for every employee. Which means that the IDM system
needs to track hat size for all users. Hat size is not used in the IDM deployments very often,
therefore it is not a part of standard midPoint schema. But fortunately, it is easy to extend the
schema.

First step to extend midPoint schema is to prepare a small XSD file:

example.xsd

<xsd:schema targetNamespace="http://example.com/xml/ns/midpoint/schema">
 ...
 <xsd:complexType name="UserTypeExtensionType">
 <xsd:annotation>
 <xsd:appinfo>
 <a:extension ref="c:UserType"/>
 </xsd:appinfo>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="hatSize" type="xsd:string"
 minOccurs="0" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:complexType>
</xsd:schema>

This file defines a new data structure UserTypeExtensionType. The name of this data structure does
not really matter. What matters is that it is bound to an extension of UserType in the annotation part

191

of the type definition. When midPoint reads this file, it will extend the definition of UserType with
this data type.

The extension data type specifies just a single property: hatSize. This is an optional single-valued
string property. Every user in midPoint will have this property. User interface will automatically
display text input field for this property.

MidPoint administrator puts this XSD content into example.xsd file. Name of the file can be chosen
arbitrarily as long as it has .xsd file extension. Administrator copies that file to schema subdirectory
of midPoint home directory and restarts midPoint. From that point on the schema extension is
active.

The users can now be extended with custom property:

<user xmlns:exmpl="http://example.com/xml/ns/midpoint/schema">
 <name>alice</name>
 <extension>
 <exmpl:hatSize>M</exmpl:hatSize>
 </extension>
 ...
</user>

There is a couple of important remarks to be made here. Firstly, all the extension properties are
always placed in a special extension container in the objects. Even though the properties are placed
inside a container, the user interface will present them in the same way as the static (native)
midPoint properties.

Secondly, a clever reader surely noticed that we have used XML namespace here. We have omitted
XML namespaces from the majority of other examples as they are not that important when
working with midPoint objects. But schema is different. Namespaces are handled quite a strict way
when working with the schema. Namespaces must be declared and namespace prefixes must be
properly used in all XSD definitions. The most important namespace in this case is the target
namespace of the extended schema. The URI for this namespace should be chosen in such a way
that it is globally unique. The use of your DNS domain is the recommended technique.

Namespaces also should be used when working with extension container in users and other
midPoint objects. This requirement is not that strict as midPoint can usually figure out the
namespace. However, this may be a problem in case that several schema extensions are combined.
Such combinations are possible in midPoint. MidPoint will simply parse all the XSD files in the
schema directory and apply all of them as extensions. The namespace is used to differentiate
between them. Therefore, if there is an expectation that several schema extensions will be used in
the same deployment then the use of namespaces in object extension is more than recommended.

192

Why is there an extension container? Why are the properties not mixed among
other static properties? This is related to the intricacies of XML and XML schema.
Theoretically, XML is completely extensible. However, when XML Schema is
applied to XML, some extensibility scenarios do not work very well. That is also
the case for mixing of static XML elements and dynamic XML elements. We are
hitting what is called "Unique Particle Resolution" limitation of XML schema. This
was further amplified by limitations of Java XML libraries. The easiest and
perhaps even most correct way to resolve this limitation was to create a dedicated
XML element for schema extensions. That is what we have done in early midPoint
versions. The schema processing code in midPoint has significantly improved
since, and now we are almost at the point where we could remove the extension
element. But we are not yet there. Moreover, there is still an aspect of
compatibility to consider. Therefore, the extension element stays for now.
However, we are trying hard to hide its existence from the end user.

MidPoint schema does not just specify the "core" data model. MidPoint schema goes a bit further,
and it can also specify the details of data presentation. This means that the schema can specify a
label that should be used for particular data item, help text and so on. The XML Schema (XSD)
cannot do this. But fortunately, XSD schema can be extended by annotations. Those annotations can
be used to define the presentation properties of the items:

 ...
 <xsd:element name="hatSize" type="xsd:string"
 minOccurs="0" maxOccurs="1">
 <xsd:annotation>
 <xsd:appinfo>
 <a:displayName>Hat size</a:displayName>
 <a:help>
 Your hat size in whatever mysterious units the hatters
 are using for measuring hats.
 </a:help>
 </xsd:appinfo>
 </xsd:annotation>
 </xsd:element>
 ...

This works fine if your system works for just a single localization environment. But this is not
enough in case that you need more than one language. MidPoint was born in Europe and we know
quite well all the pain that comes with multi-language environments. MidPoint is designed to be
localizable. Therefore you can simply use localization keys instead of actual text:

193

 ...
 <xsd:element name="hatSize" type="xsd:string"
 minOccurs="0" maxOccurs="1">
 <xsd:annotation>
 <xsd:appinfo>
 <a:displayName>
UserTypeExtensionType.hatSize.displayName</a:displayName>
 <a:help>UserTypeExtensionType.hatSize.help</a:help>
 </xsd:appinfo>
 </xsd:annotation>
 </xsd:element>
 ...

The actual text to be used for the label can be looked up in the localization catalog. However, using
localization catalogs is a matter of its own. It will be covered by later chapters.

PolyString and Protected String
Majority of midPoint schema is pretty standard stuff. When you walk through the jungle of
midPoint schema definition you can see all the usual wildlife: strings, integers, booleans,
timestamps and binary values. But there are few species that are quite strange. However strange
they might look, they are immensely useful. Their names are PolyString and Protected String.

PolyString is the stranger one of those two. Its name came from polymorphic string, which means a
string that can take a variety of forms. In its simplest form PolyString is just a simple string that can
be normalized. Normalization means that we convert the original string into some standard form,
e.g. we are removing leading and trailing whitespace (trimming), we are converting all letters to
lower case, simplifying national characters and so on.

Many ordinary midPoint properties are PolyStrings. Object name and user’s givenName, familyName
and fullName and all PolyStrings. And yet not even a clever reader haven’t noticed anything
suspicious about them so far. The reason for this is that normalization is almost transparent in
midPoint PolyStrings. But now it is a time to have a peek inside. Let’s import a user that looks like
this:

<user>
 <name>semančík</name>
 ...
 <fullName>Radovan Semančík, PhD. </fullName>
 ...
</user>

What is really stored in midPoint repository is this:

194

<user>
 <name>
 <orig>semančík</orig>
 <norm>semancik</norm>
 </name>
 ...
 <fullName>
 <orig>Radovan Semančík, PhD. </orig>
 <norm>radovan semancik phd</norm>
 </fullName>
 ...
</user>

This all happens transparently. PolyStrings are displayed as strings in the user interface. They are
handled (almost completely) as strings in the mappings. Ordinary midPoint user has no idea that
the normalization happens at all. But why we bother to normalize strings at all? PolyString
normalization has many practical uses. However, two of them are embedded quite deep in the way
how midPoint works.

Firstly, normalization is used to provide reliable uniqueness mechanism. Usually we do not want a
user with username semancik and another user with username Semancik or even Semančík. This may
lead to confusion. As midPoint has uniqueness constraints on both the orig and norm parts of the
name then such situation is completely avoided. All those usernames have the same normalized
form, therefore the uniqueness constraint on norm part of the name will prohibit the use of all those
forms at the same time.

Secondly, normalization is simple and elegant way how to conveniently search for objects. When
PolyStrings are searched, the value from the query is normalized. Then the norm part of the
PolyString is searched. Therefore, whether the query contains semancik, Semancik or semančík, it will
always find the user entry above.

Default normalization algorithm in midPoint should be a good fit for most environments. But there
are always deployments that are different. For example, characters such as hyphens (-) are usually
not considered to be significant. But some deployments will consider aliceanderson and alice-
anderson to be two different usernames. The default midPoint normalization mechanism will
remove hyphens, therefore attempt to have two such users will end up with an error. But
fortunately the normalization algorithm is customizable. There are several algorithms to choose
from and they can even be parameterized. In the extreme case there is a way to develop a
completely custom algorithm. Therefore the PolyString normalization should fit pretty much every
deployment scenario.

But PolyString still has more tricks to do. The normalization is not much of a polymorphism yet.
PolyString becomes a real shape-shifter in fully localized environments. PolyString is designed to
store values that can have individualized representations in national environments. E.g. in multi-
national deployments we may want to provide localized role names. Like this:

195

<role>
 <name>
 <orig>System administrator</orig>
 <lang>
 <en>System administrator</en>
 <sk>Systémový správca</sk>
 <cz>Správce systémú</cz>
 </lang>
 </name>
 ...
</role>

This is a mechanism to display midPoint to end users in their own language, complete with
localized content of midPoint. This functionality is only partially implemented in midPoint 4.0 and
it is considered to be experimental (i.e. unsupported). But this is a glimpse of how the future of
midPoint schema may look like.

The other strange animal in the midPoint jungle is protected string (ProtectedStringType). Identity
management systems often work with sensitive data such as user passwords. All the identity-
related data usually need protection, but those sensitive data items need even better safeguards.
This usually means that some kind of cryptographic technique needs to be employed. E.g. we do not
want to store passwords in the cleartext form. Want them to be either hashed or encrypted. And
that is what protected string is for. Protected string is basically just a simple string, but it has extra
cryptographic protection.

If you have ever had something to deal with cryptography, you will probably know that
cryptography is not simple. Even such a seemingly simple thing as password hash is quite complex
when it comes to all the details. E.g. we do not want simple hash as that would not provide
sufficient protection. We want salted hash. Which means that the salt value needs to be stored
together with the string. Many algorithms are parametric and the parameters used during the
hashing also need to be stored. And most importantly, we do not want to hard-wire midPoint to any
specific algorithm. Cryptographic algorithms often do not age well and they need to be replaced.
Therefore we also need to store algorithm identifiers with the value. If the value is encrypted, we
also need to store key identifier, as several keys may be active at the same time. And so on. The
cryptographic devil is in the tiny and often counter-intuitive details.

Protected string is a data structure that is designed to handle all those pesky cryptographic details
and still pretend that the content of the data structure is just a string. Similarly to PolyString, the
basic usage is quite simple. Data can be imported into midPoint by using clearValue element:

196

<user>
 <name>alice</name>
 ...
 <credentials>
 <password>
 <value>
 <clearValue>sup3rSECRET</clearValue>
 </value>
 </password>
 </credentials>
</user>

The data are automatically protected when the object is imported into midPoint:

<user>
 <name>alice</name>
 ...
 <credentials>
 <password>
 <value>
 <t:encryptedData>
 <t:encryptionMethod>
 <t:algorithm>http://www.w3.org/2001/04/xmlenc#aes128-
cbc</t:algorithm>
 </t:encryptionMethod>
 <t:keyInfo>
 <t:keyName>1z0N17tv6hNQh5CAJ+jWHWDXeBM=</t:keyName>
 </t:keyInfo>
 <t:cipherData>
 <t:cipherValue>
g6Neg3ZEXY/ga00SpEa9w5MlJ9/IR+M1vEjdceni6bM=</t:cipherValue>
 </t:cipherData>
 </t:encryptedData>
 </value>
 </password>
 </credentials>
</user>

Protected string data type supports cleartext representation, encryption using a symmetric
algorithm and hashing. However, the data type itself is just a mechanism for storing the data.
Whether specific protected string in the schema gets encrypted or hashed and at which point that
happens is not controlled by the protected string itself. It is controlled by midPoint configuration
and policies. For example, whether user password is encrypted or hashed is determined by
midPoint security policy.

197

Advanced Schema Concepts
This section describes schema concepts that goes deeper into midPoint mechanisms and
implementation. Awareness of those concepts will provide insight into how midPoint works.
However, we have already talked about the schema quite a lot. And this chapter was quite low on
practical examples. Feel free to skip the rest of this chapter if you want to get your hands dirty as
soon as possible. But please make sure to come back later. You will have to learn those schema
concepts eventually to get the best of midPoint functionality.

Type Hierarchy
So far we have presented midPoint schema as a simple set of data types. There is UserType for users,
RoleType for roles and so on. However, all the midPoint objects have something in common. For
example, all of them have object identifier (OID), name, description and so on. We could simply
copy definitions of those properties to all the data types. But that is not the best way how to do data
modeling. The proper way is to create a type hierarchy. Therefore, there is an ObjectType data type
that specifies all the items that all the object types share. However, midPoint schema is substantial
and one common ancestor won’t be enough. MidPoint type hierarchy was evolving during midPoint
development and now it forms quite a rich structure.

Following table is summarizing midPoint data types and their purpose.

Data type Description

ObjectType Common (abstract) data type for all midPoint
objects. Specifies basic items that all midPoint
objects have: name, description, metadata and
so on.

AssignmentHolderType Abstract supertype for all object types that can
have assignments.

198

Data type Description

FocusType Abstract supertype for all object types that can
be focus of full midPoint computation. This
basically means objects that have projections.
But focal objects also have activation, they may
have personas, etc.

UserType User object represents a physical user of the
system. Properties of User object typically
describe the user as a physical person.
Therefore, the user object defines handful of
properties that are commonly used to describe
users in the IDM solutions (employees,
customers, partners, etc.)

AbstractRoleType Abstract data type that contains the "essence" of
a role. Roles and other objects that behave like
roles are derived from this data type. All
abstract roles may "grant" accounts on
resources, attributes and entitlements for such
accounts. The role can also imply (induce)
organizational units, other roles or various IDM
objects that can be assigned directly to user.

RoleType A role in the Role-Based Access Control (RBAC)
sense. The roles specify privileges that the user
(or other object) should have.

Roles are intended to give privileges to users
and other objects.

OrgType Organizational unit, division, section, object
group, team, project or any other form of
organizing things and/or people. The OrgType
objects are designed to form a hierarchical
organizational structure (or rather several
parallel organizational structures).

Orgs are intended to group objects. But as orgs
are abstract roles, they can also behave as roles.

ServiceType This object type represents any kind of abstract
or concrete services or devices such as servers,
virtual machines, printers, mobile devices,
network nodes, application servers, applications
or anything similar. The "service" is a very
abstract concept.

199

Data type Description

ArchetypeType Archetype definition. Archetype defines custom
object (sub)type. I.e. it defines specific behavior,
look and feel of objects of a particular type, such
as "employee", "project", "application", "business
role" and so on.

ResourceType Resource represents a system or component
external to midPoint system which is managed
by midPoint. It is sometimes called IT resource,
target system, source system, provisioning target
or by variety of ther names. MidPoint connects
to the resource to create accounts, assign
accounts to groups, etc. But it also may be an
authoritative source of data, database that
contains organizational structure and so on.

ConnectorType Description of a generic connector. Connector in
midPoint is any method of connection to the
resource. This usually describes a ConnId
connector.

ConnectorHostType Host definition for remote connector, remote
connector framework or a remote "gateway".
This usually specifies the detail of a ConnId
remote connector server.

SystemConfigurationType System configuration object. Holds global system
configuration setting. There is just one object of
this type in the system. It has a fixed OID.

TaskType Object that contains information about a task.
This can represent active running task. It may be
a scheduled task waiting for execution. Or the
object may contain a results of a finished task.

ObjectTemplateType An object that contains mappings and other
configuration intended to apply to other object
types. E.g. it may be used as “user template” to
set up basic properties of new user objects.

LookupTableType An object that represents lookup table. The
lookup table can be used for two purposes:
value enumerations (e.g. for GUI or validation)
and value mapping (translation). Simply
speaking it is a set of key-value pairs that can be
efficiently stored and used in midPoint user
interface, mappings and so on.

200

Data type Description

SecurityPolicyType System that contains definitions of overall
security policy. It contains configuration of
authentication mechanisms, credentials
management (such as password resets) and so
on.

ValuePolicyType Policy for values of properties. This is almost
always used to store password policies.

FunctionLibraryType Object that contains a set of reusable functions.
Those functions can be used in mappings and
expressions in all parts of midPoint.

ObjectCollectionType Object that specifies a collection of other objects.
It is mostly just a named search filter that can be
reused in other parts of midPoint. But there are
also some advanced functions that can be used
in dashboards, for compliance purposes and so
on.

ReportType Specification of midPoint report. This
specification defines what the report should
contain, how it should look like, output format
and so on.

This is a report definition. It is a report
“template” that can be executed and it produces
data. The output data are referred to by report
output objects.

ReportDataType Object that refers to data of the report. This is
usually a report of the output, but it may also
refer to input data that are to be imported to
midPoint. It also contains metadata, e.g. when
the report was created, what definition was
used, etc.

SequenceType Definition of a sequence object that produces
unique values. The sequence state is persistently
stored in the repository, therefore it can
efficiently produce unique identifiers in a
controlled and predictable manner.

FormType Form definition. Forms define how a certain
user interface form or dialog is presented in the
user interface. It is used for user interface
customization.

201

Data type Description

DashboardType Object that specifies a look and a behavior of a
dashboard. This is used for user interface
customization. But it can also specify some
aspects of midPoint reports.

GenericObjectType Generic type for any other object type that do
not fit into any other category. However, support
for this data type is extremely limited. We
generally do not recommend to use it at all.

ShadowType Shadow of a resource object. Local copy of any
object on the provisioning resource that is
related to provisioning. It may be account,
group, role (on the target system), privilege,
security label, organizational unit or anything
else that is worth managing in identity
management.

NodeType Node describes a single installation of midPoint.
MidPoint installations can work in cluster. The
Node objects are the way how the nodes in
cluster know about each other.

Type hierarchy is a principle that is used in many software systems. This principle will be quite
obvious to all software developers, but it may need some time to get used to for other engineers.
However, the basic idea is quite simple. E.g. AbstractRoleType has all the items that are needed for
an object to behave like a role. RoleType, OrgType, ServiceType and ArchetypeType are subtypes of
AbstractRoleType. Therefore RoleType, OrgType, ServiceType and ArchetypeType can all behave like a
role.

This may sound quite strange, why would we want an organizational unit to behave like a role. But
the answer is quite obvious. Membership in an organizational unit may imply some privileges.
Other IDM systems need complex rules in a form "if user belongs to organizational unit A then he
will also have role X". But that is not needed in midPoint. Organizational unit is a role, therefore it
can simply include all the roles that are needed. This means that the Role-Based Access Control
(RBAC) principles can be applied to several object types. And this is a very typical trait of a midPoint
philosophy: reuse of generic principles. We reuse existing principles instead of complicating the
system by inventing a new single-purpose mechanism. As you will see later, this makes midPoint
both elegant and powerful.

Item Path
MidPoint configuration often needs to reference a particular item in a particular object. For
example, mapping sources and target are references to properties and containers. However,
midPoint data structures can be quite complex. For example, password is stored in property value
that is located in container password which is in container credentials defined in UserType data
type. It may be difficult to find a way in this little maze. And there may be even some unambiguous
situations. For example, user status is controlled by property administrativeStatus that is in the

202

activation container. But assignment also has an activation container and there is an assignment
administrativeStatus. Therefore referencing an item by a simple name would not be enough. We
need something more sophisticated here.

MidPoint is using the concept of item path to reference items in the schema. In its simplest form,
item path is just a sequence of item names concatenated by slash characters. For example the path
of user administrative status is

activation/administrativeStatus

whereas the path of assignment activation status is

assignment/activation/administrativeStatus

Item path provides an unambiguous reference to a specific item in midPoint schema. The path can
be used in all the places where there is a need to reference a particular item. It is often used in
mappings to specify sources and target. But it is also used in other places that we will mention in
later chapters. The concept of path is deeply embedded in all midPoint operations. For example,
modification deltas are using item path to precisely pinpoint the places in the object that are
modified.

The path is used to locate a particular item in midPoint schema. But it is also used to reference a
specific value in midPoint objects. In that case the path often looks exactly the same. As long as we
are dealing only with single-value containers, the path can unambiguously point to a specific item.
But we may get into trouble in case that multi-valued containers are used. And those are used in
midPoint quite often. Assignment is one of those multi-valued container. User can have many
assignments. If we want to disable one particular assignment, how do we do it? If we would use the
path above then it is not clear which assignment should be disabled. Therefore, in case of multi-
valued containers the path is extended with a container identifier in square brackets:

assignment[123]/activation/administrativeStatus

This path is unambiguously referencing administrativeStatus property in an activation container
in a very specific assignment - an assignment container with identifier 123. This form of the path is
used mostly in the deltas and user should not need to ever enter those paths manually. However,
this form is often recorded in midPoint log files and other diagnostic output. Therefore it is very
useful to be familiar with it.

You might wonder why there is an identifier for assignment but there is no identifier for activation.
Both are containers, aren’t they? However, the clever reader already knows the answer. assignment
is a multi-valued container. Therefore, identifier is needed to pinpoint a specific value of that
container. But activation is a single-valued container. There is no danger of ambiguity. Therefore
the identifier is not needed in this case.

This form of item path works fine if need to identity an item in a particular object. But sometimes
we have a lot of objects and other data structures to choose from. For example a mapping can have

203

several sources. And then there are expression variables. Therefore using simple paths would be
ambiguous. In such case the path can start with an optional variable identifier:

$focus/activation/administrativeStatus

The path above explicitly states that is should be applied to the content of variable focus. Therefore
there is no danger that this path could be applied to a shadow object which also has the activation
container. This form of item path is often used in path expression evaluators.

Clever reader is surely wondering about QNames now. The XML schema defines the elements in a
form of QNames, which basically means "names in a namespace". Therefore element names and
QNames. And path should use QNames as well. But so far all the names in the path looks like simple
strings. Yes, they are simple strings. But they point to elements in the schema. While the path is
correct and unambiguous, midPoint does not need the namespaces. Simple string (known as local
part of QNames) are enough to navigate through the schema and automatically determine the
namespaces. This is the same principle used for parsing XML, JSON or YAML document without
namespace definitions. However, there may be ambiguities in case that several custom schema
extensions are used. Those extensions may have elements with conflicting local parts. In that case
an alternative form of item path can be used:

declare namespace exmpl="http://example.com/xml/ns/midpoint/schema";
extension/exmpl:foo

This alternative form is based on XPath specification, that was used in early
midPoint versions and it was an inspiration for the concept of item path.

Clever reader may have also noticed that there are two types of namespaces that are often used in
midPoint:

http://prism.evolveum.com/xml/ns/public/...

http://midpoint.evolveum.com/xml/ns/public/...

Indeed, the schema is divided into two big parts:

• Prism schema is used to express basic concepts that deal with objects, deltas, item paths,
queries and similar mechanisms. Those are concepts of our data representation library that we
dubbed Prism. Prism concepts are very generic mechanisms that have nothing to do with
identity management. While currently Prism is an integral part of midPoint, it is supposed to be
a general-purpose data representation library that can be reused to build other applications.
The plan is to separate Prism form midPoint at some point in the future.

• MidPoint schema is used to express all the objects and data types that midPoint works with. All
the concepts specific to identity management are there: user, role, org, assignment and many,
many others. This is the data model of identity management as it is implemented in midPoint.

204

Conclusion
This is all about midPoint schema that you need to know right now. There is still much more to
learn, as the entire midPoint schema is big and complex. And understanding of midPoint schema is
absolutely crucial, as the schema is a foundation of everything that midPoint does. But the best way
to do the learning is to do it on the go. You will learn more about midPoint schema as you will
explore midPoint functionality.

205

Chapter 7. Role-Based Access Control
Simplicity is the most complex of all concepts.

— Mentat conundrum, Dune: House Corrino by Brian Herbert

Basic idea of Role-based access control (RBAC) is very simple: instead of assigning the same
privileges to users over and over again, let’s group such privileges into roles. Then assign roles to
users. This often aligns with organizational roles such as manager, assistant or analyst. Therefore,
roles are quite easy to understand even on an intuitive level. And RBAC should make your life
easier - at least in theory.

Role-based access control principles are present in almost all identity management systems.
Therefore it is no surprise that RBAC is one of the basic midPoint mechanisms to organize
privileges in midPoint. MidPoint supports all the usual RBAC features such as role hierarchies, an
automatic assignment of roles, entitlement definition etc. But midPoint goes beyond traditional
RBAC. MidPoint roles can be smart. There may be dynamic expression inside midPoint roles, such
as attribute mappings. The roles may be conditional, so one role is included in another role, but
only in case that a specific condition is satisfied. The roles may be parametric, so the role can
determine the specific set of entitlements based on the user data or a parameter of a role
assignment.

But midPoint role dynamics goes even one step further. The RBAC system can be applied to the
roles themselves, thus creating meta-roles. It is quite common that the roles are divided into several
types: application roles, business roles, technical roles and so on. However, all the business roles
have common characteristics such as common approval processes, common life-cycle policies etc.
Instead of copying the common parts into each and every business role, the business roles may be
assigned a common meta-role. The meta-role defines all the common characteristics of all business
roles, therefore the RBAC system is much easier to maintain. And this concept is extended even
further with archetypes. But more on that later.

Terminology.

The term RBAC is many things to many people. We use the term RBAC in quite a
broad sense. We do not strictly mean NIST RBAC model. What me mean by RBAC is
a generic mechanism that is based on the concept of roles. Although the basic
principles of midPoint RBAC are very similar to NIST RBAC model, we take the
liberty to deviate from NIST model when needed. As you will see later, such
deviation is really necessary.

Reality, Policy and Assignments
Previous chapters were focused on account provisioning and synchronization. Which means that
the primary focus was an account (or a similar resource object). This is what we call reality in
midPoint way of thinking. Accounts are objects that exist in the databases and files on the
resources. In that aspect they are almost tangible things. Existence of an account allows user to
access a particular system, to execute operations and so on. Therefore, we consider an account to
be something real.

206

But how do we know whether an account should exist or it should not exist? The situation would be
quite clear if midPoint is the only source of truth. In that case if there is a linked shadow then
account should exist. If there is no shadow, then account is illegal. But reality is almost never that
simple. In real deployments MidPoint is not the only source of truth. It is usually human resource
(HR) system that is the source of the truth – but only for some types of users, usually employees.
Then there are external users, temporary workers, special personas for user administrators and so
on. Some of them may have their own source systems similar to HR database. But for some users it
may still be midPoint which is the ultimate source of truth. And that "truth" may be in fact only
partial or compiled from several sources. To keep long story short: reality is messy and
complicated. And it is often quite difficult to figure out which accounts particular user should have
and which he should not have. Yet, for an IDM system this distinction is absolutely crucial. Various
IDM systems came with broad range of mechanisms to handle this problem, and sadly, those
mechanisms are often not very good. Fortunately, midPoint was designed from the beginning with
a full awareness of this problem. Therefore, there is a clean distinction between reality and policy
in midPoint.

Accounts, shadows and links are what we refer to as reality. Those describe what exists, what is.
And there is a separate mechanism to describe policy. Policy, in midPoint parlance, means
definition of what should be. In the ideal world reality and policy should be in accord. They should
describe the same state of things. But we do not live in ideal world. Perfectly good accounts may be
deleted by mistake, illegal accounts may be created, entitlements may get mixed up, attribute
values destroyed – there are many dangers in the big wild world out there. And then there are
scenarios when we actually want reality to be different than policy for some period of time. Those
may be migration scenarios when a new system is being connected to midPoint and the data needs
to be cleaned up. Reality and policy do not match exactly in practice. We all know that only too well.
Therefore, midPoint is designed in such a way that it can graciously handle the differences between
reality and policy.

When it comes to policy, the most important concept is an assignment. Simply speaking, assignment
is a data structure which specifies that a particular user should have something. The simplest case
is account assignment. This type of assignment states that the user should have an account on a
particular resource. When such assignment is added to a user, there is suddenly a discrepancy
between reality and policy. The assignment states that a user should have an account. But there is
no such account yet. It is a nature of midPoint to align policy and reality as much as possible (unless
it is told otherwise). Therefore midPoint will try to create missing account. Once that account is
created reality and policy are aligned once again.

The mechanism that midPoint uses to define that a particular user needs an account, entitlement or
other resource object is called construction. The simplest case is a construction that specifies to
create an account (a.k.a. account construction):

207

<user>
 ...
 <assignment>
 <construction>
 <resourceRef oid="8a83b1a4-be18-11e6-ae84-7301fdab1d7c"/>
 <kind>account</kind>
 </construction>
 </assignment>
 ...
</user>

The term construction means that object on that particular resource should be constructed. In this
case the object on OpenLDAP resource should be constructed for this particular user. If no
construction parameters are specified then a default account will be constructed. Which means that
outbound mappings in the OpenLDAP resource definition will be used to set up the account.

Construction can be quite a complex data structure describing object types, object classes,
attributes and so on. However,it is unlikely that they will be placed directly in assignment like this.
But more on that later. What is important for now is that assignments specify policy.

After the assignment is added to a user and all the processing and provisioning takes place the
situation looks like this:

208

Assignment is a definition of policy which states that an OpenLDAP account should exist for Alice.
However, there is no such account. Therefore, MidPoint aligns reality and policy by creating that
account. As for any other account there is a shadow and a link to track account ownership.

This may look like a very complicated method to do something simple. But this kind of thinking is
really necessary to handle complex cases. There may be several assignments that mandate the
same account. There may be assignments for the same accounts, but each assignment mandates
different attributes or values. The account that the assignments mandate may exist already, e.g. it
may be linked by previous reconciliation with the resource. There may be several accounts for the
same user on the same resource (e.g. "ordinary" account and "testing" account). And so on. We will
deal with various cases in this book. But the basic principle is the same: assignments are policy and
midPoint is trying to align reality to match the policy.

Roles
There is much more in the concept of an assignment than just the very simple account assignment
that was introduced above. Assignment is a generic mechanism that is used in midPoint for wide
variety of cases, from simple account provisioning to really complex identity governance policies.
But one specific assignment type is particularly interesting with respect to the topic of this chapter:
role assignment.

The basic idea of Role-Based Access Control (RBAC) is simple: Instead of assigning account to users
directly, let us group all accounts that a particular group of users need into a role. Then assign the
role to users. Later on you may add new application to your system, and you probably want all the

209

users to have account there. In that case all that is needed is to add that account to a role and
recompute the users. All the users that should have the account will get the account. This principle
is reused for many purposes in midPoint: accounts, privileges, authorizations, policies …

Role is a special type of object in midPoint. Yet, as all midPoint objects, role has a very familiar
structure:

role-business-analyst.xml

<role oid="aaa6cde4-0471-11e9-9b50-c743da469067">
 <name>Business Analyst</name>
 ...
</user>

Role object has its OID and name. The rest of the role usually specifies the privileges that the role
gives to the users. But how do we give this role to users? That is what role assignment is good for:

<user>
 <name>alice</name>
 ...
 <assignment>
 <targetRef oid="aaa6cde4-0471-11e9-9b50-c743da469067" type="RoleType"/>
 </assignment>
</user>

User alice has role Business Analyst assigned. The assignment is using the familiar style of object
references in midPoint, referring to the role by its OID. This is very useful, as the assignment stays
the same in case that the role or the user are renamed - and both of those events are much more
frequent that one would think.

Provisioning Roles
Provisioning is the bread and butter of identity management. Therefore, it is quite understandable
that the most natural usage of roles in midPoint is to automate provisioning. Provisioning roles are
usually combining several construction statements. The idea is that a provisioning role should
specify all the privileges that users of that role need. Therefore a Business Analyst role may look
like this:

210

role-business-analyst.xml

<role oid="aaa6cde4-0471-11e9-9b50-c743da469067">
 <name>Business Analyst</name>
 <inducement>
 <construction>
 <!-- OpenLDAP resource -->
 <resourceRef oid="8a83b1a4-be18-11e6-ae84-7301fdab1d7c"/>
 <kind>account</kind>
 </construction>
 </inducement>
 <inducement>
 <construction>
 <!-- CRM resource -->
 <resourceRef oid="04afeda6-394b-11e6-8cbe-abf7ff430056"/>
 <kind>account</kind>
 </construction>
 </inducement>
</user>

The usual case is that every employee need to have basic access to company functionality. In our
case that access is granted by an account in central OpenLDAP directory. In addition to the basic
LDAP account, business analysts need access to the CRM system. The role combines all the accounts
that a business analyst needs. Assign that one role and the user has all that is needed to do the job.

But, what is that mysterious inducement thing? Think of inducement as indirect assignment.
Assignments give privileges directly to the object in which they are placed. The assignment in the
previous section gave account to the user because it was placed in the user object. However, here
we do not want the accounts to be created for a role. We want accounts to be created for all the
users that have the role. That is one order of indirection down the line. Therefore, we (usually) do
not want to use assignments in roles. We want to use something that reflects this indirect relation.
And that is exactly what inducement is. Inducement is very similar to assignment - in fact it has
exactly the same structure. But while assignment is direct, inducement is indirect.

MidPoint user interface can show a nice summary of the inducements:

211

It is perhaps worth explaining what happens if this Business Analyst role is assigned to a user.
When that role is assigned to a user, midPoint will process all the parts of role definition. MidPoint
will take the inducements from the role and apply them to the user. In fact, midPoint will behave in
almost the same way as if those construction statements were specified directly in user’s
assignment. And then we have the familiar principle: policy mandates that two accounts should
exit, but in reality there are no such accounts. Therefore midPoint creates the accounts. MidPoint
also creates appropriate shadow objects and links them to the user.

Many applications implement at least some aspects of RBAC, as RBAC is a very useful way how to
organize the privileges. However, almost all the applications limit the applicability of RBAC to the
application itself. I.e. roles in an application can contain only those privileges that apply to that
particular application. The roles cannot have privileges from other application. But IDM systems
are different. IDM systems such as midPoint are reaching out to many applications (resources).

212

Therefore, a single midPoint role can give access to many applications at once. No other application
can do that.

Roles, Accounts and Attributes
We have already seen how outbound mappings can be used to set up account attributes. Roles can
also contain outbound mappings, therefore they can be used for a similar purpose:

<role oid="aaa6cde4-0471-11e9-9b50-c743da469067">
 <name>Business Analyst</name>
 <inducement>
 <construction>
 <!-- OpenLDAP resource -->
 <resourceRef oid="8a83b1a4-be18-11e6-ae84-7301fdab1d7c"/>
 <kind>account</kind>
 <attribute>
 <ref>ri:title</ref>
 <outbound>
 <expression>
 <value>Business Analyst</value>
 </expression>
 </outbound>
 </attribute>
 </construction>
 </inducement>
 ...
</role>

When the above role is assigned to a user, an account on OpenLDAP server will be created. The
account will be provisioned in a usual way. All the outbound mappings from resource definition
will be applied to set up the account. But there is one difference. The role specifies one additional
outbound mapping for the account. This mapping will be included in the set of usual account
mappings when the account will be provisioned. Therefore, the account will have attribute title
set to Business Analyst.

This is a very typical way how midPoint deployments are set up:

• Common and usual attribute values are specified by outbound mappings in the resource
definition (in schemaHandling). Those are usual mappings that take user properties as their
source. Many of those mappings do not even modify the value at all (asIs mappings).

• Attributes that are specific to roles are defined in the roles themselves. Those mappings often do
not have any source at all. They just set a static value (literal value mappings).

At the time when midPoint is about to provision an account, all the mappings are merged and
processed together. It is quite common that more than one role has a construction for the same
account. All those constructions from all such roles are merged together, and they are added to the
mappings specified in resource definition. All those mappings are used to compute final values of
account attributes.

213

Most account attributes are single-valued. Attempt to set more than one value for such an attribute
will end up with an error. Therefore, it does not make sense to specify more than one mapping for
such an attribute. The mapping can be specified in a resource or in the role, but only one of those
should be active at the time. Mapping conditions and strength can be used to selectively deactivate
some mappings in more complicated cases. But it still means that only one mapping is active at a
time.

However, some attributes are multi-value. In that case midPoint will merge the values from all the
mappings. In that case several roles may contribute to the final set of attribute values, as can the
mapping in resource definition. This is the usual case of attributes that specify privileges, such as
permissions, authorization codes, access control list (ACL) entries and so on.

Merging of multi-value attributes is an easy way how to manage simple privileges in resources.
However, midPoint contains a whole sophisticated mechanism for managing entitlements such as
groups. There is an entire chapter in this book dedicated to entitlement management.

Additive principle.

MidPoint is built on a principle of merging. Assigned roles are merged together,
that is merged with outbound mappings, entitlements are merged and so on.
MidPoint always adds, it never subtracts. E.g. there is no simple way how one role
can "eliminate" a value given by another role. If a role specifies that an account
should have value A, that account will have value A. And that’s it. It can also have
values B and C given by other roles. But A will always be there, no matter what
other roles do (unless those roles are involved in some really dark magic). This
may seem quite limiting. But it is sufficient for vast majority of cases. It only needs
a change in your way of thinking about privileges. Do not think about removing a
privilege. Think about not adding a privilege. There are many ways how that can
be achieved. There is a role hierarchy, mappings can be conditional and whole
assignments and inducements can be conditional too. We are trying really hard to
avoid concept of "removing" privileges, because that requires ordered processing.
E.g. if role X adds something and role Y removes it, the final result depends on the
order in which such roles are processed. This creates ambiguities, it limits
parallelism and overall it is a huge complication. Therefore we try to avoid it. And
so far we have been successful.

Role Hierarchy
Ability to group privileges into roles is quite useful. But it is still not good enough unless your access
control policy is extremely simple. Most practical policies require placing roles into roles, thus
creating role hierarchy.

Let’s consider two work positions: clerk and supervisor. Clerk has some basic set of privileges.
Supervisor can do everything that a clerk can do, but supervisor has some additional privileges. A
naive way would be to simply copy all the clerk’s privileges in supervisor’s role. However,
privileges are seldom static. Access control policies tend to change and evolve as much as the
environment changes. It is likely that a clerk’s privileges will change. In that case we will need to
update the supervisor’s role as well. This would be a maintenance burden. Now imagine hundreds
or thousands of related roles that need constant maintenance. Any person maintaining such a

214

structure will need superhuman precision and patience to do that.

A more natural idea would be to include clerk’s role into a supervisor’s role. If clerk’s privileges
change, then also supervisor’s privileges are automatically updated. Maintenance is much easier.
And that is the basic idea of role hierarchy. Basic privileges are placed into low-level roles. Low-
level roles are combined to create a higher-level roles. Then those roles are combined as well. The
process is repeated until there are all the roles that are needed for assignment to users.

Creating role hierarchies in midPoint is quite easy. A clever reader would already expect that this
has something to do with inducements. And clever reader would be absolutely right. Role hierarchy
is nothing more than a set of inducements between roles:

<role oid="48d4ef98-20e3-46ab-cd78-548d38364a6b">
 <name>Clerk</name>
 <!-- Privileges needed to do clerk’s work will be here. -->
</role>

<role oid="86e58643-d5e7-36a8-04f6-38dc3754f04e">
 <name>Supervisor</name>
 <!-- Privileges that are unique to supervisor’s work will be here. -->
 <inducement>
 <!-- This "includes" all the clerk’s privileges in this role -->
 <targetRef oid="48d4ef98-20e3-46ab-cd78-548d38364a6b" type="RoleType"/>
 </inducement>
</role>

The inducement includes Clerk role in Supervisor role. When midPoint evaluates the Supervisor
role, it will get all the inducements from both the Supervisor and Clerk roles. This process is almost
transparent, it works almost as if the clerk’s privileges were copied in the supervisor’s role. All the

215

constructions in all the inducements in both roles are processed. Therefore, supervisor will get all
the accounts that a clerk would get, plus few extra privileges.

Both Clerk and Supervisor roles are likely to have construction for the same account. This is quite
natural, as both clerk and supervisor would probably work with the same applications. However,
their privileges will be different. This is where the merging mechanism becomes very useful. When
a supervisor role is processed then privileges of clerk are merged with privileges of supervisor:

role-clerk.xml

<role oid="48d4ef98-20e3-46ab-cd78-548d38364a6b">
 <name>Clerk</name>
 <inducement>
 <construction>
 <!-- Record management system -->
 <resourceRef oid="84de003e-014f-2040-efbc-482e009ed2bcf"/>
 <kind>account</kind>
 <attribute>
 <ref>ri:priv</ref>
 <outbound>
 <expression>
 <value>read</value>
 <value>create</value>
 </expression>
 </outbound>
 </attribute>
 </construction>
 </inducement>
</role>

216

role-supervisor.xml

<role oid="86e58643-d5e7-36a8-04f6-38dc3754f04e">
 <name>Supervisor</name>
 <inducement>
 <construction>
 <!-- Record management system -->
 <resourceRef oid="84de003e-014f-2040-efbc-482e009ed2bcf"/>
 <kind>account</kind>
 <attribute>
 <ref>ri:priv</ref>
 <outbound>
 <expression>
 <value>approve</value>
 <value>modify</value>
 <value>delete</value>
 </expression>
 </outbound>
 </attribute>
 </construction>
 </inducement>
 <inducement>
 <targetRef oid="48d4ef98-20e3-46ab-cd78-548d38364a6b" type="RoleType"/>
 </inducement>
</role>

When supervisor’s role is processed, midPoint figures out that those two construction statements
are referring to the same account. Therefore they will be merged together. Supervisor will get an
account that will have priv attribute set to values read, create, approve, modify and delete.

217

Assignments in roles.

So far we have seen only inducement in the roles. But what about assignment?
Assignment is indeed used in the roles, but it has different meaning. Inducement
means that role A has to be included in role B. But assignment means that role A
has to be applied to role B. In that case role A is in fact a meta-role. But more on
that later. For now it is good to remember a rule of the thumb: role hierarchy is
always created by inducements.

Role Universality
MidPoint roles are very useful kind of animal, because they are used for almost everything in
midPoint. MidPoint role be used as:

• Provisioning role: The role can include constructions that control provisioning and
deprovisioning of accounts.

• Entitlement management: The constructions can include specification of groups, resource-side
roles, privileges and so on.

• Internal authorization: The roles give access to data in midPoint itself. E.g. a role can allow
reading some user properties. Authorizations in a role can also allow access to particular parts
of midPoint user interface, remote network services and so on.

• Policy specifications: Roles (and especially meta-roles) are the places where important parts of
policy management is specified. Roles include policy rules that can apply segregation of duties
(SoD) policies, ownership and approval policies and so on.

All those aspects can be combined into a single role. Therefore, such role can specify everything
that is needed for the role holder to live a complete digital life: access to systems (accounts),
entitlements, access to midPoint itself (e.g. for self-service), apply policy constraints and so on.
Everything in one place.

Role universality may seem mundane and completely natural, but in fact it is quite unique and
incredibly powerful idea. As you will see later, roles can be driven through approval process,
lifecycle management can be applied to role, roles can be subject to policies, role compliance can be
evaluated and so on. All of this applies to provisioning roles. But the same mechanism can be
applied also to roles that govern the administration of midPoint itself. And even to meta-roles that
specify high-level policies. Which means that in a strange post-modern way midPoint can be
applied to itself. MidPoint can be its own manager.

Surprisingly, role universality is quite a unique concept in the IDM field. The
common approach of older IDM systems is to separate provisioning roles,
authorization roles, governance roles and so on. Each of them was different, and it
was managed in a different way. It was quite difficult to create a unified and
consistent policy. This is one of many aspects where midPoint provides a
seemingly simple mechanism, but that mechanisms simplifies a lot of things and
provides an elegant solution to a difficult problem.

218

Role Hierarchy Structure
There are many ways how a role hierarchy can be structured. One way is to create all roles as "end
user" roles that are supposed to be directly assigned to user. The clerk-supervisor example above is
that case. However, there are other approaches that are often used. For example, the low level roles
are often modeled as application roles. Those roles deal with access to a single application, but they
are not meant to be assigned directly to users. They are supposed to be abstract, to be the base
"material" used to create other roles. Those higher-level roles are often called business roles, as they
reflect the needs of the business, such as specific job or responsibility in a business process. Those
roles are assigned to users. However, those are just two of many conventions and
recommendations on designing a role structure. We will not dive deep into role modeling topics in
this book. There is a plenty of literature on that topic already. We will rather focus on a technical
implementation of role hierarchy in midPoint.

However, there are few cases that are frequent pain points in RBAC deployments. The philosophy of
midPoint is to make IDM deployment easier, therefore it is quite natural that midPoint tries to
address those particular issues.

One of the big troubles are application roles. There is usually a huge number of them, and they
need to be maintained manually. It is usual practice that there is one application role for every
privilege in the target system (resource), for every group for every organizational unit and so on.
Application roles duplicate the information that is already present on the resource side. And as
application roles are maintained manually, it is almost certain that this information will become
inconsistent. This approach is sometime even recommended as a best practice. But the reality it is a
maintenance nightmare.

This behavior is motivated by several factors. But perhaps the strongest factor is that it was very
difficult to set up the privileges in older (first generation) IDM systems. Setup of an application role
often required intimate knowledge of the entire IDM configuration as various tricks were used to
implement entitlement management. Heavy connector support and customization were often
necessary to provide even the very basic entitlement management. However, midPoint is different.
There is a clean concept of construction, which is designed in such a way that a system (resource)
administrator can understand. E.g. the construction refers to the native (non-mapped) names of
resource attributes, it is referring to native object classes that are used on the resource, native
identifiers and so on. The construction is built to use the language of the target system (resource),
not the language of midPoint. Therefore, there is a good chance that system administrators can set
up constructions easily. In addition to that, midPoint has a native support for entitlements such as
groups and resource-side roles. Those are designed to be easy to use in constructions. Therefore
there is very little need for application roles in midPoint. Higher-level roles can contain the
constructions directly.

However, application roles may still be needed and in some cases they may even be useful. For
example, there may be a common combination of privileges that is always assigned together. In
that case it makes a lot of sense to create an application role. There may still be a need for
application roles if strong governance or role lifecycle management is required, often as a means to
govern the entitlements such as groups. Application roles might even be a legacy from a previous
IDM system. As always, the best recommendation would be to analyze the RBAC policies and to use
pragmatic thinking. Be careful about generic RBAC recommendations and be even more careful

219

about recommendations that are meant for older IDM systems. MidPoint is different. Of course,
midPoint can implement all those old-fashioned RBAC models. However, it will be a pain to
maintain them. MidPoint can do better. Try to understand how midPoint works with the roles first,
then apply those mechanisms to your RBAC policies. You might be surprised how midPoint can
simplify the implementation of the policies.

In case that application roles are still needed, you may consider automating the management of
such roles. MidPoint synchronization mechanism is really powerful. It can synchronize users and
accounts, but it is designed to synchronize almost anything with anything. Therefore, it can be used
to automatically create application roles from all the LDAP groups. While this approach still have
some drawbacks, it automates the most painful parts of application role’s maintenance.

There is yet another practice that is quite common, but mostly wrong. Many IDM deployments
create "login roles" or "default roles" for each application (resource). Those roles are supposed to
define basic properties of the account. And in some cases they are supposed to keep account in
existence when such account is unassigned. While this practice is very common, it is complicated,
messy and very difficult to maintain. MidPoint was specifically designed tn such a way that this
practice is not necessary in midPoint deployments. Default account attributes are easy to set up by
using resource definition. And even the ability to keep unassigned account is directly supported in
midPoint by using existence mapping, which will be described later. Therefore, such "login roles"
are not needed at all in midPoint deployments, and they are generally considered to be a bad
practice.

Assignment Gets Complicated
At the first sight, the concept of assignment may seem quite mundane, maybe even over-
complicated. In fact, it is a very powerful concept, and it has been a crucial part of midPoint design
from the very beginning. Assignment is so much more that just a simple user-role connection:

• Assignments can have validity period. This can be used to assign roles for a temporary period
of time. It can also be used to assign roles that will be activated in the future.

• Assignment have administrative status that can be used to manually disable or enable a
particular assignment. This can be used to manage exceptions from the policies or it can be very
useful in emergency situations.

• Assignments can contain parameters that are used to support parametric roles (see above).

• Assignments are subject to policies, governance and compliance mechanisms. Assignments
have their lifecycle, they are subject to re-certification campaigns, there can be policy exception
recorded for an assignment and so on. But more on that in later chapters of this book.

For example, assignment validity period can be used to assign a role only for a temporary period:

220

<user>
 <name>bob</name>
 ...
 <assignment>
 <!-- Deputy Cheerleader role -->
 <targetRef oid="0c87d8f8-c9a4-11e9-81b8-e7d43e9f9a2b" type="RoleType"/>
 <activation>
 <validTo>2019-12-31T23:59:59Z</validTo>
 </activation>
 </assignment>
</user>

As assignment and inducement are in fact the same data structure, similar approach can be used to
disable parts of role hierarchy:

<role>
 <name>Marketing Research Undersecretary</name>
 ...
 <indudement>...</indudement>
 <indudement>...</indudement>
 ...
 <indudement>
 <description>
 Employee access to the lab is disabled because the lab burned down
 during an ugly accident. Will be re-enabled when the lab is rebuilt.
 </description>
 <!-- Experimental Research Lab Access role -->
 <targetRef oid="e8ef819c-c9a4-11e9-80a8-1bddb446391e" type="RoleType"/>
 <activation>
 <administrativeStatus>disabled</administrativeStatus>
 </activation>
 </inducement>
</user>

Many types and variants of assignments can be combined in a single user. Assignment validity
periods may overlap, there may be disabled assignments and enabled assignments for the same
role at the same time, there may be several assignments to the same role with various parameters
and so on. All reasonable combinations are supported, which allows modeling very complicated
schemes such as multi-affiliation, multiple employment contracts and so on. Assignment is a crucial
data structure, and we will be dealing with it in almost every chapter in the book.

Dynamic Roles
RBAC is a nice and elegant way how to create and maintain access control policies. However, there
is a serious danger: roles can be quite explosive. The role structure can easily get out of control and
the roles may start to multiply. This is known as role explosion, and it is one of the nastiest
drawbacks of access control system based on static roles. It is not uncommon for an organization to

221

have much more roles than it has users. This creates a recurring maintenance nightmare.
Fortunately, midPoint has a very powerful support for dynamic roles that can significantly reduce
or even completely eliminate the impact of role explosion.

To understand dynamic roles, we first need to understand what is wrong with static roles. Many
organizations have jobs that are very similar, they just differ is some small detail. For example, all
bank tellers are similar, the difference is just their branch office. Similarly, all the assistant jobs are
pretty much the same. The difference is the department or section that they work for. Therefore,
there is Sales Assistant, Engineering Assistant, Logistics Assistant - and a hundred or so similar
roles. Almost all the privileges in those roles are the same. Of course, we can create an (abstract)
role Assistant that will have all the common privileges. But we still need those hundreds of specific
assistant roles. And then it gets even worse, because there may be Senior Sales Assistant, Trainee
Sales Assistant, Senior Engineering Assistant, …

The key to the role explosion is a realization that those "exploded" roles are created in an
algorithmic way. Maybe we do not need Sales Assistant, Engineering Assistant and Logistics
Assistant roles at all. Maybe we need just one Assistant role. The organizational unit (sales,
engineering or logistics) is just a parameter to that role. Then the number of roles can be
significantly reduced. This is what we call parametric roles.

Parametric roles are not your ordinary garden-variety static roles that just contain a set of
privileges. Parametric roles need to be much smarter. E.g. the Assistant role need an algorithm, that
takes the organization unit as an input, and it outputs a privileges that are appropriate for that
organizational unit. This may be a simple expression that determines correct group name based on
organizational unit name. But it may also be quite a complex code that determines most efficient
location of home directories and other resources based on office location. There is no free lunch.
The algorithm that was used to generate the number of "exploded" roles will not magically
disappear. In case of parametric roles that algorithm needs to be placed in the role itself. But it still
may be much easier to maintain a couple of expression than to maintain thousands upon
thousands of roles.

The usual problem with parametric roles is, quite obviously, the presence of the parameters. The
parameters cannot be stored with the role, as they are different for each assignment of the role. The
parameters also cannot be stored directly with the user, as the user may have the same role
assigned with a different set of parameters. Fortunately, midPoint was designed with this problem
in mind and this was one of the big motivations to create a concept of assignment. Assignment is the
right place to store the parameters, as it is the data structure that associates user with a specific
role.

ExAmPLE is a very progressive company. Similarly to other corporations they have functional
organizational structure. But their employees are also organized in teams. Each team can have a
manager and ordinary members. The team membership is represented by custom attributes in
LDAP server. Each user has two custom multi-value attributes: exampleTeamMember and
exampleTeamManager. Both attributes expect team name as their value.

The naïve way to handle this would be to create two roles for each team. But there are hundreds of
team and that would be a maintenance nightmare. A smarter solution is to use parametric roles.
There will be two roles only: Team Member and Team Manager. Those roles will take custom property
teamName as parameter. But where does this property comes from? It comes from assignment

222

extension. Each time the team role is assigned there needs to be a parameter in the assignment:

<user>
 <name>alice</name>
 ...
 <assignment>
 <extension>
 <exmpl:teamName>x-force</exmpl:teamName>
 </extension>
 <!-- Team Manager role -->
 <targetRef oid="aaa6cde4-0471-11e9-9b50-c743da469067" type="RoleType"/>
 </assignment>
</user>

This is the first part of the solution. The second part are the roles. The roles need to be a bit smarter
to use the teamName parameter:

<role oid="aaa6cde4-0471-11e9-9b50-c743da469067">
 <name>Team Manager</name>
 ...
 <inducement>
 <construction>
 <!-- OpenLDAP resource -->
 <resourceRef oid="8a83b1a4-be18-11e6-ae84-7301fdab1d7c"/>
 <kind>account</kind>
 <attribute>
 <ref>ri:exampleTeamManager</ref>
 <outbound>
 <expression>
 <path>$assignment/extension/teamName</path>
 </expression>
 </outbound>
 </attribute>
 </construction>
 </inducement>
</user>

Resulting LDAP account looks like this:

dn: uid=alice,ou=people,dc=example,dc=com
objectclass: inetOrgPerson
...
exampleTeamManager: x-force
...

This setup is illustrated in the following diagram:

223

This is the basic mechanism of parametric roles. It is incredibly powerful mechanism.
Unfortunately, current implementation of parametric roles in midPoint is quite limited. While
midPoint was designed with parametric roles in mind, the implementation is not yet finished.
Therefore support for parametric roles is quite limited. MidPoint core supports parametric roles
quite well. Assignment parameters and mappings should work perfectly. However, the support for
assignment parameters in midPoint user interface is very limited. In fact, the production-quality
support is limited only to the couple of hardcoded parameters (orgRef and tenantRef) and even that
leaves a lot to be desired. While we would like to improve support for parametric roles in midPoint,
we have to listen to what midPoint subscribers are saying. Our development priorities are
influenced by midPoint platform subscribers. So far platform subscribers prioritized other features
and therefore there was not sufficient funding to completely finish user interface support for
parametric roles.

Roles may also explode due to other reasons. Application roles that were
mentioned above may significantly contribute to role explosion. Also attempts to
"atomize" the low-level roles as an attempt to create enough "material" to compose
higher-level roles may lead to explosion. MidPoint has some mechanism that limit
those effects. But perhaps the best approach for those cases could be summarized
as "do not overdo it".

Metaroles
MidPoint roles are usually applied to users. But midPoint roles are universal. The roles can be
applied to almost any midPoint object. Roles can be applied to users, organizations, services and
even to roles themselves.

Simply speaking, meta-roles are roles applied to other roles. Ordinary role applies its
characteristics to a user. Meta-role applies its characteristics to another role. This is perfectly
possible in midPoint, as role can be applied to almost any midPoint object. Then why not apply a
role to another role? This may seem like a pretty useless exercise, but the truth is that meta-roles
are tremendously useful.

History is repeating, they say. The fact is that repetition is daily bread in almost all IDM
deployments. E.g. many business roles have something in common. For example, the business roles
have similar approval process. There may be role classes that have similar exclusion policies that
are part of global segregation of duties (SoD) policy. There are roles that are tied to entitlements in a
systematic way and so on. Roles, organizational units, services and other role-like objects tend to be
quite similar. Therefore, applying meta-roles to them can be very useful.

224

So far all the roles that we have seen were composed exclusively from inducements. That made
perfect sense, as all those things that were in the inducement did not apply to the role itself.
Privileges specified in inducements applied to users that the role was assigned to. However, in this
case, we want to apply meta-role to a role. The effects of a meta-role should apply to the role, not to
the user. Therefore assignment is used instead of inducement:

<role oid="6924fb9c-a184-11e9-840e-2feb476335f4">
 <name>Account Manager</name>
 <description>
 This is business role that corresponds to account manager job.
 </description>
 <assignment>
 <!-- Metarole assignment -->
 <targetRef oid=”a3065910-a183-11e9-835c-0b6edc3d44c3” type=”RoleType”/>
 </assignment>
 <inducement>
 <!--
 Privileges specific to account manager.
 -->
 </inducement>
</role>

<role oid="a3065910-a183-11e9-835c-0b6edc3d44c3">
 <name>Business metarole</name>
 <inducement>
 <!--
 Policies and constructions that should be applied to all
 business roles.
 -->
 </inducement>
</role>

This may seem similar to a role hierarchy. However, it is a completely different animal. The crucial
difference is that the meta-role is applied to the role, and not to the user. The inducements in the
meta-role often contain policies such as approval policy, or construction clauses that create groups
or organizational units. We usually do not want to create a group for each user. Yet, we often want
to create a group for a role. That’s what meta-role can do.

Meta-roles are one of the stranger concepts of midPoint, but it goes well with
midPoint philosophy. Meta-roles are roles that are applied to themselves. This is a
reuse of an existing mechanism to create something new. This is very typical for
midPoint. We always try to reuse an existing mechanism instead of reinventing a
new one. The result is quite unexpected and surprising sometimes. When we have
designed the RBAC system for midPoint, we haven’t thought about meta-roles at
all. The meta-roles just appeared as a consequence of the design, a consequence
that was absolutely unexpected. Fortunately, we have quickly realized the
potential that meta-roles have, and we have put them to a full use.

225

A clever reader would probably notice that meta-roles can be used to set up different types of roles.
We could have meta-role for application role, business role and so on. And clever reader, as always,
would be right. However, given just the metaroles, there would be few bits still missing here to
create a full-featured type system. Those missing bits are implemented in a form of archetypes.
Simply speaking, archetypes are meta-roles, with some optimizations and improved user
experience. More on that later.

It may be difficult to understand the concept of meta-roles from such a short and very abstract
description. But do not worry. As meta-roles are often used in midPoint, we will get back to the
meta-roles on several occasions. Meta-roles often allow simplification of complex problems by
creating a very elegant solutions. For now, it is enough to remember that roles can be applied to
almost anything in midPoint, including themselves.

RBAC, ABAC And The Wildlife
This section is where we will get all thoughtful and philosophical. The people that are bored with
philosophical questions should skip the rest of this chapter. We will also throw some dirt on almost
every access control model in existence. Therefore, the people that maintain dogmatic beliefs about
IAM mechanisms should skip this section as well. On the other hand, open-minded people are quite
likely to enjoy it.

Role-based Access Control (RBAC) is just one of many access control models. There many variants of
RBAC and there are other access control models that are based on a completely different paradigm.
One such popular model is Attribute-Based Access Control (ABAC). ABAC is based on an idea that
access to the systems can be determined dynamically just based on "attributes". Simply speaking,
we can imagine ABAC as a one big algorithm that takes "attributes" as an input and decides
whether access should be allowed or denied.

ABAC is very popular in the access management (AM) community because of its simplicity. And it
all makes much sense as it is much simpler and faster to evaluate one expression than to sift
through a mountain of roles. The problem with ABAC is manageability. ABAC assumes that all
access control decisions could be based on algorithms and that they can be made anytime a
decision is needed. However, that is almost never the case in larger practical deployments.

Many professionals responsible for identity management dream about complete automation of
access control. It would be a marvel if an IDM system could automatically determine the privileges
of every person simply based on the organizational unit and work responsibilities of that person. It
would be perfect to get that information from an HR system, process it through a set of algorithms
and automatically provision correct privileges to everybody. That is a very nice dream. But reality
has a different idea. Such automated approach never really works in practice.

First problem is at the very start: HR data are almost never correct. There is very little motivation
for the HR data to be completely correct. It is not a big issues if someone has a wrong job code or
organizational unit code in the HR system. The business goes on, the salary is paid, everybody is
happy. There is no really efficient feedback loop that would force corrections in HR data. Until the
IDM system is deployed, that is. But it takes years or decades for a typical company to get to
deployment of IDM system. At that point the HR data are beyond repair. The corrections that need
to be done in the HR system are substantial. Even in small organizations it is very difficult to

226

correct HR data manually. Bigger deployments absolutely require proper tooling to do that job. But
even with good tooling it can take a lot of time. Many IDM deployments were significantly delayed
or even canceled because of data quality problems. This method does not work very well.

The fundamental problem here is in the overall approach. IDM system should not fail when the
input data are wrong. There should be procedures how to correct those data. And the IDM
deployment should not be delayed because of wrong input data. That would be like refusing to use
your reading glasses because the text you are reading is wrong. IDM systems are essential tools that
help you to clean up the data. The IDM system should be deployed and it should be used to manage
data quality on day-to-day basis. It is naive to think that once the data are cleaned up they will stay
clean. The processes that lead to data errors will continue, therefore data errors will appear all the
time. The crucial insight is to accept that there will be data errors and to design the mechanisms to
detect and correct them.

There are many manual and ad-hoc decisions that need to be made in practical IDM deployments.
And not just during the deployment. Many ad-hoc decisions must be made during routine
operation. Privileges need to be assigned manually to compensate for missing input data. Privileges
need to be corrected, input data need to be temporarily overridden, policy exceptions has to be
made. There are many things that need to do manually. Such decisions are made almost on day-to-
day basis. For ABAC and similar systems this would mean that a policy needs to be updated on a
day-to-day basis. And ABAC is not designed for that.

This leads to another big problem of ABAC and similar "flexible" access control models. Even if HR
are data are correct, the data usually do not provide all the information needed to completely
provision the user with privileges. The HR data are often limited to organizational unit and formal
code of the work position. However, this is often miles away from the job that user really does. The
usual solution to this problem is that the user requests the privileges that are needed to to a job.
Such request is then routed through appropriate approval process. And that request is a big
problem for ABAC. What should the user request to get the privileges? Should the user request a
change in ABAC policy? That would not be practical. Should the user request a new value for an
attribute? Which attribute? And what value that should be? Can be somehow create a catalog of the
things that a user can request? Once again, ABAC is not designed for this. But all those problems are
very easy to solve in RBAC. User is expected to request a role. And it is quite easy to create a role
catalog. But as ABAC does not have roles, there is nothing that a user can get a grip on. There is no
"handle" that would allow the user to make sense from the ABAC policies.

This is all a consequence of yet another ABAC problem. While ABAC policy may be easy to set up, it
is quite difficult to analyze and maintain. Which users are affected by this particular policy
statement? How many users will be affected if I make this change to ABAC policy? ABAC systems
would need a complex simulation algorithms to answer those questions. However, it is all quite
trivial in RBAC. Policies are encapsulated into roles. Therefore, only the users that have those roles
are affected. The roles also divide the policy to a smaller, manageable pieces. Each of the roles can
have its own state and lifecycle. Therefore, it is not that difficult to work with two versions of the
same role at the same time. Old version is still assigned to some users, but we are deprecating that
and slowly migrating to a new version. Such continuous processes are difficult to do in ABAC.

And there is still one crucial problem when ABAC is used in provisioning scenarios. ABAC policies
often benefit from the fact that complete data about the user accessing the system are available
when the access control decision is made. The crucial part of that data is called context. This

227

includes data such as time of day, network location of the user, recent events related to the user,
real-time estimate of the risk and so on. However, such data are simply not available in
provisioning scenarios. Accounts are usually provisioned long before the first access to the account
is made. Therefore, many of the advantages of ABAC are useless in identity management scenarios
that rely on provisioning.

However, ABAC is not a complete failure. ABAC is very useful in customer-oriented identity and
access management (CIAM). Customer identities are usually "lightweight" and the policies are
simple. But when there is a need to manage employees, teachers, contractors and similar
"heavyweight" identities then ABAC almost always fails.

The fact that ABAC fails in complex practical IDM deployments does not mean that RBAC is ideal.
Quite the contrary. RBAC has problems of its own and the applicability of pure RBAC in practical
IDM deployments is very limited. Many of the problems of RBAC model motivated engineers to
develop ABAC and similar models. In fact, the "algorithmic" idea of ABAC is not entirely bad. Only if
we had a way how to combine ABAC and RBAC … Oh, but there is a way! We did it already.

MidPoint combines RBAC and ABAC by putting expressions into roles. We have seen that already.
When role is assigned, the expressions in the role gets evaluated. And there can be any complex
algorithm in the expression, even a complete ABAC policy. At least in theory. MidPoint expressions
do not make access control decisions, because it is not the job of an IDM system to make such
decisions. IDM system should set up the account. It provides the "material" for an authorization
system to make a correct decisions. Therefore, midPoint goes as close to ABAC as a provisioning
system can go. In an extreme case the entire ABAC policy can be implemented in outbound
expressions in resource definition. But there is a good reason nobody does that.

Dividing the policy into smaller parts brings substantial advantage. Therefore many midPoint
deployments are very RBAC-like. There are many roles and rich role hierarchies. Role expressions
are used in moderation. But there are also deployments that are using parametric roles and role
expressions extensively. In such cases there is a smaller number of roles, almost no role hierarchy,
but the roles are smarter. Those are more ABAC-like deployments. But roles are still there. The roles
act as "handles" for users to understand the policies, to give names to relevant parts of the policy.
This combined approach works surprisingly well.

Of course, this idea is not new. Many RBAC-like systems use some kind of "smart" behavior inside
the roles. However, so far we haven’t seen anything as comprehensive as midPoint role-based
access control model. Therefore we had to invent an impressive marketing name for our creation.
Due to a momentary lapse of imagination we dubbed it Advanced Hybrid RBAC. But whatever you
choose to call it, the fact is that this approach is very useful in practice. It can transform apparent
chaos into something that can be efficiently managed.

228

Chapter 8. Object Templates
Scientists study the world as it is; engineers create the world that has never
been.

— Theodore von Kármán

Identity management systems are often seen as integration engines that move data from one
system to another system. This is indeed a very important part of the identity management
functionality. However, the things identity management systems do internally are crucial to all
identity management deployments - especially those that deal with identity governance and
compliance.

MidPoint does quite a lot of things that may not be entirely obvious on the outside. There are rules
to apply, processes to drive, policies to enforce and so on. Those things are gaining utter importance
at that strange boundary where identity management becomes identity governance. There are
complex and very powerful mechanisms allowing midPoint to implement identity governance. But
more on that later. We need to start with simple things. The simplest of those internal mechanisms
is the functionality of object template.

Object Templates
Data that come to midPoint are seldom complete and clean. Quite the contrary. The data that come
from the "feeds" are often incomplete, they are not very precise and sometimes several sources
may not even agree on a value for a particular data item. Inbound mappings can be used to sort out
some of these problems. However, inbound mappings are designed to work in isolation. They work
only for one particular resource. However, it is often needed to gather data from several resources
and then look at all of them at once. Inbound mappings cannot do that very well, as they are tied to
a particular resource. However, they can be used to gather all the relevant data in the user object.
Then we can use some kind of mechanism to have a look at user object when those data are
gathered together. That is what object templates do.

Simply speaking, object template is a set of mappings that is applied to a particular midPoint object.
For example, user template is applied to all user objects. The mappings in the object template can
produce new values for the object. For instance, a very typical use of object template is computation
of user’s full name:

229

object-template-user-simple.xml

<objectTemplate oid="22f83022-b76d-11e9-8a30-6ffc11b23016">
 <name>User Template</name>
 <item>
 <ref>fullName</ref>
 <mapping>
 <strength>weak</strength>
 <source>
 <path>givenName</path>
 </source>
 <source>
 <path>familyName</path>
 </source>
 <expression>
 <script>
 <code>givenName + ' ' + familyName</code>
 </script>
 </expression>
 </mapping>
 </item>
</objectTemplate>

The mapping above will compute the value of user’s fullName property from givenName and
familyName by using a simple Groovy expression. It is a weak mapping, therefore it will compute the
full name only in case that it is not present already.

Object template can be used to do variety of things to all kinds of midPoint objects. This chapter will
cover the most important functionality of object templates.

Importing an object template definition into midPoint will not do much. The template will not be
used just by being imported. There can be several object templates for different types of objects,
archetypes and even organizations. MidPoint will not know how to use the template. Therefore, the
use of the template needs to be specified in a configuration. The simplest and most common way to
use an object template is to configure its use in the system configuration.

<systemConfiguration>
 ...
 <defaultObjectPolicyConfiguration>
 <type>UserType</type>
 <objectTemplateRef oid="22f83022-b76d-11e9-8a30-6ffc11b23016"/>
 </defaultObjectPolicyConfiguration>
 ...
</systemConfiguration>

This configuration activates the object template for use by all object of UserType type. Therefore, this
template will be applied to all midPoint users.

Alternatively, user interface can be used to activate an object template. Navigate to Configuration ›

230

System › Object policy, create a new policy using the btn:New[] button. Specify reference to your
template, select User in type field and click btn:Save[].

User template is applied every time an object is changed or explicitly recomputed (e.g. on
reconciliation). User template is applied after all the inbound mappings are processed. Inbound
mappings often copy important data to the focal objects (e.g. user objects). Therefore, the template
can work on a data that are summarized from all the resources.

Item Definitions In Object Template
We have already seen how object template can be used to apply mappings on particular items of
midPoint objects. But object template can also do other tricks. We will have a look at some of them
here.

The processing of an object template is almost always focused on particular items of an object.
Therefore, almost all the object template functionality is located in item element that references a
particular item by its path:

<objectTemplate oid="22f83022-b76d-11e9-8a30-6ffc11b23016">
 <name>User Template</name>
 <item>
 <ref>fullName</ref>
 ...
 </item>
 <item>
 <ref>assignment</ref>
 ...
 </item>
</objectTemplate>

The most common use of object template is to run mappings on items, such as the mapping to
determine user’s full name above. Target of the mapping is automatically set to the item for which
it is specified. Sources of the mapping need to be defined explicitly. But the basic idea is, that the
user template should take properties of user as inputs. In other words, user template works on the
same user object both as input and output.

Object template mappings often use static (literal) values or a very simple expressions, but mapping
conditions are used to control application of the value. The easiest way to explain this is to use a
simple example:

231

<objectTemplate>
 ...
 <item>
 <ref>description</ref>
 <mapping>
 <source>
 <path>extension/hatSize</path>
 </source>
 <expression>
 <value>WARNING: Big brain!</value>
 </expression>
 <condition>
 <script>
 <code>hatSize > 60</code>
 </script>
 </condition>
 </mapping>
 </item>
 ...
</objectTemplate>

This mapping works for description property of the user. The mapping sets a fixed warning text
specified as text literal in the mapping by using value expression evaluator. However, the mapping
is not setting that value for all the objects. The mapping is applied only for objects that satisfy the
condition. The condition is set to trigger for all the users that have hat size larger than 60.

However, mappings are made to be relativistic. This means that mappings react to changes. The
same principle applies to mapping conditions. They are also relativistic. Therefore the mapping
reacts to changes in the condition state. When user’s head grows and the hat size changes to a value
over 60, then the mapping will add the warning. When the user’s head shrinks, then the warning
disappears.

It may look that this mechanism is too complicated, if you look at single-valued properties only. But
it all starts to make sense in case of multi-value items. Such as the assignments. But more on that in
the next section.

While mappings are the things that object template does almost all the time, the template can also
do other interesting things. First of all, object template can tweak the schema. MidPoint comes with
a rich schema that is prepared to be used. However, the schema is not a perfect fit for all the
deployments. Previous chapter described a method to extend the schema. But what we should do if
we want to change the built-in schema of midPoint? Yes, object template is the right answer. The
item specification can be used to modify the way how midPoint applies the schema:

232

<objectTemplate>
 ...
 <item>
 <ref>givenName</ref>
 <displayName>First Name</displayName>
 </item>
 <item>
 <ref>additionalName</ref>
 <displayName>Middle Name</displayName>
 </item>
 <item>
 <ref>familyName</ref>
 <displayName>Last Name</displayName>
 </item>
 ...
</objectTemplate>

The "additional name" is a nice and generic term that can fit many cultural environment. However,
it is not very usual or intuitive in cultures that are not used to it (which means pretty much all the
cultures). Therefore, almost all midPoint deployments that chose to use this property would like to
rename it to something that feels more natural. Similarly for "given name" and "family name",
which do not fit well in all the cultural environments. We have expected that and object template
can be used to modify some aspects of built-in schema.

Object template can also be used to override object multiplicity, especially to change mandatory
item into optional. MidPoint insists on having name set for all the users. But we may be able to
compute a name from other properties, such as other user names, employee number or other
identifiers, if we don’t want to present name item as mandatory in the user interface. We can
compute the value of user’s full name from given name and family name. Therefore user may leave
full name blank in the user interface. But user interface is driven by the schema. As name is
mandatory in the schema, also the user interface will insist that the name field should be filled in.
But this can be changed in the object template:

<objectTemplate>
 ...
 <item>
 <ref>name</ref>
 <limitations>
 <layer>presentation</layer>
 <minOccurs>0</minOccurs>
 </limitations>
 <mapping>
 ...
 </mapping>
 </item>
 ...
</objectTemplate>

233

This configuration will make the name optional for the presentation purposes. This means that the
user interface will treat name as optional. But core midPoint engine will still require the name to have
a value. This gives object template a chance to generate the value for name. However, this means
that name will still be present as read-write item in the user interface. We do not want that as name is
supposed to be immutable identifier. We want to present name as read-only item. This can also be
achieved by object template by using access configuration:

<objectTemplate>
 ...
 <item>
 <ref>name</ref>
 <limitations>
 <layer>presentation</layer>
 <minOccurs>0</minOccurs>
 <access>
 <read>true</read>
 <add>false</add>
 <modify>false</modify>
 </access>
 </limitations>
 <mapping>
 ...
 </mapping>
 </item>
 ...
</objectTemplate>

Even immutable identifiers may need to change occasionally. There may be a bug
in the identifier generator. Or some identifier has to change manually to adjust to
the reality. Theoretically, every piece of the solution should play by the rules. But
we know that rules have exceptions in the practice. Therefore, privileged users
such as system administrator should be able to change the identifiers if really
needed. The proper way how to do this would be to use authorizations and not
object template. But we do not know how to use authorizations yet. Therefore this
solution will have to do for now.

Object template can be used to adjust how midPoint user interface interprets the schema. But
perhaps the most extreme measure is to eliminate certain item entirely. In fact, this happens quite
often. MidPoint schema is rich and many deployments do not use all the items in midPoint schema.
It makes little sense to present the items that are not used, therefore there is a way to tell midPoint
that we want to completely ignore an item:

234

<objectTemplate>
 ...
 <item>
 <ref>employeeNumber</ref>
 <limitations>
 <layer>presentation</layer>
 <processing>ignore</processing>
 </limitations>
 </item>
 ...
</objectTemplate>

Object template can be used to do further tricks. It can be used to associate value enumeration with
an item, e.g. to apply lookup table to a particular item. Object templates can be used to set up a
validation expression for items. And a couple of other things. But more on that later.

Automatic Role Assignment in Object Template
Object templates are very flexible and they can be used for a lot of different things. But there is one
particular usage of object template that appears in almost every deployment. It is an ability to
automatically assign roles.

The basic idea is quite simple. An assignment is just an ordinary item. If we use object template
mapping to populate that item with appropriate value, we will get automatic assignment of roles.
Like this:

<objectTemplate>
 ...
 <item>
 <ref>assignment</ref>
 <mapping>
 ...
 </mapping>
 </item>
 ...
</objectTemplate>

The trick here is to set up the mapping correctly. The simplest case is a conditional assignment of a
role. Let’s suppose that we want to assign a Hatter role to everybody that has provided a hat size in
user profile. We already know what to do, don’t we? Let’s use mapping condition:

<role oid="c38a5e6e-b783-11e9-b82f-ebb94fb5b6ec">
 <name>Hatter</name>
 ...
</role>

235

object-template-user.xml

<objectTemplate>
 ...
 <item>
 <ref>assignment</ref>
 <mapping>
 <source>
 <path>extension/hatSize</path>
 </source>
 <expression>
 <value>
 <targetRef oid="c38a5e6e-b783-11e9-b82f-ebb94fb5b6ec" type=
"RoleType">
 </value>
 </expression>
 <condition>
 <script>
 <code>hatSize as Boolean</code>
 </script>
 </condition>
 </mapping>
 </item>
 ...
</objectTemplate>

Simple, isn’t it? The value part in the expression is an inside of a new assignment to create. And the
assignment will be created on a condition that hatSize has a non-null, non-empty and non-zero
value (that is a built-in evaluation of booleans in Groovy). The real trick here is the relativity of
mapping conditions. Assignments are multi-valued. Therefore it is important to know when to add
a value and when to remove one. MidPoint evaluates the condition twice. The condition is
evaluated for an object before a change is applied (old object) first. The the condition is evaluated
for an object after the change is applied (new object) once again. When the condition changes from
false to true, Hatter role is assigned. When the condition changes from true to false, Hatter role is
unassigned. Other assignments values are not changed by this mapping. Therefore many
assignment mappings can happily coexist.

However, this is a very simple case. Typical midPoint deployments will have many roles. It is
theoretically possible to create mappings like this for each and every role that has to be assigned
automatically. But that would be a lot of repetitive work. And even worse, it is likely to become a
major maintenance nightmare in the future. We are creative people and we do not really like
repetitive work. And we really hate maintenance nightmares. Therefore it is perhaps no big
surprise that there is a better way to do this.

The most common use case for automatic role assignment is to look up the role using some of its
properties. For example, let’s have suppose that our HR system provides job codes for our
employees. Therefore we have extended midPoint schema with a custom property jobCode:

236

<xsd:schema targetNamespace="http://example.com/xml/ns/midpoint/schema">
 ...
 <xsd:complexType name="UserTypeExtensionType">
 <xsd:annotation>
 <xsd:appinfo>
 <a:extension ref="c:UserType"/>
 </xsd:appinfo>
 </xsd:annotation>
 <xsd:sequence>
 ...
 <xsd:element name="jobCode" type="xsd:string"
 minOccurs="0" maxOccurs="1"/>

 ...
 </xsd:sequence>
 </xsd:complexType>
</xsd:schema>

A user object that is created from an HR record looks like this:

<user>
 <name>bob</name>
 <extension>
 <exmpl:jobCode>S007</exmpl:jobCode>
 </extension>
 <fullName>Bob Brown</fullName>
 ...
</user>

Then we do similar extension for roles. We extend role schema with custom autoassignJobCode
property:

237

<xsd:schema targetNamespace="http://example.com/xml/ns/midpoint/schema">
 ...
 <xsd:complexType name="RoleTypeExtensionType">
 <xsd:annotation>
 <xsd:appinfo>
 <a:extension ref="c:RoleType"/>
 </xsd:appinfo>
 </xsd:annotation>
 <xsd:sequence>
 ...
 <xsd:element name="autoassignJobCode" type="xsd:string"
 minOccurs="0" maxOccurs="1"/>

 ...
 </xsd:sequence>
 </xsd:complexType>
</xsd:schema>

And then we set up the roles:

<role oid="a1572de4-b9b9-11e9-af3e-5f68b3207f97">
 <name>Sales Manager</name>
 <extension>
 <exmpl:autoassignJobCode>S006</exmpl:autoassignJobCode>
 </extension>
 ...
</role>

<role oid="b93af850-b9b9-11e9-8c2c-dfb9a89635a0">
 <name>Sales Agent</name>
 <extension>
 <exmpl:autoassignJobCode>S007</exmpl:autoassignJobCode>
 </extension>
 ...
</role>

<role oid="b9d2b604-b9b9-11e9-bbc4-17d8e85623b4">
 <name>Sales Assistant</name>
 <extension>
 <exmpl:autoassignJobCode>S008</exmpl:autoassignJobCode>
 </extension>
 ...
</role>

We are almost there. The final part of this puzzle is an object template mapping that automatically
assigns the roles according to job code. Naive solution would be to create one mapping for each job

238

code. But we do not want that. We want something smarter. We want a single mapping that can
work for all these roles. Such mapping needs to dynamically look up the role when it is evaluated. It
is certainly possible to create such mapping in Groovy script. But that is not entirely
straightforward. And in fact, this use case is a very common one. Role autoassignment is a part of
almost every IDM solution in one form or another. Therefore we have created a special expression
evaluator to make this job easy. Enter assignmentTargetSearch expression evaluator:

object-template-user.xml

<objectTemplate>
 ...
 <item>
 <ref>assignment</ref>
 <mapping>
 <source>
 <path>extension/jobCode</path>
 </source>
 <expression>
 <assignmentTargetSearch>
 <targetType>RoleType</targetType>
 <filter>
 <q:equal>
 <q:path>extension/autoassignJobCode</q:path>
 <expression>
 <path>$jobCode</path>
 </expression>
 </q:equal>
 </filter>
 </assignmentTargetSearch>
 </expression>
 </mapping>
 </item>
 ...
</objectTemplate>

Now, is this how "easy job" looks in midPoint? Yes, in fact, it is. But do not panic. Not yet. It all
makes perfect sense once it is explained. The code above is a part of user template. It is a mapping
that is producing assignments. This mapping has an ordinary source which is user’s jobCode. This
mapping also has an expression. But that expression is somehow extraordinary. It is not the usual
script, path or value. The expression evaluator is assignmentTargetSearch. This is a special evaluator
that looks for assignment target, creates a complete assignment from that target and provides that
assignment as an output. The interesting part here is the way how assignmentTargetSearch looks for
assignment target. First of all, there is a targetType clause, which tells the expression to look for
roles as assignment target. And then there is a search filter. We have already seen midPoint search
filters a couple of times, for example in a form of correlation expression. This is yet another use for
search filters. In this case, the filter is used to look up appropriate role in midPoint repository. The
filter looks up the roles by the autoassignJobCode value. But what value do we require here? Static
value such as S007 will not really help as that means that we will need one mapping for each role.
We need to make this query dynamic and smarter. You probably know the answer already as the

239

same approach was used in correlation expressions. We simply use an expression instead of static
value. In this case, we use path expression that point to jobCode variable. Job code is a source for
this mapping, therefore it will be present as a variable in all the expressions of the mapping. So
when the expression is processed for Bob then the final filter looks like this:

<filter>
 <q:equal>
 <q:path>extension/autoassignJobCode</q:path>
 <q:value>S007</q:value>
 </q:equal>
</filter>

That filter is used to look for a role. The Sales Agent role is found. And this roles is used to construct
an assignment with the role as a target:

<assignment>
 <targetRef oid="b93af850-b9b9-11e9-8c2c-dfb9a89635a0" type="RoleType"/>
</assignment>

And that is it! That assignment is added to the user object. Which means that Bob has that role
assigned now:

<user>
 <name>bob</name>
 <extension>
 <exmpl:jobCode>S007</exmpl:jobCode>
 </extension>
 <assignment>
 <targetRef oid="b93af850-b9b9-11e9-8c2c-dfb9a89635a0" type="RoleType"/>
 </assignment>
 <fullName>Bob Brown</fullName>
 ...
</user>

This single mapping will work for all the cases of all the current job codes and future job codes.
That is how we like it.

Clever reader is surely amused at this point. As you can see, we have put an
expression into an expression, so now midPoint can evaluate while it evaluates.
There is an assignmentTargetSearch expression, inside that is a search filter and
inside the search filter there is a path expression. This is one of the basic tenets of
midPoint philosophy: we reuse and combine the mechanisms that we already
have. The second expression could be any midPoint expression that makes sense
here, e.g. it could be a script. The filter can be much more complex, and it can have
several expressions. Full power of midPoint is at your disposal here.

240

Of course, this could all have been done with one smart groovy script instead of
assignmentTargetSearch expression. And if you prefer it that way, you are free to do it. It will work.
But assignment is a complex data structure and assignmentTargetSearch makes work with that
structure easier. It can set up validity constraints, relation and other assignment details. It can also
create the target on demand in case the target is not found. It is quite powerful. But perhaps the
most important detail is that assignmentTargetSearch expression implements the use cases that are
common in almost every IDM deployment. And that functionality is maintained and tested as a
native part of midPoint. Therefore, you can simply reuse it in every midPoint deployment instead
of copying, adapting, testing and bugfixing one big groovy script over and over again.

Autoassignment in Roles
Automatic assignment of roles in the object template is not the only option. This is midPoint,
therefore there are usually several ways to do the same thing. For example, a mapping similar to
that assignmentTargetSearch mapping used above can be used as an inbound mapping. And there is
yet another way. Strictly speaking, this method has almost nothing to do with object template. But
as we are talking about role autoassignment, this is a good opportunity to cover all the options here.

The statements that control automatic assignment of roles can be placed in the roles themselves:

role-cook.xml

<role oid="9f6add7c-b9bf-11e9-abf6-2348fcd328f1">
 <name>Cook</name>
 ...
 <autoassign>
 <enabled>true</enabled>
 <focus>
 <mapping>
 <source>
 <path>organizationalUnit</path>
 </source>
 <condition>
 <script>
 <code>
 organizationalUnit?.norm == 'kitchen'
 </code>
 </script>
 </condition>
 </mapping>
 </focus>
 </autoassign>
</role>

The mapping in the autoassign part of the role will be evaluated approximately at the same time as
other object template mappings. The mapping has no expression. There is no need to. MidPoint will
prepare complete assignment data structure. The mapping just has to decide when to apply that
assignment to the user and when not to apply it. That is what the condition is for. The expression in
this mapping is optional. If an expression is specified, then such expression can be used to further

241

set up the assignment. For example, it can set assignment activation, relation, parameters and so
on.

But wait, why is there this strange norm thing in the condition? Remember about Polystrings? The
organizationalUnit property is a polystring. Therefore it has orig part and norm part. In this case we
want to compare the norm part, as the organizational unit name may spelled as Kitchen or KITCHEN.
But in all those cases the norm part will be kitchen.

If fact, there is little trap for the unwary here. The obvious way to specify the expression would be
like this:

organizationalUnit == 'kitchen' // This is wrong!

However, such expression will always return false. The reason is that different data types are
being compared. The organizationalUnit property is polystring, while ‘kitchen’ is a string literal.
Polystring and string will never be equal regardless for their content. Therefore this form of the
expression is wrong. Following forms may be used instead:

organizationalUnit?.orig == 'Kitchen'
organizationalUnit?.norm == 'kitchen'
basic.stringify(organizationalUnit) == 'Kitchen'

The later form is using stringify() method from basic midPoint function library. This method
converts everything to string. Whatever data type is passed to this method the result is always a
string that can be safely compared.

But let’s get back to role autoassignment. When autoassign mappings are specified in the roles,
midPoint will process in a way that is very similar to object template mappings. This has benefits,
but there are also drawbacks.

The benefit of role autoassignment is manageability. The conditions are stored in roles themselves.
Therefore they are bound to the object that they assign. It is there, right in front of administrator’s
eyes. It may also be a benefit if delegated administration is used. E.g. a role owner may manage role
definition and the autoassignment condition in the same object. However, in that case beware of
the expressions. MidPoint expressions are very powerful. In fact, they are way too powerful for
secure delegated administration. Unconstrained midPoint expression can do pretty much anything.
It can bring down the system, read memory, modify data, it can do whatever it likes to do. There are
some safeguards that prohibit against accidental abuse, but a malevolent expression can easily
circumvent them. If you allow a user to specify an expression, you are pretty much giving away
keys to the kingdom. Therefore do not do it. At least not now. There is a code in midPoint that
implements expression profiles. The goal of the profiles is to constraint expression to only allow
safe operations. However, that functionality is not finished yet. If you are interested in this
functionality, then midPoint platform subscription is the way to get it fully implemented.

Role autoassignment has another drawback and that is performance. All the autoassignment
mappings need to be evaluated every time that user is recomputed. This means that all the roles
that contain the mappings need to be retrieved from midPoint repository. This may not be a big

242

deal for a small deployment with thousands of users and hundreds of roles. But the performance
hit is likely to be significant as the number of users and roles grows. Therefore, roles
autoassignment is not enabled by default. It has to be explicitly enabled in system configuration:

<systemConfiguration>
 ...
 <roleManagement>
 <autoassignEnabled>true</autoassignEnabled>
 </roleManagement>
 ...
</systemConfiguration>

But perhaps the most significant drawback of role autoassingment is that the mapping needs to be
in every role. There is no way how to use this mechanism to handle autoassignment of many roles
with just one mapping. But object template mappings can do that easily. Therefore, many
deployments chose to implement automatic assignment of roles by the means of object template or
inbound mappings.

Iteration
There are some use cases that pop out in IDM solutions all the time. One such case is the problem of
finding a unique identifier. This is a concern for almost any identifier, but it is particularly painful
when it comes to usernames. In midPoint world this means finding a value for name property. This
property much be unique for almost all the data types that midPoint supports.

The rational way would be to base usernames on something that is already unique and immutable
such as employee numbers or student identifiers. But those tend to be long numbers and people
often hate them. Therefore, many deployments chose to base usernames on real names of the user.
We can easily generate username for Alice Anderson. Maybe aanderson would be a good fit? And
this can indeed work quite well. Until Albert Anderson is hired. Then we need to get creative.
Obviously, alanderson will not work here. What about alianderson and albanderson? Oh no, we have
this ancient system that allows only ten characters in the username. And alianderson is too long.
What is even worse is that we would need to change Alice’s username. She will get really mad
about it. Not to mention changing usernames for pretty much everybody. That won’t do. Let’s go the
usual way. Let’s have aanderson and aanderson1. It is not elegant. But it will do the job. And Alice will
not get mad. You know, she is really scary when she gets mad.

This use case is so common that even very early midPoint versions supported it. This feature is
called iteration in midPoint terminology. The name suggests how the mechanism works. First step is
an attempt to create a user object in a perfectly normal way. This means that username aanderson is
created for Albert Anderson. The midPoint checks if that username is unique. In this case the
username is not unique as it is already taken by Alice. That is the point when midPoint starts
iterating. MidPoint creates iteration token. Iteration token is a short string that changes in every
iteration. In our case, the iteration token will be set to 1. Then midPoint re-evaluates all the object
template mappings. Mappings that are supposed to create a unique values need to use that token.
They should look like this:

243

<objectTemplate>
 ...
 <item>
 <ref>name</ref>
 <mapping>
 <source>
 <path>givenName</path>
 </source>
 <source>
 <path>familyName</path>
 </source>
 <expression>
 <script>
 <code>
 givenName?.norm[0] + familyName?.norm + iterationToken
 </code>
 </script>
 </expression>
 </mapping>
 </item>
 ...
</objectTemplate>

When this mapping is evaluated for the first time, the iteration token is empty. Therefore it will
make no difference for the normal processing. But when the mappings are re-iterated, the token is
set to 1. Result of this mapping will be aanderson1. Which is unique username. Therefore iteration
stops there and normal processing continues. In case that even aanderson1 is not unique, the
iteration continues. Usernames aanderson2, aanderson3 and other variants are tried. The iteration
continues until a unique username is found or until iteration limit is reached.

The expression to generate name as provided above is nice and simple. However,
reality is not that simple. There are going to be users without given names or
family names. Using the script above would produce some ugly null strings in that
case. Real-world script has to account for that, generating more sensible
usernames. Also, there is administrator user, which we usually do not want to
rename. For the curious, a more sophisticated script is provided in object-
template-user.xml file in book samples.

Iteration functionality is disabled by default. Therefore any conflict in username will result in hard
error. This makes sense, as no amount of iterations will make any difference until the iteration
token is used in the expressions. We also want to set maximum number of iterations. E.g. there may
be a bug in the mappings that may cause endless iterations. The iteration functionality can be
enabled by specifying iterationSpecification element and setting iteration limit:

244

object-template-user.xml

<objectTemplate>
 ...
 <iterationSpecification>
 <maxIterations>5</maxIterations>
 </iterationSpecification>
 ...
</objectTemplate>

Iteration tokens are strings that are created from iteration number. It is the iteration number that
really matters for midPoint. Iteration token can take variety of forms, it can be numeric, it may be
alphanumeric, fixed length, variable length or anything else. Some mappings will not use the token
at all. E.g. mappings that subsequently add letters from given name to the username. Therefore,
both iteration number and iteration token are exposed to the mappings. There are two variables:

• iteration variable contains iteration number. It is always numeric, starting with zero (0).
Iteration zero means normal processing. Iteration one happens after the first conflict.

• iterationToken variable contains a string that is derived from the iteration number.

There is default algorithm that derives iteration tokens from iteration number. The algorithm is
illustrated in following table.

Iteration The value of iteration
variable

The value of iterationToken
variable

Normal processing 0 "" (empty string)

First iteration 1 "1"

Second iteration 2 "2"

The algorithm is designed to put empty value in the iterationToken during normal processing. The
idea is that iterationToken variable can be safely used for both the normal processing and the
iterations. This is just a default algorithm and it will not fit all the deployments. Therefore, a custom
mechanism to derive iteration token can be specified. For example, we may not like to have
aanderson and aanderson1. Which one of these is number one and which is number two anyway?
Let’s skip aanderson1 and let’s use aanderson2 for the first iteration. The iteration number cannot be
changed as the iteration sequence is fixed. But there is no problem for iteration 1 to produce
iteration token "2". This can be achieved by specifying a custom algorithm for the token:

245

object-template-user.xml

<objectTemplate>
 ...
 <iterationSpecification>
 <maxIterations>5</maxIterations>
 <tokenExpression>
 <script>
 <code>
 if (iteration == 0) {
 return ''
 } else {
 return iteration + 1
 }
 </code>
 </script>
 </tokenExpression>
 </iterationSpecification>
 ...
</objectTemplate>

This algorithm will produce sequence of aanderson, aanderson2, aanderson3 and so on.

Iteration number and iteration token is the same for the entire object template. All the mappings
will see the same value and all the mappings are recomputed when there is a need to re-iterate.
This means that iteration token can be used in other mappings. For example, use of the token in e-
mail address is a very common case:

246

object-template-user.xml

<objectTemplate>
 ...
 <item>
 <ref>emailAddress</ref>
 <mapping>
 <source>
 <path>givenName</path>
 </source>
 <source>
 <path>familyName</path>
 </source>
 <expression>
 <script>
 <code>
 givenName?.norm + '.' + familyName?.norm
 + iterationToken + '@example.com'
 </code>
 </script>
 </expression>
 </mapping>
 </item>
 ...
</objectTemplate>

This mapping will produce a sequence of albert.anderson@example.com,
albert.anderson2@example.com and so on (assuming that customized token expression is also
applied). Shared value of iterationToken means that the values of e-mail address are consistent
with the values of username. If username of aanderson2 is generated then the e-mail address will be
albert.anderson2@example.com. The same iteration token is used.

However, it all becomes interesting when it comes to e-mail addresses and other identifiers that are
publicly exposed. It is one thing to have username aanderson2. That username is used to log into the
system, but is it not very visible outside the system. However, an e-mail address is exposed to a lot
of people. It may be strange to have e-mail address of albert.anderson2@example.com, while there is
no albert.anderson@example.com in the company. This can be solved by making the mapping for e-
mail address smarter. It can ignore the iteration token and try to create an e-mail address without
the token. But in that case it needs to explicitly check for uniqueness. There are two ways to do that.
First method is to check for e-mail address uniqueness inside the e-mail mapping. There is a
isUniquePropertyValue(…) method in midPoint function library that is designed for this purpose:

247

<objectTemplate>
 ...
 <item>
 <ref>name</ref>
 <mapping>
 <source>
 <path>givenName</path>
 </source>
 <source>
 <path>familyName</path>
 </source>
 <expression>
 <script>
 <code>
 def plainAddress = givenName?.norm + '.' + familyName?.norm
 + '@example.com'
 if (midpoint.isUniquePropertyValue(focus, 'emailAddress',
 plainAddress)) {
 // Bingo! We have unique address
 } else {
 // Address not unique.
 // We have to use iteration token here.
 }
 </code>
 </script>
 </expression>
 </mapping>
 </item>
 ...
</objectTemplate>

The problem with this approach is that there may be corner cases. We might need to force another
iteration even if the username is unique. MidPoint checks only for uniqueness of username by
default. But is possible that even if aanderson2 username is available, the
albert.anderson2@example.com address is already taken. This may be an error in the data,
administrator’s mistake, or it may be a remain of retired Albert Anderson senior that worked in the
company years ago, but his e-mail address was never deprovisioned. The e-mail address mapping
can detect this situation. However, what is the mapping supposed to do when it detects a problem?
It makes no sense to have username aanderson2, and e-mail address albert.anderson3@example.com
or albert.anderson.X@example.com or anything similar. What would make sense is to re-iterate and
produce username aanderson3 and e-mail address albert.anderson3@example.com. That would be
consistent. However, the mapping cannot do that by itself. Therefore, there is another iteration
expression for this purpose: post-iteration condition. It is a condition that will be executed after the
iteration is completed. If the condition returns true, then the iteration will be accepted as valid, and
the generated values will be used. If the condition returns false, then midPoint will re-iterate and
yet another iteration will be tried.

248

<objectTemplate>
 ...
 <iterationSpecification>
 ...
 <postIterationCondition>
 <script>
 <code>
 def email = ... // Code to generate or retrieve e-mail
 return midpoint.isUniquePropertyValue(focus,
 'emailAddress', email)
 </code>
 </script>
 </iterationSpecification>
 ...
</objectTemplate>

The code above does not do much in case the e-mail address is unique. It returns true, the iteration
is accepted, and everything goes as usual. In case that the e-mail address is not unique, the code
returns false. In that case, midPoint will discard all the results of the iteration, increment iteration
counter and re-try the iteration.

There is yet another mechanism that can be used here: pre-iteration condition. It is a condition that
will be executed prior to iteration. If it returns true, then the iteration will continue. If it returns
false, then midPoint will re-iterate. The difference here is that this condition will be executed
before all the other mappings are evaluated. Therefore, it may be used to avoid evaluation of
expensive mappings just to discard the values that they produce.

Finding identifier values and uniqueness checks are messy stuff. They are not entirely reliable.
There is a delay between the time when uniqueness is checked and the time when the record is
actually written into database. Therefore strange things can happen. Duplicate identifiers may be
generated or attempt to create a user may end up with an error, especially under high loads. The
delay between check and write cannot be entirely avoided. We could lock the data during that time,
but that would have significant impact on system performance. What we can do to improve the
situation is to check the uniqueness on database level and gracefully handle the errors. This is
currently implemented only for usernames and even for that the implementation is not perfect.
Implementation of strict uniqueness constraints for other properties is possible, but it is no easy
endeavor. The values need to be normalized, this can influence database schema and so on.
Nevertheless, it is still feasible. In case you are interested, midPoint platform subscription is the
best approach for you.

When it comes to human-friendly identifiers, there is yet another trouble. People tend to change
their minds. They also like to have all kinds of crazy ideas, such as the urge to get married. The
result is that the names of people change. In fact, they change surprisingly often. When user-
friendly identifiers are used, change in user’s name usually means a change in the identifiers. This
is known as the rename problem, and you can observe a glimpse of fear in the eyes of all
experienced IDM engineers every time it is mentioned. Overall, midPoint handles renames very
well. Primary identifier of any midPoint object is an OID, not a name. OIDs do not change.
Therefore, as long as midPoint is concerned, nothing special happens when user’s name is changed.

249

The change is picked up by mappings, recomputed and stored. However, iterations and uniqueness
checks may complicate the things here. MidPoint remembers the iteration number for all objects
that went through an iteration process. This is necessary to get the same results from the mappings
every time that they are recomputed. Otherwise the identifiers may get re-generated on every
recompute. But there is a drawback to this approach. Let’s suppose that Carol Cooper had username
ccooper2. She got married and now her name is Carol Cunningham. Even though there is no
ccunningham in the system, her generated user name will be ccunningham2. The iteration token is
remembered and re-used during the rename process. The rename scenarios can be very
treacherous. We always recommend to test them thoroughly in any project where user renames are
possible.

Another drawback of those iterating algorithms is scalability and performance. Every time there is
a conflict the algorithm need to go through all the iterations. How many people named John Smith
can be in a large user population? We can easily get to jsmith42. This means that the next John
Smith will need to go through 42 iterations before the system figures out that the next available
username is jsmith43. And this gets worse with every John Smith added to the system. Therefore,
this iterative approach is not suitable for generating identifiers that are likely to require a lot of
iterations. Generating UNIX user and group numbers is a good example for identifiers that would
surely cause a disaster if an iterative approach is used. Fortunately, there is another mechanism in
midPoint that can support generation of such identifiers: sequences. More on that later.

Overall, the best strategy is to avoid using those generated human-friendly identifiers altogether.
The best choice would be something that is already unique, immutable and reasonably short.
Something like employee number, student identifier or partner ID are usually suitable. If that is not
acceptable, then the second best approach is to keep the algorithms simple. The simpler it is the less
likely it is to fail.

Includes
There are many ways to apply an object template to an object. The template can be set globally in
system configuration, it can be set by an archetype or even by an organizational unit. However,
only one object template can be active for any particular object at one time. Yet, there are often
mappings that need to apply universally. For example, we may want to generate full name using the
same algorithm for all users, regardless of their archetype. Or we may want to automatically assign
some roles to all users regardless of their organizational units. For that reason there is mechanism
to include one object template in another:

<objectTemplate oid="22f83022-b76d-11e9-8a30-6ffc11b23016">
 <name>Default User Template</name>
 <item>
 <ref>fullName</ref>
 <mapping>
 ...
 </mapping>
 </item>
</objectTemplate>

250

<objectTemplate oid="60eab6a8-ba87-11e9-b9a3-bbb8418de4d5">
 <name>Special User Template</name>
 <includeRef oid="22f83022-b76d-11e9-8a30-6ffc11b23016"/>
 <item>
 <ref>employeeNumber</ref>
 <mapping>
 ...
 </mapping>
 </item>
</objectTemplate>

In this case, the special user template includes all the mappings from default user template.
Therefore both mapping for employeeNumber and mapping for fullName will be processed.

Combining the Ingredients
It is time to put all the bits and pieces together. So far we have been talking about provisioning,
inbound synchronization, schema, RBAC and object templates. Let’s see how all the parts fit
together:

Everything starts with a synchronization process, whether it is reconciliation or live
synchronization. Synchronization process invoked the connector for the source resource (Resource
A). The connector retrieves the data from the source system. Shadow objects are created for all the
source accounts as soon as the data set foot in midPoint. Correlation expression is evaluated for all
new accounts to find their owners. Once we have owner of the account, we can execute inbound
mappings. This is the way how account data are reflected to midPoint user object, which is a focus
of the computation.

Next couple of steps is all about the focus. This is the part where object templates are executed,

251

assignment and roles are evaluated. Assignments and roles may contain construction statements.
Those are just collected at this stage. They are not evaluated yet. This focus policy phase of
computation is all about the focus. Which means that user object is both the input and output of
this computation.

Outbound phase takes place next. In this phase the focus of the computation (user) is projected to
accounts. This is the time when constructions are processed and the mappings inside them are
evaluated. Those constructions were collected from the assignments in the previous phase. They
are combined with outbound mappings specified in resource schema handling. All of that is mixed
together, sorted to resource accounts, all the values are computed. This is also the time when
attribute-level reconciliation takes place. We know what attributes the account should have,
therefore we can compare that with the values that the attributes have in reality. When all of that is
computed and processed, then a connector is used to update the target resource (Resource B).

This picture is still not entirely complete. It does not show policy rules, existence mappings,
approval processes, hooks and good deal of other advanced features. Yet, this picture is good
enough for now. It is good enough to create a simple solution.

Complete Deployment Example
We have all that we need to create a simple but mostly complete identity management solution. Our
environment and solution outline:

• HR system is a data input. It exports employee data into a CSV file. Employee number is a
primary key, there is employee first and last name and job code. There is no username or
password.

• We need to feed employee data into midPoint. Which means that we need to configure
synchronization.

• We need to generate unique and user-friendly username, compute full name and generate a
random initial password.

• We need to automatically assign roles based on job code from the HR system.

• We need to automatically provision account to LDAP server and CRM database table.

We can do that if we put together all that we have learned so far. Even though this is still quite a
simple example, the complete configuration is too large to put all of it into this book. It will take too
much space. And after all the detailed explanation in the previous chapters it will also get a bit
boring. Therefore, we will show only the interesting pieces of the configuration here. Complete
configuration can be found in the usual place. Please see Additional Information chapter for details.
These files represent the final configuration, the expected state at the end of this chapter.
Therefore, if you want to follow instructions in this chapter step-by-step you have to choose
appropriate parts of the files to import. Or you can just import everything and use the following
text as an explanation of the effects that you see.

Let us start with an HR resource. This is mostly the same resource definition as we have seen in the
Synchronization chapter. But there are few differences. First of all, the data feed is a bit different.
We have a new jobcode column there. It looks like this:

252

hr.csv

"empno","firstname","lastname","jobcode"
"001","Alice","Anderson","S006"
"002","Bob","Brown","S007"
...

Of course, the HR resource definition has to reflect those changes. We have defined a new custom
user property jobCode in our extension schema:

extension-example.xsd

<xsd:schema ...>
 <xsd:complexType name="UserExtensionType">
 <xsd:annotation>
 <xsd:appinfo>
 <a:extension ref="c:UserType"/>
 </xsd:appinfo>
 </xsd:annotation>
 <xsd:sequence>
 ...
 <xsd:element name="jobCode" type="xsd:string"
 minOccurs="0" maxOccurs="1">
 ...
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 ...
</xsd:schema>

The jobcode column is mapped to jobCode extension property in HR resource inbound mapping:

253

resource-csv-hr.xml

<resource oid="03c3ceea-78e2-11e6-954d-dfdfa9ace0cf">
 ...
 <schemaHandling>
 <objectType>
 ...
 <attribute>
 <ref>ri:jobcode</ref>
 <displayName>Job code</displayName>
 <inbound>
 <target>
 <path>$focus/extension/jobCode</path>
 </target>
 </inbound>
 </attribute>
 ...
 </objectType>
 </schemaHandling>
 ...
</resource>

The rest of the mappings that are defined in the HR resource is a bit boring. The interesting thing is
the mapping that is not there at all. The mapping for username (property name of the user object)
is missing. We will not generate username in the inbound phase. We just do not have enough data
to responsibly generate username just yet. Inbound phase is still running, user object is not fully
populate yet. Let’s postpone the decision about username for later.

Synchronization part of the HR resource definition is also a pretty standard one. This resource is an
authoritative source. Accounts will be correlated by the empno column matching the employeeNumber
user property. Linked accounts will be updated and new users will be created for unmatched
accounts. It is all the same routine as we have already described in Synchronization chapter.

Perhaps the most interesting part of this setup is object template. The template has several
responsibilities:

• Compute full name from first name and last name.

• Generate unique username.

• Generate e-mail address.

• Automatically assign basic employee role.

• Automatically assign the roles based on job code.

Let’s start with the simple thing: generating full name. At this point this is probably a no-brainer:

254

object-template-user.xml

<objectTemplate oid="22f83022-b76d-11e9-8a30-6ffc11b23016">
 ...
 <item>
 <ref>fullName</ref>
 <mapping>
 <source>
 <path>givenName</path>
 </source>
 <source>
 <path>familyName</path>
 </source>
 <expression>
 <script>
 <code>givenName + ' ' + familyName</code>
 </script>
 </expression>
 </mapping>
 </item>
 ...
</objectTemplate>

This is really simple. But it is much harder for username. We want to generate a user-friendly
username. We could simply use user’s last name. But this is very likely to create conflicts. Therefore
let’s combine last name with the first letter of first name. We will get nice usernames such as
aanderson, bbrown and so on. But there is still a chance of username conflict. So let’s add iteration
tokens into the mix. Like this:

255

object-template-user.xml

<objectTemplate oid="22f83022-b76d-11e9-8a30-6ffc11b23016">
 ...
 <item>
 <ref>name</ref>
 <mapping>
 <source>
 <path>givenName</path>
 </source>
 <source>
 <path>familyName</path>
 </source>
 <expression>
 <script>
 <code>
 if (givenName == null && familyName == null) {
 return null
 }
 if (familyName == null) {
 return givenName?.norm + iterationToken
 }
 if (givenName == null) {
 return familyName?.norm + iterationToken
 }
 givenName?.norm[0] + familyName?.norm + iterationToken
 </code>
 </script>
 </expression>
 </mapping>
 </item>
 ...
</objectTemplate>

This looks a bit more complicated that your have expected, doesn’t it? The basic idea is simple, so
why won’t equally simple expression work? Maybe something like this?

givenName[0] + familyName + iterationToken

The devil is, as usual, in the details.

Firstly, good part of any programming is error handling. Hence all the if-then statements. It may
look like those situations cannot happen in our little example. All the HR records have both first
and last name set, anyway. Therefore, they will never be null in the expression, will they? In fact,
they will. This is one small peculiarity of midPoint expressions. MidPoint works in a relative way.
Therefore, midPoint often evaluates old values of attributes and properties to figure out which
values to remove. The old values for any new user are null. Therefore, it may happen that the
expression is evaluated with null inputs. This may seem a bit annoying at the beginning. But you
will be more than grateful that your expressions are properly sanitized and null-safe when you get

256

to work with real data. Reality always finds a way to bring surprises.

Secondly, midPoint is built with multi-national environment in mind. It is 21st century already and
unicode is everywhere. Almost everywhere, that is. It is expected that the HR system stores names
with full national characters, such as Radovan Semančík. Yet, it is still not a common practice to use
national characters in usernames, e-mail addresses and so on. Therefore we usually want to
normalize the national characters to their ASCII-7 equivalents. That is what PolyString is for and
that is what the norm() methods are doing. The result is that the generated username will be
rsemancik instead of RSemančík.

But there is still one piece missing. We want to enable iteration to resolve naming conflicts.
Otherwise poor Arnold Anderson won’t have his accounts created because aanderson username is
already taken by Alice. We can enable iterations like this:

object-template-user.xml

<objectTemplate oid="22f83022-b76d-11e9-8a30-6ffc11b23016">
 ...
 <iterationSpecification>
 <maxIterations>5</maxIterations>
 <tokenExpression>
 <script>
 <code>
 if (iteration == 0) {
 return ''
 } else {
 return iteration + 1
 }
 </code>
 </script>
 </tokenExpression>
 </iterationSpecification>
 ...
</objectTemplate>

The maxIteration part up there is quite straightforward. We want to have some limit on the number
of iterations as we do not want to iterate forever. Most iteration sequences are short in practice. If
the iterative approach cannot find a match in several steps, then perhaps the iteration is not a good
method anyway. Therefore the limit is usually not a problem. But having a limit makes a huge
difference for troubleshooting. Most infinite iteration loops are caused by configuration errors. And
it is much better to get an error after a couple of seconds than to wait forever.

The second part of the iteration configuration is also quite clear for people that read this chapter
carefully. The default iteration token sequence is "", "1", "2", "3" and so on. But that would give us
aanderson, aanderson1, aanderson2 and so on. We do not want to have aanderson and aanderson1 as
that would be confusing. Therefore, we chose to skip the "1" token and start with "2". The custom
iteration token expression does just that.

As soon as we have the mapping for name in place, we can start testing the configuration. Go ahead
and import the HR resource, import object template, set the object template in the configuration

257

and do not forget to replace the HR CSV file. If you did any experiments with previous
configuration, it can be helpful to clean up midPoint by using the "delete all identities" process (that
little dropdown button in Repository objects page). When everything is set up, you can try to
manually import a single account from the HR resource by using the "import" button, located on
the page where you can list resource accounts. Once the basic configuration works, you can test
iterations by adding Arnold Anderson to the HR CSV file and importing the account. Do not forget to
switch from repository to resource view by clicking on the btn:Resource[] button on the top-left side
of the page. There is no synchronization task running, therefore MidPoint have not seen Arnold’s
account yet. You have to instruct midPoint to explicitly look at the resource. Once Arnold’s account
is imported a non-conflicting username should be selected for him:

We need to determine e-mail address next. In our case the mapping for e-mail address is quite
similar to username mapping:

258

object-template-user.xml

<objectTemplate oid="22f83022-b76d-11e9-8a30-6ffc11b23016">
 ...
 <item>
 <ref>emailAddress</ref>
 <mapping>
 <strength>weak</strength>
 <source>
 <path>givenName</path>
 </source>
 <source>
 <path>familyName</path>
 </source>
 <expression>
 <script>
 <code>
 if (givenName == null && familyName == null) {
 return null
 }
 if (familyName == null) {
 return givenName?.norm + iterationToken +
 '@example.com'
 }
 if (givenName == null) {
 return familyName?.norm + iterationToken +
 '@example.com'
 }
 givenName?.norm + '.' + familyName?.norm +
 iterationToken + '@example.com'
 </code>
 </script>
 </expression>
 </mapping>
 </item>
 ...
</objectTemplate>

This mapping should be quite understandable by now. There are the same checks for special cases.
Then the main expression at the end combines given name and family name in a slightly different
way to get an e-mail address. This is just a simple example for e-mail address that is a good fit for a
book. However, dealing with e-mail address is a bit more difficult in practice. A clever reader can
surely discover a couple of obvious issues. Firstly, the expression is using the same iteration token
than the username mapping is using. Therefore, the e-mail address for Arnold Anderson will be
arnold.anderson2@example.com.

This is what we get when we re-import or reconcile both Andersons:

259

This is not exactly what we want. Ideally, we would like to use much simpler versions
arnold.anderson@example.com. In this case there is no conflict with alice.anderson@example.com.
However, midPoint does not consider e-mail address to be an identifier, therefore it does not check
for its uniqueness. Also, there is only one iteration token that is reused for all the expressions in all
object template mappings. There are also primary e-mail accounts and account aliases, dealing with
account renames and temporary assignment of e-mail aliases and so on. Overall, dealing with e-
mail addresses is far from easy. Some of those issues can be solved with pre-iteration or post-
iteration conditions. However, it is quite likely that a completely custom code will be needed for a
more complex cases.

That is also one of the reasons to set strength of this mapping to weak. We want to set an e-mail
address automatically, but only in case that an address was not already specified manually. Weak
mapping will not overwrite existing value. Sometimes it is best not to automate everything, leave
the complex cases to system administrators to deal with.

Role autoassignment is the next step. Let’s start with something simple. All the records that come
from the HR resource are employee records. Therefore let’s assign Employee role to all of them. The
easiest way to do that is to use inbound mapping of HR resource:

260

resource-csv-hr.xml

<resource oid="03c3ceea-78e2-11e6-954d-dfdfa9ace0cf">
 ...
 <schemaHandling>
 <objectType>
 ...
 <attribute>
 <ref>ri:empno</ref>
 ...
 <inbound>
 <expression>
 <value>
 <!-- Employee role -->
 <targetRef oid="86d3b462-2334-11ea-bbac-13d84ce0a1df"
 type="RoleType"/>
 </value>
 </expression>
 <target>
 <path>assignment</path>
 </target>
 </inbound>
 </attribute>
 ...
 </objectType>
 </schemaHandling>
 ...
</resource>

This mapping is quite straightforward. Its expression produces a static targetRef value that is
placed in user’s assignment. The strange thing here is the placement of this mapping. It is placed in
the section that corresponds to empno attribute. This is inbound mapping, and it just has to be placed
somewhere. Any reasonable attribute would do. It does not really matter into which attribute it is
placed as it ignores attribute value anyway.

That was a very simple static mapping. It is perhaps too simple for practical use as there not many
cases when a role is assigned both automatically and unconditionally. The mapping above can be
slightly improved by adding a condition to the mapping. But that still has some limitations. For
example, inbound mappings cannot have more than one input. And being an inbound mapping,
this can only work with account attributes and therefore its behavior cannot be influenced by user
data changed in the user interface.

Autoassignment in inbound mapping is still useful and in fact it is also used quite often. Yet, there is
another way that is much more popular: autoassignment in object template mapping. That is what
we are going to do next. We are going to handle role autoassignment based on job code.

We want to demonstrate autoassignment in object template. Our object template works with user
object both as input and output. It cannot (or rather should not) reach out to the HR account to get
the value of jobcode attribute. We have to do that the other way around. We have to map HR
account attribute jobcode to midPoint user property jobCode by using an inbound mapping:

261

resource-csv-hr.xml

<resource oid="03c3ceea-78e2-11e6-954d-dfdfa9ace0cf">
 ...
 <schemaHandling>
 <objectType>
 ...
 <attribute>
 <ref>ri:jobcode</ref>
 <inbound>
 <target>
 <path>$focus/extension/jobCode</path>
 </target>
 </inbound>
 </attribute>
 ...
 </objectType>
 </schemaHandling>
 ...
</resource>

We can easily use the job code in object template mapping now:

262

object-template-user.xml

<objectTemplate oid="22f83022-b76d-11e9-8a30-6ffc11b23016">
 ...
 <item>
 <ref>assignment</ref>
 <mapping>
 <strength>strong</strength>
 <source>
 <path>extension/jobCode</path>
 </source>
 <expression>
 <assignmentTargetSearch>
 <targetType>RoleType</targetType>
 <filter>
 <q:equal>
 <q:path>extension/autoassignJobCode</q:path>
 <expression>
 <path>$jobCode</path>
 </expression>
 </q:equal>
 </filter>
 </assignmentTargetSearch>
 </expression>
 </mapping>
 </item>
 ...
</objectTemplate>

This is the same principle as we have used earlier in this chapter. The mapping is using
assignmentTargetSearch expression to look for roles where user’s jobCode and role’s
autoassignJobCode match. This mapping is strong as we want to recompute the mapping and set the
value all the times. If the mapping would be normal-strength, then the values are recomputed only
when jobCode changes. Which actually might be enough during normal operation of the system. But
making this mapping strong makes things much easier during testing. That is all for the mapping.
Now we need to prepare the roles for this mapping to work. We need to extend role schema first:

263

extension-example.xsd

<xsd:schema ...>
 ...
 <xsd:complexType name="RoleExtensionType">
 <xsd:annotation>
 <xsd:appinfo>
 <a:extension ref="c:RoleType"/>
 </xsd:appinfo>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="autoassignJobCode" type="xsd:string"
 minOccurs="0" maxOccurs="1">
 ...
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 ...
</xsd:schema>

Then we need a couple of roles with job codes in their extension:

role-sales-manager.xml

<role oid="a1572de4-b9b9-11e9-af3e-5f68b3207f97">
 <name>Sales Manager</name>
 <extension>
 <exmpl:autoassignJobCode>S006</exmpl:autoassignJobCode>
 </extension>
 ...
</role>

role-sales-agent.xml

<role oid="b93af850-b9b9-11e9-8c2c-dfb9a89635a0">
 <name>Sales Agent</name>
 <extension>
 <exmpl:autoassignJobCode>S007</exmpl:autoassignJobCode>
 </extension>
 ...
</role>

264

role-sales-assistant.xml

<role oid="b9d2b604-b9b9-11e9-bbc4-17d8e85623b4">
 <name>Sales Assistant</name>
 <extension>
 <exmpl:autoassignJobCode>S008</exmpl:autoassignJobCode>
 </extension>
 ...
</role>

That is all the configuration needed for autoassignment to work. The roles should be automatically
assigned to users when the users are recomputed. Just make sure that the users have their jobCode
properly set in the user object. If they do not have it then re-import them or run a reconciliation
task. Then go ahead and create some more roles for the missing job codes. No change in any of the
mappings is needed to support more job codes. Just create the roles and recompute. That is the
beauty of this solution. It is easy to maintain.

So far we have tackled the inbound phase and focus policy phase. But we have not talked about the
outbound (provisioning) phase much. Now it is the right time to have a look at that.

We are going to reuse the LDAP and CRM resources from previous chapters. Those resources are
used here pretty much unchanged. There is no need to change them. Outbound mappings in the
resource definitions specify the basic framework of the account. The key to provisioning flexibility
is usually not in the resource definition. It is in the roles. But let’s start in the simplest way possible
with the Employee role. ExAmPLE company policy states that every employee should have a very
basic LDAP account. Therefore, all we need is a very simple LDAP account construction that we
place into an inducement in the Employee role:

role-employee.xml

<role oid="86d3b462-2334-11ea-bbac-13d84ce0a1df">
 <name>Employee</name>
 <inducement>
 <construction>
 <!-- OpenLDAP -->
 <resourceRef oid="8a83b1a4-be18-11e6-ae84-7301fdab1d7c" />
 <!-- just basic account. Nothing special here. -->
 </construction>
 </inducement>
</role>

All employees get this role by the means of inbound mapping on HR resource. Therefore, all
employees will automatically get basic LDAP account. It is as simple as that. Put the construction in
the role, reconcile the HR resource or just recompute the users. LDAP accounts will be created.

But we want something that is a bit more fancy. Salespeople tend to be a bit sensitive when it comes
to their professional image. Therefore, they insist on having proper titles set up in company
directory. Not a problem. We can do that easily in their "job" roles. This is how it looks like for a
sales manager:

265

role-sales-manager.xml

<role oid="a1572de4-b9b9-11e9-af3e-5f68b3207f97">
 <name>Sales Manager</name>
 ...
 <inducement>
 <construction>
 <!-- OpenLDAP -->
 <resourceRef oid="8a83b1a4-be18-11e6-ae84-7301fdab1d7c" />
 <attribute>
 <ref>ri:title</ref>
 <outbound>
 <expression>
 <value>Sales Manager</value>
 </expression>
 </outbound>
 </attribute>
 </construction>
 </inducement>
</role>

This construction refers to the same account as the Employee role. MidPoint knows that, therefore
it does not attempt to create a new account. It just updates existing account with appropriate title.
However, we are not done yet. We need to provide access to CRM system for the salespeople. Should
we create a new role for that? Absolutely not. We do not want to have too many roles as every role
is a maintenance burden. Let’s just add new construction to an existing job role:

266

role-sales-manager.xml

<role oid="a1572de4-b9b9-11e9-af3e-5f68b3207f97">
 <name>Sales Manager</name>
 ...
 <inducement>
 <construction>
 <!-- OpenLDAP -->
 ...
 </construction>
 </inducement>
 <inducement>
 <construction>
 <!-- CRM -->
 <resourceRef oid="04afeda6-394b-11e6-8cbe-abf7ff430056" />
 <attribute>
 <ref>ri:accesslevel</ref>
 <outbound>
 <expression>
 <value>MANAGER</value>
 </expression>
 </outbound>
 </attribute>
 </construction>
 </inducement>
</role>

This is the only role that gives access to the CRM system for a sales manager. MidPoint knows that,
and it automatically creates a new CRM account when the role is assigned. Outbound mappings
from the CRM resource definition are used to set basic properties of CRM account, such as account
identifiers and password. In addition to that, the Sales Manager role sets appropriate access level to
the CRM system.

Our setup is almost complete now. We have inbound synchronization, object template, roles and
outbound mappings. This is the right time to test everything. Select few representative HR accounts
and try to import them. Check that everything is provisioned correctly. If it works, then it is the time
for roll-out. Set up a synchronization task for the HR resource, and we are done. We have running
system:

267

Users are imported from the HR system. Roles are assigned, which can be checked by navigating to
user details page and opening the Inducements tab. Accounts are provisioned according to the
roles, which is the reason for variations in number of accounts for individual users. The basic stuff
works now. Go ahead and try it out, add more roles and mappings, modify the configuration. Have
some fun.

Zealous reader has certainly tried both the HR and user recompute task, and stares
at the administrator user now. Administrator has an e-mail address! Value
midpoint.administrator@example.com was generated for administrator by
recomputation task. Oh yes, administrators are people too, and the administrator
user is still a user. Therefore, user template applies to administrator as well, as
does user recompute task. User admnistrator was not updated by the HR import as
there is no corresponding HR account. However, user recompute task iterates over
all the users, including administrator. This has to be kept in mind when designing
midPoint policies and configurations.

We have got nice little identity management deployment. The basic functionality is in place, data
are synchronized from the HR system, accounts are provisioned to handful of simple resources,
access is governed by roles. This is a huge improvement for many organizations already. However,
there is still a lot of things to improve here. Maybe we want to set up a formalized organizational
structure. Maybe we need delegated administration. Maybe we have several object types to
manage, and we want to set up archetypes for them. We almost certainly want to manage groups,
privileges and other entitlements. This is still just a beginning.

Conclusion
This chapter concludes one whole part of the book. If you have followed the book so far, you should
be able to set up a simple working IDM deployment at this point. We have covered all the basic
mechanisms: resources, mappings, roles, schema and object templates. This is a good time to stop
reading and get your hands dirty. Take the examples from this book and play a bit with them.
Explore the examples that come with midPoint distribution. Now it is time for experiments. You

268

will surely do a lot of things that are suboptimal or even outright wrong. But never mind. This is
part of the learning process. If you get to dead end, just scrap everything and start over. Or maybe
rework everything from the ground up. MidPoint is designed for this. Evolutionary approach is
deeply embedded in midPoint philosophy and design. Just go ahead, have fun, conduct experiments
and explore. Such experience will help a lot when you get back and read through following
chapters.

269

Chapter 9. Organizational Structures
If life is going to exist in a Universe of this size, then the one thing it cannot
afford to have is a sense of proportion.

— Douglas Adams, The Restaurant At The End Of The Universe

Organizations come in all shapes and sizes. Unless your organization is extremely unusual, there is
always some form of recognizable internal structure. There may be the usual corporate divisions,
departments and sections. Or there may be dynamic teams, projects, work groups and task forces.
Some kind of organizational structure is always there. And it matters. While many organizational
structures are quite far from the ideal, organizational structure is seldom completely useless.
Membership in some organizational units is a reason to automatically grant privileges. Managers
can usually access quite a wide set of data about employees in organizational units that they are
managing. Team leaders and project manager often exercise elevated privileges over their team
and projects. And all of that is not limited just to users. Roles are often organized into role catalog.
Services and devices may be organized by applications, by geographical location and so on. There
are many things that need to be organized and there are many ways to organize them.

Organizational structure affects almost every part of the identity management deployment. We
have realized that in very early stages of midPoint development. Therefore, organizational
structure is an integral part of midPoint. It permeates almost every part of midPoint functionality.
Unlike most other systems, organizational structure in midPoint is a very flexible and almost
universal concept. It can be used to build functional organizational structures with divisions,
departments and sections. It can also be used to create a flat project-based organizational structure.
The same mechanism can be used to sort roles in a role catalog or to manage devices by
geographical location. And all of those organizational structures may co-exist at the same time in
the same system.

The concept of organizational structure is a very powerful one, but it is implemented by just a
handful of simple components. Let us have a look at those building blocks now.

Organizational Units
Basic building blog of all organizational structures is just one simple object type. Due to the lack of
poetic talent and because of critical shortage of abstract words in our dictionary, we have decided
to call that object simply an org. It is a nice and short name. Org can represent any kind of
organizational unit: companies, division, department, section, project, team, role category,
geographical location or anything else. Orgs can be used to create hierarchical structures. For
example, a top-level org may represent a company. A couple of other orgs can represent divisions.
Those orgs can be put "inside" the company org. Yet another orgs can represent departments, these
can be put "inside" the division orgs. Repeat the process until complete organizational structure is
formed.

270

Figure 1. Organizational tree

Org is quite a basic thing with a very simple anatomy:

org-example-top.xml

<org oid="4d12c1ac-440c-11ea-80af-2b314d06ba95">
 <name>F10000</name>
 <displayName>ExAmPLE, Inc.</displayName>
</org>

Strictly speaking, the only things that an org really needs are name and OID. The example above
adds displayName to make the presentation of the org nicer. As all regular midPoint objects, a name
of an org must be unique. This often leads to a practice that org names are in fact identifiers or that
they are generated automatically. This is also our case. We have decided to set F1000 as the name of
this org. The value 1000 is an identifier of the company in our HR system. As we are building a
functional organizational structure of the company, we have prefixed the identifier with F which
stands for functional. However, names such as F1000 are not very friendly. Therefore, there is a

271

mechanism to set nicer display name that does not need to be unique. The display name will be
used instead of the ordinary name whenever this org is displayed to a user.

Figure 2. Top-level organizational unit

We have an organizational unit now. But how do we put users in it? Clever reader already knows
the answer: assignment. All that is needed is to assign the org to a user. This is done in almost the
same way as you would assign a role, just select the Org tab in assignment dialog.

Figure 3. Assignment of an organizational unit

Or, in XML form:

<user>
 <name>eevans</name>
 ...
 <assignment>
 <targetRef oid="4d12c1ac-440c-11ea-80af-2b314d06ba95" type="OrgType"/>
 </assignment>
 ...
</user>

272

The user is a part of our minimalistic organizational unit now:

Figure 4. Assigned top-level organizational unit

Organizational Structure Hierarchy
There is very little structure in our tiny organizational structure yet. Orgs would not be very useful
unless they can be placed inside each other, creating a hierarchy. It is this hierarchy that makes
organizational structures attractive. Therefore let us go corporate and create some hierarchy now.
It is a well-known fact that all self-respecting corporations need sales and marketing division:

org-sales-and-marketing-division.xml

<org oid="7a1feb50-471f-11ea-8aab-1b2627541f15">
 <name>F11000</name>
 <description>Expensive people that make money.</description>
 <displayName>Sales and Marketing Division</displayName>
 <identifier>11000</identifier>
</org>

We have pimped up this organizational unit a little. We have seen name and displayName before. The
description is no stranger either. Then there is an identifier. The value of the identifier is usually
an official "code" of the organizational unit assigned by HR people. But why do we need yet another
identifier? OID is an identifier, name is an identifier of sorts, why do we need another one? For now
let’s just say that the identifier will be very useful later on, when we will be synchronizing
organizational structures.

If we import the org above into midPoint it will become the top org. MidPoint will put it at the same
level as the ExAmPLE company org. We do not want that. We want to create a hierarchy. We want
to tell midPoint to put the department inside the company. How do we do that? We use an
assignment, of course:

273

org-sales-and-marketing-division.xml

<org oid="7a1feb50-471f-11ea-8aab-1b2627541f15"
 xmlns='http://midpoint.evolveum.com/xml/ns/public/common/common-3'
 xmlns:org='http://midpoint.evolveum.com/xml/ns/public/common/org-3'>
 <name>F11000</name>
 <description>Expensive people that make money.</description>
 <displayName>Sales and Marketing Division</displayName>
 <identifier>11000</identifier>
 <assignment>
 <targetRef oid="4d12c1ac-440c-11ea-80af-2b314d06ba95" type="OrgType"/>
 </assignment>
</org>

Now we have our little hierarchy:

Figure 5. Small organizational structure tree

This makes perfect sense, doesn’t it? Users become part of organizational units when the units are
assigned to them. Therefore, also organizational units become part of other organizational units
when they are assigned to them. This priciple applies to everything: roles, services, tasks, resources
and other object types. Every object type that can be assignment holder can be placed in
organizational structure, by assigning an organizational unit to it.

274

Assignment holders

Majority of midPoint object types are assginment holders, and therefore they can
be placed into organizational structure. Theoretically. However, midPoint user
interface has some limits. Convenient management of the assignments is currently
possible only for focal types: user, role, org and service. Other objects can be
placed in organizational structure, and they should behave up to the expectations.
But that cannot be done by few convenient clicks in midPoint user interface Not
yet. You have to use a different approach. You either add the assignment manually
in the XML/JSON/YAML form. Or you may try to use mappings to create the
assignments automatically. Or perhaps use the REST interface to do that. Or maybe
send some money in the direction of midPoint development team to motivate them
to add this functionality to user interface.

We know how to create a simple organizational hierarchy. All we need to do now is to repeat the
process ad nauseam to create something that resembles real corporate organizational structure. Let
us add marketing department to our division:

org-marketing-department.xml

<org oid="a0c7d92c-4722-11ea-bc8d-d79a6cefb1bf"
 xmlns='http://midpoint.evolveum.com/xml/ns/public/common/common-3'
 xmlns:org='http://midpoint.evolveum.com/xml/ns/public/common/org-3'>
 <name>F11300</name>
 <description>Creative bunch that spends money to get more money.</description>
 <displayName>Marketing Department</displayName>
 <identifier>11300</identifier>
 <assignment>
 <targetRef oid="7a1feb50-471f-11ea-8aab-1b2627541f15" type="OrgType"/>
 </assignment>
</org>

It is the same process over and over again. But there so many organizational units, there are so
many files to import. We like to be efficient in all the things that we do. Therefore, let’s put the
entire organizational structure into a single file:

275

org-tree-functional.xml

<objects>

 <!-- Functional organizational structure of ExAmPLE company -->

 <org oid="4d12c1ac-440c-11ea-80af-2b314d06ba95">
 <name>F10000</name>
 <displayName>ExAmPLE, Inc.</displayName>
 </org>

 <org oid="7a1feb50-471f-11ea-8aab-1b2627541f15">
 <name>F11000</name>
 <description>Expensive people that make money.</description>
 <displayName>Sales and Marketing Division</displayName>
 <identifier>11000</identifier>
 <assignment>
 <targetRef oid="4d12c1ac-440c-11ea-80af-2b314d06ba95" type="OrgType"/>
 </assignment>
 </org>

 ...

</objects>

It would be no big surprise to find out that laziness was a driving force behind many improvements
in life, would it? Now, let us use this convenient approach to create a nice and rich corporate
organizational tree:

Figure 6. Organizational tree

276

Of course, you can create and manage organizational structure in midPoint user
interface. In fact, people do that quite often. However, now we are talking about
the initial organizational structure. It is the structure that gets created in midPoint
at the beginning of the deployment. There is usually a lot of trial and error until
you get your midPoint configuration right. It is quite likely you will have to purge
all midPoint configuration and start clean. In that case, it is very convenient to
have organizational structure in one file that can be easily imported after the
clean-up. Also, it is a common practice to have several environments:
development, testing and production. You probably want the same organizational
structure in all of them. Having organizational structure in a file makes that job
easy. Of course, you can also create organizational structure in the user interface
and then export it into a file. However, according to our experience, many
engineers prefer text editor to graphical user interfaces.

Orgs in the Database
Organizational structures tend to form hierarchies - data structures that look like trees. However,
databases are usually designed to store relational data - data structures that look like tables. If you
ever tried to express hierarchical data in a spreadsheet application you know that these paradigms
are not entirely easy to align. It is not entirely easy to express tree-like data structure in relational
tables. Moreover, hierarchical data tend to have some specific requirements. For example, we
usually want to look for people in Operations Division and all the departments and sections that
belong to it. This is known as subtree searches, and it is usually not possible to execute them directly
on data that are stored in relational form.

This is further complicated by the fact that midPoint assignment is a very flexible data structure.
Assignments can be valid from a specific time to a specific time. Assignments can be parametric
and conditional. Assignment is just too complex for the database to understand and use efficiently.

MidPoint is solving these problems with parentOrgRef operational data item. As the name suggests,
parentOrgRef is an object reference that points to parent org. Any assignment holder in midPoint can
have parentOrgRef, and it points to the org (or orgs) that the object belongs to. This somehow
duplicated the data in the assignment. Yet, there are several crucial differences.

Firstly, parentOrgRef points to the orgs that the object is currently member of. I.e. it only reflects
those assignments that are currently active and valid. Therefore, there will be no parentOrgRef
value for assignment that is expired or not valid yet.

Secondly, parentOrgRef represents all organizational assignments, both direct and indirect. Orgs that
are directly assigned to users will be present in parentOrgRef. Orgs that are induced in a role that is
assigned to the user will also be present in parentOrgRef. Everything will be there.

Thirdly, parentOrgRef is a very simple data structure. This simplicity allows efficient indexing of the
parentOrgRef values in the database (repository) layer. The indexes are designed to allow efficient
subtree searches over organizational structure hierarchies.

This is our trick how to fit hierarchical data into flat data tables. The details may be quite
complicated, but it usually works quite well. The parentOrgRef is automatically maintained by

277

midPoint under the hood. Therefore it is usually completely transparent. The user does not even
notice that there is a special mechanism working in the background.

However, there are also downsides to this approach. The index that is build on parentOrgRef is
designed to work even if organizational structure is re-organized. The index has to be continually
maintained. Maintenance overhead of the index is usually very low for small or mid-sized
structures that do not change often. However, maintenance of massive organizational structures
can be painful. Similarly, it may be problematic to maintain organizational structures that change
very frequently. Therefore, it is perhaps a good idea to prototype the design of organizational
structure before putting the system into production. Also, the parentOrgRef is in fact a copy of the
primary data (assignment). As it is a copy, there is a risk that it may get out of synchronization.
MidPoint is designed to keep parentOrgRef and all the indexes strictly consistent during normal
operations. However, midPoint allows systems administrators to do a lot of non-standard things.
Some of those things may lead to data inconsistencies. Therefore, it is a good idea to check whether
the values of parentOrgRef make sense in case you notice that organizational structures are
behaving strangely.

Overall, organizational structures work very well in midPoint, and you usually do not need to care
about the mechanisms under the hood. However, management of organizational structures is much
more complex than it seems. Therefore, if you try to do strange and unusual things, you should
better be sure you fully understand what you are doing.

Orgs and Roles
Organizations and roles have many things in common. Roles are granting privileges to its members.
Usually, people that are members of an organization are granted privileges too. People that have
the same role usually have the same set of privileges. People in an organization often have the
same privileges too. In fact, organizations behave in almost the same way as roles.

MidPoint has fully embraced this similarity. Orgs are designed to behave in almost the same way as
roles. Orgs may have inducements, there may be constructions in them, orgs may contain
authorizations and so on. Org can do everything that a role can do.

Therefore, there is no need to set up complicated configurations that assign a particular role to all
members of an organization. The organization itself acts as a role. All the privileges that
organization members need can be simply added as inducements in the organization itself. This is
very simple, elegant and mostly fool-proof solution.

We have Indirect Sales Department in ExAmPLE, Inc. We want to make things simple, and therefore
we want to grant access to CRM system to all the members of this department. It is very easy to do:

278

<org oid="8887e0b0-4726-11ea-96b0-5f5ced221e42">
 <name>F11200</name>
 <description>Suits that talk to other suits that talk to customers.</description>
 <displayName>Indirect Sales Department</displayName>
 <identifier>11200</identifier>
 <assignment>
 <!-- Assignment of parent organizational unit -->
 <targetRef oid="7a1feb50-471f-11ea-8aab-1b2627541f15" type="OrgType"/>
 </assignment>
 <inducement>
 <!-- Inducement that grants CRM privileges to all members of this department
-->
 <construction>
 <!-- CRM resource -->
 <resourceRef oid="04afeda6-394b-11e6-8cbe-abf7ff430056"/>
 ...
 </construction>
 </inducement>
</org>

Clever reader certainly wonders whether the CRM privileges apply also to Agent Management
Section, which is located below Indirect Sales Department in our organizational structure. However,
clever reader is clever enough to figure out that the privileges are not "inherited" in this case. To
follow the thoughts of clever reader, you have to think about orgs in the same way as you would
think about roles. There is an assignment from Agent Management Section to Indirect Sales
Department. However, there is no inducement. Role hierarchies are built using inducements.
Therefore, privileges of Agent Management Section are not included in Indirect Sales Department.
This may seem to be counter-intuitive, but in fact it is completely correct. Orgs and roles form
separate hierarchies (see note below). However, if you want to "inherit" privileges of a parent org,
there is a very simple way how to do it: add explicit inducement. For example, this is how we can
"inherit" the CRM privileges in Agent Management Section:

<org oid="f5e619a6-4726-11ea-888c-ab25c098d8b3">
 <name>F11210</name>
 <description>People that deal with agents (no James Bond here).</description>
 <displayName>Agent Management Section</displayName>
 <identifier>11210</identifier>
 <assignment>
 <!-- Assignment of parent organizational unit. This creates organizational
hierarchy. -->
 <targetRef oid="8887e0b0-4726-11ea-96b0-5f5ced221e42" type="OrgType"/>
 </assignment>
 <inducement>
 <!-- Inducement to parent organizational unit. This creates "inheritance" of
privileges. -->
 <targetRef oid="8887e0b0-4726-11ea-96b0-5f5ced221e42" type="OrgType"/>
 </assignment>
</org>

279

This has to be done for every org that needs to inherit privileges from parent, which may be quite
daunting for large organizational structures. There is a clever way how to avoid placing
inducements everywhere. The solution involves the concept of metaroles, as parent org is
technically a metarole for child orgs. However, this involves an advanced thinking about
application of assignment and inducements. Even a clever reader may not be ready for such
abstract thoughts yet. This has to come later when the basic principles have enough time to sink in.

Org and role hierarchies

Both orgs are roles are hierarchical in a way. However, it is not the same hierarchy.
Org hierarchy is used to model organizational trees. Role hierarchy is used to build
RBAC structures. Those hierarchies have completely different purpose. They are
also built using different mechanism. Role hierarchy is used to group privileges,
and therefore it is built using inducements. Org hierarchy is used to group subjects
(users), and it is built using assignments. There are also different internal
mechanisms, indexing and data storage properties. For example, role hierarchy is
not using parentOrgRef, therefore there is much lower overhead as compared to
org hierarchy. However, this means that the capabilities to query role hierarchy is
limited. Both hierarchies are their respective place and purpose. Even though the
difference may not be very apparent now, it is quite substantial. Hopefully, this
will get much more clear later when there will be more examples for both org and
role structures.

Managers
Placing people in organizational structures has a significant value on its own. However, all the
people usually do not have the same relation to the organizational unit. Most people will usually be
ordinary members of organizational unit. Then there are people that are somehow special:
departmental managers, team leaders, project managers, supervisors and similar life forms.

How do we designate a manager of an organizational unit? You probably guessed it already. In a
typical midPoint fashion, we are re-using assignment, of course. There is just one small detail. We
are specifying relation in assignment target reference:

<user>
 <name>aanderson</name>
 ...
 <assignment>
 <!-- Direct Sales Department -->
 <targetRef oid="832f409a-4726-11ea-b0be-8b8eab99c1ed" type="OrgType" relation
="manager"/>
 </assignment>
 ...
</user>

This assignment makes Alice a manager of direct sales department. It is as simple as that. All the
power of assignment is at your disposal. Therefore, it is easy to assign a manager for a temporary
time period, suspend a manager and so on.

280

Manager assignment is created in the user interface in almost the same way as normal assignment
is created. The only difference is selection of manager relation at the bottom of the assignment
target dialog:

Figure 7. Assign organizational unit manager

MidPoint now knows that Alice is a manager of Direct Sales Department. This is also displayed in
the organizational tree:

281

Figure 8. Organizational unit with a manager

But, wait a minute! Alice has been promoted to be a manager of direct sales department. But she
should be located in sales and marketing division as a direct member of that division. E.i. she is
member of one organizational unit and manager of another organizational unit. How do we do
that? This is all perfectly clear to a clever reader by now. Alice has two assignments. First
assignment is an ordinary assignment that targets sales and marketing division. Second assignment
is a manager assignment that targets direct sales department. This is perfectly normal in midPoint.
Users may have any number of assignments to any objects (unless it is explicitly constrained by
policy rules or archetypes). Which means that users may be members of any number of
organizational units at the same time.

Therefore, there is no problem for Alice to be a member of one unit and manager of another.
MidPoint can support all kind of bizarre organizational arrangements. MidPoint was deliberately
designed in this way, because reality has an annoying habit to bring surprises, especially when
organizational structures are involved.

Well, Alice is a manager now. Good for her. But she still has the same access rights as ordinary
workers. That is not right! Managers wear suits and ties. Which means that they need to have more
privileges than mere mortals. As managers usually control funding of software development, it is
perfectly understandable that midPoint has a way to set up privileges that apply to managers:

282

<org oid="832f409a-4726-11ea-b0be-8b8eab99c1ed">
 <name>F11100</name>
 <displayName>Direct Sales Department</displayName>
 ...
 <inducement>
 <construction>
 ... Privileges exclusive to managers are specified here ...
 </construction>
 <orderConstraint>
 <order>1</order>
 <relation>manager</relation>
 </orderConstraint>
 </inducement>
</org>

This is a way how a manager of the direct sales department gets special privileges. The
orderConstraint makes sure that only the users that have manager relation to this organization units
will get the privileges.

But wait s minute! Clever reader does not like that. This approach to manager privileges is not
going to be very practical. Managers usually do not have special privileges in each organizational
unit. In most organizations, managers have the same privileges regardless of the unit they manage.

One way to implement this approach is to create a Manager role, put the special privileges there, and
assign the role to every manager of every organizational unit. However, that creates redundancy.
We have to make sure this role is assigned whenever a person becomes manager and that it is
unassigned when the person is no longer manager. This is the way how this problem is solved in
many IDM deployments. Yet, it is quite a fragile mechanism. This is not a way how we do things in
midPoint.

The orderConstraint data structure in our example looks suspiciously complex. That impression is
correct, as it indeed is quite a complex concept. What we see here is the first glimpse at high-order
"assignment algebra" that is a working horse of complex midPoint deployments. This mechanism is
often employed when working with meta-roles and archetypes. As organizational units are in fact
roles, and organizational structures are just a trees formed by assignments, they technically form
meta-role structures.

Therefore, the right way how to set up manager privileges is to move privilege definition to a
central place. It may be top-level organizational unit, or it may be an archetype. In such case our
inducement can apply to all the managers, regardless of organizational unit. However, the exact
configuration is a bit complex, and we still need to learn more about midPoint to be able to use it.
Therefore we leave the details for later chapters.

283

MidPoint assigns managers to organizational units. That is the right way to do it.
However, we have often seen a different approach. In these cases the manager is
"assigned" to users. I.e. each user has a reference to his or her manager. This
approach is wrong. Organizational structures change. People come and go.
Everything is changing all the time. It is very easy to change one assignment in
organizational structure in case that a manager is replaced. However, it is
extremely difficult to replace a manager in the direct user-manager data structure.
Maybe the former manager was managing several organizational units, and now
we are replacing him with two managers. Maybe there is a re-organization going
on at the same time. The result is going to be a mess. Avoid the direct user-
manager approach whenever possible.

Relation
In midPoint, we like to design generic re-usable mechanisms. You did not think that we made the
concept of manager in a way that would be hardcoded to organizational structure, did you? As you
have got so far through this book, you would probably suspect there is more to this relation thing
that we have seen so far.

The relation specifies the nature of a relation between two objects. For example a user may be a
member of an organizational unit, manager of a project, owner of a role or approver of role
assignment requests. In such cases, member, manager, owner and approver are relations that a user
can have to an object.

The most common way how to use relation is to specify it in targetRef in an assignment. The
following example illustrates the usual way how to assign an owner for a role:

<user>
 <name>aanderson</name>
 ...
 <assignment>
 <!-- Business Analyst role -->
 <targetRef oid="aaa6cde4-0471-11e9-9b50-c743da469067" type="RoleType"
relation="owner"/>
 </assignment>
 ...
</user>

There are several built-in relations in midPoint:

284

Relation Usually used for Description

default Everything This is the most common, non-
specific relation to an object.
When used with a role, it
simply means that the user has
the role. Usually interpreted as
member when used with
organizational units. It is the
usual, normal relation.

As the name suggests, this is the
default relation. If no other
relation is specified, this
relation is used.

manager Orgs Manager of an organizational
unit, project manager,
teamleader, etc. Usually entitles
a person (or a group) that have
leading position in an org. This
usually specifies executive or
operational privileges (cf.
owner).

owner Roles, Orgs Person responsible for
governance of the object. Often
used to nominate role owners
that are responsible for role
definition and maintenance.
May be used with
organizational units to specify
project sponsor or business
owner. Specifies a person
responsible for governance and
high-level policy decisions
rather than day-to-day
management (cf. manager).

285

Relation Usually used for Description

approver Roles, Orgs Person responsible for deciding
membership in roles and orgs. A
gatekeeper or moderator.
Approvers usually decide
whether someone can have a
role, or may be a member of
organizational unit. Unlike
owners, approvers do not
create or modify role definition.
They cannot change the role.
They can only decide who can
have that role and who cannot.

meta Metaroles Special-purpose relation that is
sometimes used with metaroles.
Metarole structures can be
complex and confusing.
However, such structures and
especially policies that govern
them may sometimes be
simplified, if role-metarole
relations are marked in a
special way. This relation is
designed specifically for that
purpose.

The meta relation is not
mandatory. Metarole
functionality will work just fine
without it. In fact, almost all of
the metarole configuration are
not using this relation. But it
may come handy if the situation
becomes too complicated.

Those are built-in relations. There are some pre-configured policies that work with them. However,
you are free to specify and use your own relations. But that is quite an advanced topic and the
majority of deployments are perfectly fine using just the built-in relations.

As you can see, the built-in relations do not have overly strict specifications. There is a lot of
usually, often and almost in the description of relations. The reason is that the relations do not do
anything just by themselves. They just specify how one object relates to another object. There are
no strict policies or behavior associated with them.

The policies are specified elsewhere. Assignment and inducements may behave differently for
different relations, as we have seen in previous section. Similarly, policy rules are often sensitive to
relations. For example the policy that assignment of some roles has to be approved is implemented

286

by a policy rule that is aware of approver relation. Authorizations are often sensitive to relations.
Archetypes influence how the system behaves based on relations. User interface may behave
differently for some relations. And so on. Relations do nothing just by themselves. However, good
part of the system is usually configured to recognize relations and behave accordingly. It is a matter
of that configuration that determines how exactly will the system behave. This is also the reason for
such vague definition of relations, even those built-in relations. They will do what you make them
do.

Multiple Organizational Structures
Tree is a simple and very elegant structure in many ways. However, it is a rare sight to see a lone
tree growing in the field. When we think of trees, we usually think about a forrest. It takes a lot of
trees to make a forrest.

This is also the case when it comes to organizational structures. It is a very rare sight when an
entire organizational structure of an organization can be modeled in a single tree. There is always
the usual functional organizational structure with divisions, departments, sections, companies,
branches, schools and faculties. Then there is a project organizational structure that is often
completely orthogonal to functional organizational structure. This is sometimes spiced up with
workgroups, task forces, focus groups, research teams, interest groups, clubs and similar collective
life forms. There are the many trees that make a forrest of organizational structures.

Fortunately, midPoint is not very picky when it comes to organizational structures. MidPoint is not
limited to a single organizational tree. You can have as many organizational trees as you like. You
can have functional organizational tree, as we have seen in previous sections. Then you can have
independent project organizational structure. Just create new root org for projects and place the
projects under it:

287

org-tree-project.xml

<org oid="832e37e4-edfd-11ea-9f8c-ef736d6646a2">
 <name>Projects</name>
</org>

<org oid="9c1b8464-edfd-11ea-87b8-db467c5ae301">
 <name>PBD2020</name>
 <description>Make money fast.</description>
 <displayName>Big Deal</displayName>
 <identifier>BD2020</identifier>
 <assignment>
 <targetRef oid="832e37e4-edfd-11ea-9f8c-ef736d6646a2" type="OrgType"/>
 </assignment>
</org>

<org oid="22dc2bd4-edfe-11ea-a904-5be54dda2e46">
 <name>PLS</name>
 <description>Make sure our marketing message gets across.</description>
 <displayName>Loudspeaker</displayName>
 <identifier>LS</identifier>
 <assignment>
 <targetRef oid="832e37e4-edfd-11ea-9f8c-ef736d6646a2" type="OrgType"/>
 </assignment>
</org>

<org oid="1954d496-f6ad-11ea-a96a-8bfa569f5fff">
 <name>PWL2</name>
 <description>Second generation wonderland. We are all mad here.</description>
 <displayName>Wonderland 2.0</displayName>
 <identifier>WL2</identifier>
 <assignment>
 <targetRef oid="832e37e4-edfd-11ea-9f8c-ef736d6646a2" type="OrgType"/>
 </assignment>
</org>

We have two organizational trees now. Each neatly stowed under its own tab:

288

Figure 9. Project organizational tree

This is a nice project organizational structure. However, our users are members of functional
organizational structure already. How can I add my users to the projects? The answer is
assignment, of course. User can belong to any number of organizational units at the same time. It
makes no difference whether they are in the same organizational tree or in different trees. Simply
assign the projects to the users. The same manager relation works for projects as well. In fact,
midPoint does not even recognize the difference between functional and project organizational
structures. They look all the same to midPoint, and midPoint treats them in the same way. If there is
a need for the structures to behave differently, it has to be explicitly configured. Which is usually
done by using archetypes. We will talk about archetypes later.

There are two organizational structures now. You can have three organizational structures if you
want to, or five of them. Any number you like - as long as all the tabs for organizational structures
fit on the screen. The structures can be a deep rees with many branches, or they can be completely
flat, with just a single level. The structure may not even be a tree. As long as it is an acyclic directed
graph it will work just fine. It can have multiple roots, it may have alternate paths, it can do all the
crazy stuff. Just avoid cycles. Cycles break the maths which is the foundation of organizational
structure indexing and evaluation. Cycles won’t work, but pretty much all the other arrangements
are perfectly fine.

Organizational structure may have almost any form. A user can be a member of many
organizational units. Which also means that a user may manage many organizational units. That
also applies the other way around: an organizational unit may have many managers. MidPoint fully
supports all such cases. By default, MidPoint is very flexible when it deals with organizational
structure. However, you may not like all this liberalism in organizational management. Ordnung
muss sien! If you want to constraint organizational management to allow only a single manager for
each organizational unit, you can do it. But you have to explicitly specify a policy by setting up
policy rules and archetypes. Policy rules provide a very generic and very powerful mechanism how
to constraint and control midPoint in many ways, and archetypes provide flexible typing
mechanism. But that is a topic for its own chapter.

Beyond Users
MidPoint organizational structure can do a lot of crazy stuff. Organizational structures are usually

289

build to contain people. Whereas midPoint organizational structure can contain a broad range of
object types. Users, roles and services are the most common object types, but almost any other
midPoint object can be placed in organizational structure.

Role catalog is a common use of organizational structure that does not (directly) involve people.
Role catalog is used to sort the roles into categories, much like a catalog in electronic shop is used to
sort the products. The catalog is used to present roles to users in organized form, so users may
easily find the roles when request them in self-service interface.

MidPoint role catalog is simply an organizational structure. It does not have divisions, sections or
projects, but it has categories. Categories are (almost) ordinary orgs that form the hierarchy.

Figure 10. Role catalog

Primary use of the catalog is related to request-and-approval process. The catalog makes it easier
for a user to find appropriate role when requesting its assignment in self-service part of midPoint
user interface. However, the catalog can also be used to apply policies to a whole group of roles.
Owner of the category may be considered to be a default approver for all the roles in the category.
Category owner may be authorized to modify roles in the category. And so on.

Similar approach can be applied to most objects in midPoint. Organizational structure can be used
to organize roles, services, resources, function libraries and other objects. Orgs are also crucial
mechanism in supporting midPoint multi-tenancy. Not everything is perfectly supported in user
interface yet. Nevertheless, the organizational structure is a powerful mechanism to systematically
and consistently apply policies and organize the system.

Organizational Structure Synchronization
MidPoint can manage organizational structure. But where that structure comes from? Back in 20th

century there were entire teams dedicated to drawing organizational chart on paper. It is 21st

290

century now, we do not use paper any more. We are using computers to manage organizational
charts now. Which means that dedicated teams are drawing organizational charts in Excel and
distributing them by e-mail.

Fortunately, there are some organizations that have truly progressed into 21st century. Such
organizations store their organizational structures in a structured form, usually in database tables.
When exported to a CSV file, the structure may look like this:

org.csv

"orgnum","name","description","parentOrgNum"
"10000","ExAmPLE","ExAmPLE, Inc.",""
"11000","Sales and Marketing Division","Expensive people that make money.","10000"
"11100","Direct Sales Department","Suits that talk to customers directly.","11000"
"11200","Indirect Sales Department","Suits that talk to other suits that talk to
customers.","11000"
...

In this case each organizational unit has a unique identifier, such as 11000. Each organizational unit
has a reference to parent organizational unit. When all the lines are processed, they form a
complete organizational tree.

This is a very good information source. Of course, we would like to automatically pull the data from
this source instead of managing organization tree manually. How could we do it? Clever reader is
smiling, remembering that we like to create generic re-usable mechanisms in midPoint. There is a
way how to synchronize user records from the HR system. Of course, the same mechanisms can be
reused to synchronize organizational unit records.

MidPoint synchronization mechanism can work with almost any object. It can synchronize HR
records to users, organizational unit records to orgs, printer database to services, Active directory
groups to roles or pretty much anything to anything. This is what we call generic synchronization.

Similarly to ordinary synchronization, we need to start with a resource. However, this resource will
not contain accounts, it will contain organizational units.

resource-csv-org.xml

<resource oid="81ec779e-13b2-11eb-8e47-dfbfd542db3e">

 <name>Organizational Chart</name>

 <connectorRef type="ConnectorType">
 <filter>
 <q:equal>
 <q:path>c:connectorType</q:path>
 <q:value>com.evolveum.polygon.connector.csv.CsvConnector</q:value>
 </q:equal>
 </filter>
 </connectorRef>

291

 <connectorConfiguration>
 <icfc:configurationProperties
 xmlns:icfccsvfile=
"http://midpoint.evolveum.com/xml/ns/public/connector/icf-
1/bundle/com.evolveum.polygon.connector-
csv/com.evolveum.polygon.connector.csv.CsvConnector">
 <icfccsvfile:filePath>
/opt/midpoint/var/resources/org.csv</icfccsvfile:filePath>
 <icfccsvfile:encoding>utf-8</icfccsvfile:encoding>
 <icfccsvfile:fieldDelimiter>,</icfccsvfile:fieldDelimiter>
 <icfccsvfile:multivalueDelimiter>;</icfccsvfile:multivalueDelimiter>
 <icfccsvfile:uniqueAttribute>orgnum</icfccsvfile:uniqueAttribute>
 </icfc:configurationProperties>
 </connectorConfiguration>

 <schemaHandling>

 <objectType>
 <displayName>Organizational unit</displayName>
 <default>true</default>
 <objectClass>ri:AccountObjectClass</objectClass>
 <kind>generic</kind>
 <intent>orgunit</intent>
 <attribute>
 <ref>ri:orgnum</ref>
 <inbound>
 <target>
 <path>$focus/identifier</path>
 </target>
 </inbound>
 </attribute>
 <attribute>
 <ref>ri:name</ref>
 <inbound>
 <target>
 <path>$focus/displayName</path>
 </target>
 </inbound>
 </attribute>
 <attribute>
 <ref>ri:description</ref>
 <inbound>
 <target>
 <path>$focus/description</path>
 </target>
 </inbound>
 </attribute>
 </objectType>

 </schemaHandling>

292

 <projection>
 <assignmentPolicyEnforcement>none</assignmentPolicyEnforcement>
 </projection>

 <synchronization>
 <objectSynchronization>
 <enabled>true</enabled>
 <objectClass>AccountObjectClass</objectClass>
 <kind>generic</kind>
 <intent>orgunit</intent>
 <focusType>OrgType</focusType>
 <correlation>
 <q:equal>
 <q:path>identifier</q:path>
 <expression>
 <path>$projection/attributes/orgnum</path>
 </expression>
 </q:equal>
 </correlation>
 <reaction>
 <situation>linked</situation>
 <synchronize>true</synchronize>
 </reaction>
 <reaction>
 <situation>deleted</situation>
 <synchronize>true</synchronize>
 <action>

<handlerUri>http://midpoint.evolveum.com/xml/ns/public/model/action-
3#deleteFocus</handlerUri>
 </action>
 </reaction>
 <reaction>
 <situation>unlinked</situation>
 <synchronize>true</synchronize>
 <action>

<handlerUri>http://midpoint.evolveum.com/xml/ns/public/model/action-
3#link</handlerUri>
 </action>
 </reaction>
 <reaction>
 <situation>unmatched</situation>
 <synchronize>true</synchronize>
 <action>

<handlerUri>http://midpoint.evolveum.com/xml/ns/public/model/action-
3#addFocus</handlerUri>
 </action>
 </reaction>
 </objectSynchronization>

293

 </synchronization>
</resource>

This should all look very familiar by now. It is almost the same resource as we have seen in the
synchronization chapter. However, there are few differences. We will describe them in next
sections.

Kind and Intent

The definition of "Organizational unit" resource object contains specification of kind and intent:

resource-csv-org.xml

 ...
 <objectType>
 <displayName>Organizational unit</displayName>
 <default>true</default>
 <objectClass>ri:AccountObjectClass</objectClass>
 <kind>generic</kind>
 <intent>orgunit</intent>
 ...

Kind and intent identify the type of resource object for use by midPoint. There are three possible
values for kind:

Kind Description

account Resource object that represents identity of a
person, either physical such as computer user or
virtual such as administrator, root, daemon or
similar special-purpose identities. Accounts are
usually linked to the User objects.

entitlement Resource object that represents groupings or
privileges of an account. Entitlement resource
objects represent groups, resource-specific roles
or access permissions. Entitlements are meant to
be associated to an account. For example a group
entitlement may have accounts as its members.

generic Any other type of resource object. This is used
for resource objects that cannot be classified as
account or entitlement.

You can choose any of these accounts for your resource objects. Values of kind are pre-defined in
midPoint, as midPoint will make some assumptions about them. For example, midPoint will expect
that accounts can be associated with entitlements, for example accounts may be members of
groups. Therefore, it is recommended to properly categorize your resource objects to kinds. This
also helps to make the configuration understandable for mere mortals.

294

Then there is intent. There are no pre-defined values for intent in midPoint, perhaps except for
value default that will be used in case there is no explicit definition of intent. You can choose any
value that you like. However, it is recommended to choose a value that describes the intended use
of the resource object. For example:

Kind Example intent Description

account default Default account. This usually
means the usual, very ordinary
user account.

account admin Administration account. Used in
situations where administrators
get dedicated accounts with
administrator privileges.

account test Testing account. Used when
testers are given special-
purpose accounts to use for
testing, to avoid interference
with their usual accounts.

entitlement group The usual, most ordinary,
boring group of users. It can
have accounts or other groups
as its members.

entitlement posixGroup LDAP posixGroup, used to assign
UNIX group membership in
LDAP. It has a different
structure than ordinary group,
hence we would like to use a
different kind for it.

entitlement privilege Resource object that represents
system privilege. Can be "given"
to an account.

generic locality Resource object that represents
physical location in our
organization. Such as branch
office, campus building or
meeting room. It has no formal
association to the account.

generic orgunit Resource object that represents
organizational unit. In our case,
it represents one record in the
organizational chart database.

These are just examples. You can choose any kind/intent combination that makes sense for your
deployment. For example, you may choose to use entitlement kind for organizational units instead
of generic. MidPoint would work fine even in that case. However, our Organizational Chart

295

resource does not have any accounts, therefore the organizational units cannot be associated to
anything in this resource. Also, membership in an organizational unit does not really look like an
entitlement. Therefore, we have chosen to use generic kind here. You are free to make your own
choices.

Why AccountObjectClass?

Why is there AccountObjectClass in the configuration? We are not working with
accounts here, we work with organizational units. So, why AccountObjectClass?
The reason is the CSV connector that we are using. The CSV connector is quite
simplistic, it considers everything to be an account. Object classes are set by the
connector, hence we need to use AccountObjectClass here. However, the kind and
intent definition is "overriding" the notion that this is an account, making it more
understandable for the users.

Kind and intent behave like coordinates when midPoint has to identify resource object that is
assigned to a user. Given normal circumstances, a user may have at most one default account on a
resource (which means kind=account, intent=default). That same user may also have admin account
on the same resource (kind=account, intent=admin). A role may be represented by at most one LDAP
group on a resource (kind=entitlement, intent=ldapGroup). Such assumptions are heavily used by
midPoint logic. Whenever there are two constructions that have the same combination of
kind+intent, midPoint assumes that they are describing the same resource object. MidPoint
automatically merges the constructions. If the constructions have different combination of
kind+intent, midPoint assumes that they are describing different resource objects and the
constructions are processed separately. Correct configuration of kind and intent is crucial for
midPoint to work correctly.

Tag (a.k.a. "multiaccounts")

The requirement that there may be at most one resource object for each
kind+intent combination works very well in most cases. However, there are also
cases when more than one resource object is needed. Kind and intent has to be
specified in the configuration, therefore this mechanism will not work for
resource objects that appear and disappear dynamically. Therefore, new concept
of tag was introduced in midPoint 4.0. The tag can supplement the kind+intent
combination with a dynamic value, thus allowing multiple resource objects to exist
for any particular kind+intent combination. This feature is colloquially known as
"multiaccounts".

Names and Identifiers

Synchronization of organizational structure is the same as synchronization of users. Theoretically.
However, there are some subtle differences in practice, mostly caused by the differences of User
and Org schemas.

The first difference originates from the fact, that name of the org has to be unique. This uniqueness
is usually not a problem for users, as username is naturally unique among the entire user base.
However, this is slightly different for orgs, as there may be several parallel organizational
structures. There may be Security department, Security project and Security workgroup at the

296

same time. This may be partially solved by using identifiers instead of names. However, this still
does not solve the problem of department 123 and project 123. The simple solution is to prefix the
identifier with a code of the organizational tree that it belongs to, thus creating department O123
and project P123. However, users looking for project 123 may have difficulty finding it, as the P
prefix in P123 name is usually just a deliberate decision of IDM administrator. Therefore, we still
want to store the original identifier value (123) into the identifier property of the org object. There
is no uniqueness constrain on the identifier property, therefore both department 123 and project
123 can co-exist and both can be easily discovered by searching the identifier. The result is that we
need two inbound mappings for the orgnum attribute:

resource-csv-org.xml

 <attribute>
 <ref>ri:orgnum</ref>
 <inbound>
 <target>
 <path>$focus/identifier</path>
 </target>
 </inbound>
 <inbound>
 <expression>
 <script>
 <code>'O'+input</code>
 </script>
 </expression>
 <target>
 <path>$focus/name</path>
 </target>
 </inbound>
 </attribute>

Storing original organizational unit identifier in the identifier property makes it easier to correlate
organizational units. The idenfier property can be used in the correlation query. If the identifier is
reasonably persistent, this is a huge benefit.

Changes in organizational structure can be quite nasty. Organizational units are often renamed or
moved in organizational trees. Simplistic synchronization configuration may not be able to
interpret such events correctly. It may look like new organizational unit was created, and the old
unit was deleted. This is likely to wreak havoc to organizational unit assignments, especially if there
were special privileges configured for this organizational unit. Even worse, organizational tree data
are sometimes acquired from a different source than the user data, which is causing timing
problems. If organizational tree is updated first, there will be new empty organizational unit, old
unit will be deleted, and user assignments will become invalid. If user data are updated first, the
synchronization routines may not be able to update the assignments as the new organizational unit
does not exist yet. This is going to cause a whole lot of problems, most of them will need to be fixed
by manual intervention of IDM administrator. Additionally, reorganizations usually happen in
cycles, each cycle changing a number of units at the same time. Which means that every few
months the organizational structure is going to break down, everybody will be complaining, and it
will take days to fix all the problems manually.

297

All of that can be avoided if there are reasonably persistent organizational unit identifiers. Which
means that every organizational unit has an identifier that does not change when the unit is
renamed or moved. In that case midPoint can reliably detect the rename, change organizational
unit name and keep the assignments intact. MidPoint can also detect that the unit was moves,
change the parent unit and still keep all the assignments. Organizational unit identifiers make
everything so much easier. Therefore, try really hard to use the identifier when setting up
synchronization of organizational structure. If there is no such identifier, talk to the business
people to add it. This is usually not an easy discussion, as the solution often involves changes in
business processes. However, it is absolutely essential to get it right. All the effort will be repaid
many times over during the course of IAM program.

Nesting Organizational Units

We can synchronize the organizational units into midPoint. We can set up the properties of
organizational units. However, organizational structures are usually hierarchical. How to do we
nest organizational units to create organizational tree?

In midPoint, organizational tree is formed by assignments. Therefore, the answer is quite simple:
create the right assignments. Clever reader is not paying attention any more, being busy re-reading
the sections on automatic role assignments in object template. However, even a clever reader
should be paying attention now, as there is an easier way how to do it. The assignments can be set
up in the inbound mappings:

resource-csv-org.xml

 <attribute>
 <ref>ri:parentOrgNum</ref>
 <inbound>
 <expression>
 <assignmentTargetSearch>
 <targetType>OrgType</targetType>
 <filter>
 <q:equal>
 <q:path>identifier</q:path>
 <expression>
 <path>$input</path>
 </expression>
 </q:equal>
 </filter>
 </assignmentTargetSearch>
 </expression>
 <target>
 <path>$focus/assignment</path>
 </target>
 </inbound>
 </attribute>

This mapping automatically sets up an assignment to parent organizational unit. We are lucky, we
have almost ideal source of organizational data. Our CSV file contains an identifier of a parent

298

organizational unit in the parentOrgNum column. All we need to do is to look for midPoint org that
has that particular value in its identifier property. This is done by the assignmentTargetSearch that
we have already used for automatic assignment of roles in object template. The same mechanism is
reused here.

All that remains is to set up a synchronization task. Make sure that you specify kind and intent in
the synchronization task. This is important, otherwise the tasks will not work. Setting the right kind
and intent was not emphasized before when we were synchronizing accounts. The account kind is
the default and midPoint is usually smart enough to use default intent. However, the defaults will
no longer work when we go beyond the accounts.

Troubleshooting

Generic synchronization can be confusing and there may be non-obvious
configuration complexities. When mis-configured, the synchronization mechanism
often does nothing. There is no error or any other obvious indication of an error.
Logging is your best friend in that case. Enable logging of synchronization service
(com.evolveum.midpoint.model.impl.sync) at debug level. MidPoint will log a
reasonable amount of information about the synchronization process. That
information is very likely to lead you to the solution.

The configuration above will work for simple cases, yet there is still a room for improvement. The
search filter in assignmentTargetSearch expression is quite simplistic. It will match orgs from several
trees if they have the same identifier. The same problem is in the correlation query. However,
clever reader would surely find a way how to improve it.

Also, this method will work only if the data feed is correctly ordered. Everything will work as long
as parent organizational units are synchronized before child organizational units. However, that is
not always the case. If ordering is wrong, child organizational units will not be able to find parent
units, and the tree will disintegrate. We are living in a networked concurrent world, data ordering
is usually difficult to guarantee.

MidPoint has a mechanism to handle unordered data source. There is a way how to create parent
organizational units on demand. When a child organizational unit looks for a parent that is not
there yet, the parent object can be created at that moment. Of course, this can only create stub
parent, a very minimal object that has only the essential data. Yet, even such a stub object is
sufficient to create an organizational hierarchy. The stub will be updated later, when the details
about parent organizational unit are retrieved from the data feed. The details of this create on
demand mechanism is beyond the scope of this chapter. We will get back to it later.

Adding Users To Units

We have a nice hierarchical organizational structure now. Yet, something is still missing. The
organizational structure is all about the people, but there are no people in our organizational tree.
Let’s fix this.

The people data are coming from HR resource in our ExAmPLE case. We need to modify the HR
resource to automatically assign people to the organizational tree. To do that, we need to add
information about organizational units into our HR feed. After several phone calls, tens of e-mails

299

and a quick 3-hour meeting, the HR department agreed to add a new orgnum column to the CSV file:

hr.csv

"empno","firstname","lastname","jobcode","orgnum"
"001","Alice","Anderson","S006","11100"
"002","Bob","Brown","S007","11210"
"003","Carol","Cooper","S008","11310"
...

The 'orgnum' column contains an identifier of the organizational unit the person belongs to. This
looks quite familiar, and clever reader is working on the configuration already. Of course, we can
use the same approach we have used to build up organizational hierarchy. We just need to apply it
to the users instead of organizational units. Therefore we are going to add new inbound mapping to
the HR resource:

resource-csv-hr.xml

 <attribute>
 <ref>ri:orgnum</ref>
 <inbound>
 <expression>
 <assignmentTargetSearch>
 <targetType>OrgType</targetType>
 <filter>
 <q:equal>
 <q:path>identifier</q:path>
 <expression>
 <path>$input</path>
 </expression>
 </q:equal>
 </filter>
 </assignmentTargetSearch>
 </expression>
 <target>
 <path>$focus/assignment</path>
 </target>
 </inbound>
 </attribute>

The assignmentTargetSearch expression looks for the right organizational unit. Then the mapping
creates an assignment to that unit. And we are done. Run the HR synchronization task, and all the
users are going to be neatly organized in the tree.

300

Get your data structures right at the beginning.

That 3-hour meeting with HR was in fact really useful and necessary. The result
was that ExAmPLE HR department did the right thing. They put identifier of
organizational unit in the HR feed, instead of organizational unit name. Having
organizational unit identifier makes everything much more stable.

There is a lesson to be learned. Every hour spent designing the data structures will
be repaid many times over. Getting it wrong will cost you days or months dealing
with data inconsistencies. It is also very difficult to change data formats in the
future, as they effectively become data integration interfaces. Take your time and
get it right at the beginning.

Organizational Structure Provisioning
We have seen how we can synchronize organizational structure into midPoint. We are talking
midPoint here. What goes in, can also go out. It is very simple to provision organizational structure
to an ordinary target system, such as database table. However, we have already learned a thing or
two, and doing that would be almost boring. Therefore, let’s do something a bit more challenging.
Let us synchronize the organizational structure into an LDAP directory tree.

The basic principles of organizational structure provisioning are the same as for users. We need to
set up outbound mappings for organizational units. We already know how to do that. There are just
few little differences:

• We will use organizationalUnit object class instead of inetOrgPerson.

• We will use special kind/intent combination.

• We have to be a bit smarter about creating LDAP distinguished names (DNs) for the entries, as
we want them to create a hierarchical data structure.

Everything else is essentially the same as for users and accounts. However, let us go over all the
details, step by step.

First of all, we need to add new objectType definition to the LDAP resource:

resource-openldap.xml

 <objectType>
 <kind>generic</kind>
 <intent>ou</intent>
 <displayName>Organizational Unit</displayName>
 <objectClass>ri:organizationalUnit</objectClass>
 <attribute>
 <ref>ri:dn</ref>
 <displayName>Distinguished Name</displayName>
 <limitations>
 <minOccurs>0</minOccurs>
 <maxOccurs>1</maxOccurs>
 </limitations>

301

 <outbound>
 <name>ldap-ou-dn</name>
 <trace>true</trace>
 <source>
 <path>$focus/name</path>
 </source>
 <expression>
 <script>
 <code>
 import javax.naming.ldap.Rdn
 import javax.naming.ldap.LdapName

 // We will collect names of the org units in the
orgpath list
 // We cannot add them to dn yet as we need their order
to be reversed
 def orgpath = []
 def node = focus
 while (true) {
 log.debug("processing node {}", node)
 orgpath.add(node.displayName.orig)
 if (node.parentOrgRef == null ||
node.parentOrgRef.isEmpty()) {
 break
 } else {
 node =
midpoint.resolveReference(node.parentOrgRef[0])
 }
 }

 log.debug("orgpath={}", orgpath)
 def dn = new LdapName('ou=org,dc=example,dc=com')
 orgpath.reverse().each { ouname -> dn.add(new
Rdn('ou',ouname)) }
 return dn.toString()
 </code>
 </script>
 </expression>
 </outbound>
 </attribute>
 <attribute>
 <ref>ri:ou</ref>
 <limitations>
 <maxOccurs>1</maxOccurs>
 </limitations>
 <outbound>
 <source>
 <path>$focus/displayName</path>
 </source>
 </outbound>
 </attribute>

302

 </objectType>

Except for that big piece of Groovy code, this configuration is relatively simple. The objectType
definition specifies organizationalUnit value for object class. This is a standard LDAP object class
for "ou" entries. There is also specification of kind (generic) and intent (ou). These are midPoint
"coordinates" for this object type. Then we have two outbound mappings, one for LDAP
distinguished name (dn), the other for naming attribute (ou). The ou mapping is very simple, using a
value of org’s displayName. On the other hand, the dn mapping looks somehow scary. There is no
need to be afraid. We are going to explain everything, and there are some really interesting parts
here.

The purpose of the dn mapping is to construct LDAP distinguished name in a hierarchical manner.
We want to put the organizational tree under the ou=org,dc=example,dc=com entry, with the entry for
ExAmPLE company at the top. Therefore, the dn of Operations Division need to be ou=Operations
Division,ou=ExAmPLE,ou=org,dc=example,dc=com. IT Department goes under the Operations Division,
therefore we need its dn to be ou=IT Department,ou=Operations
Division,ou=ExAmPLE,ou=org,dc=example,dc=com. We need to process the tree from the organizational
unit all the way through all the parent units to the very top of organizational structure. That is
exactly the thing that the Groovy expression does.

Let’s skip the import statements for now. The first thing that the expression has to do is to figure out
the "path" from the current organizational unit to the top of the tree. The expression gets the
current organizational unit in the focus variable. However, the org object does not contain its
complete path in the tree. All it has is a reference to its parent organizational unit (parentOrgRef).
Therefore, the expression has to iterate over all the levels in the tree until it gets to the top. The top
organizational unit does not have any parent, that is where the iteration stops. Display names of
each organizational unit at the "path" is collected in the orgpath list. As the org contains only a
reference to the parent, we need to explicitly read the parent object from midPoint repository. We
will do that with an explicit call to midpoint.resolveReference(…) method. This method reads the
object from the database and returns it. When the loop stops, orgpath contains all the display names
that we want in our dn. Now we need to encode the names in LDAP DN format. This can be done by
simple string operations. However, there are some intricate details about escaping the names as
they are encoded. It would be nice if someone else could do the encoding for us. Turns out, there is
someone else to do it. Java platform comes with Java Naming and Directory Interface (JNDI), which
is supposed to be a generic library to access broad range of directory services. JNDI is not the best
library that the world has ever seen, but it is part of Java platform, and it can do formatting of LDAP
DN. It will be good enough for us. We will take advantage of LdapName and Rdn classes to encode the
DN. The import statements at the beginning made use of these classes quite convenient. The last
detail is the ordering. We want our names in the DN to be in a different order, therefore we just
reverse orgpath before processing.

303

Tracing and logging

Clever reader has noticed a couple of interesting things in that mapping. Especially
the <trace> element looks very useful, which it is. It turns on detailed tracing of the
mapping. MidPoint will record the details of mapping evaluation in the log file.
Similar <trace> element can also be applied at the expression level. Then there are
the log statements in the Groovy code, such as log.debug("processing node {}",
node). These are explicit logging statements. The processing node … message is
recorded to the log file at debug level. This is a very useful tool for diagnosing
execution of complex expressions.

Our outbound mappings are ready to go. But nothing happens yet. MidPoint does not know that it is
supposed to create LDAP objects for our organizational units. MidPoint does not automatically
create accounts for all the users either. We need a construction to do that. The orgs need to have an
assignment with a construction, similar to these that we have used to create accounts. However, we
will need to use the right kind and intent. We want to archive something like this:

<org oid="7a1feb50-471f-11ea-8aab-1b2627541f15">
 <name>F11000</name>
 <displayName>Sales and Marketing Division</displayName>
 ...
 <assignment>
 <construction>
 <!-- LDAP resource -->
 <resourceRef oid="8a83b1a4-be18-11e6-ae84-7301fdab1d7c"/>
 <kind>generic</kind>
 <intent>ou</intent>
 </construction>
 </assignment>
</org>

You can test your configuration by creating this assignment manually in the GUI, or by editing the
XML/JSON/YAML version of the org. However, we need to create these assignments automatically.
There are several ways to do it.

Perhaps the most obvious way would be to add a mapping to create this assignment in the object
template. As there is an object template for users (UserType), there may be an object template for
any other midPoint object. Therefore, you can create object template for orgs (OrgType) and
configure the mapping there. This would be an acceptable solution.

An alternative way would be to add inbound mapping to create this assignment. That would be in
fact quite easy, as it would is very similar to the mapping that we have used to create organizational
hierarchy. However, that would not be an ideal configuration, as we would mix the concerns here.
The mapping will be an inbound mapping in the Organizational Chart resource. It would not be
entirely appropriate for this inbound mapping to control provisioning (i.e. outbound flow) of
organizational structure. It will work, but such configuration will be difficult to understand and
maintain.

Clever reader is now thinking about the metaroles that we have already mentioned in the RBAC

304

chapter. As usual, cleaver reader is right, or perhaps very close to the right solution. Creating a
metarole that could be applied to all the orgs would be almost an ideal solution:

role-meta-orgunit.xml

<role oid="b8c3ccba-1dfb-11eb-9031-27e1d26ca36e">
 <name>Functional Organizational Unit Metarole</name>
 <inducement>
 <construction>
 <!-- LDAP resource -->
 <resourceRef oid="8a83b1a4-be18-11e6-ae84-7301fdab1d7c"/>
 <kind>generic</kind>
 <intent>ou</intent>
 </construction>
 </inducement>
</role>

This metarole can be assigned to every org that we want to provision. In such case, it is perfectly
good to have the mapping to assign the meta role even in the inbound part of the Organizational
Chart resource. The metarole specifies type of the organizational unit. Therefore it is desirable to set
the metarole when the org is created for the first time, which happens during organizational
structure synchronization.

This would be almost ideal solution. However, there is a better way still. We can use archetype
instead of metarole. Archetype will do the same trick as metarole does here.

archetype-orgunit.xml

<archetype oid="475106e4-1dfe-11eb-8429-534869969212">
 <name>Functional Organizational Unit</name>
 <inducement>
 <construction>
 <!-- LDAP resource -->
 <resourceRef oid="8a83b1a4-be18-11e6-ae84-7301fdab1d7c"/>
 <kind>generic</kind>
 <intent>ou</intent>
 </construction>
 </inducement>
</archetype>

Archetype can do even more tricks than metarole. Archetype can specify an icon and a color for the
objects. It can control the assignments to these objects. Archetypes give a structure to midPoint
objects. We will get back to archetypes in a dedicated chapter.

For now, just choose any of the methods above to trigger provisioning of organizational structure.
We will go for the archetype, assigning it automatically in inbound mappings of Organizational
Chart resource:

305

resource-csv-org.xml

 ...
 <objectType>
 ...
 <objectClass>ri:AccountObjectClass</objectClass>
 <kind>generic</kind>
 <intent>orgunit</intent>
 <attribute>
 <ref>ri:orgnum</ref>
 ...
 <inbound>
 <expression>
 <value>
 <targetRef oid="475106e4-1dfe-11eb-8429-534869969212"
type="ArchetypeType"/>
 </value>
 </expression>
 <target>
 <path>$focus/assignment</path>
 </target>
 </inbound>
 </attribute>
 ...
 </objectType>
 ...

All we need to do now is to re-run the synchronization task. The result is a nice organizational
structure in LDAP directory:

306

Figure 11. Organizational structure in LDAP

This is a nice result. However, there are still several remarks to make.

If you are going to try this scenario with a real LDAP server, you will need to create a root entry for
the organizational structure (ou=org,dc=example,dc=com). You will also need to update access control
lists (ACLs). However, be warned that this is not a very ideal way how to maintain organizational
structure in LDAP directory. We are using display names here, which are part of LDAP identifiers
(DNs). Therefore, even a minor correction in organizational unit name will trigger LDAP rename
operation. It will change the identifier of the organizational unit, and also all the organizational
units below it. Perhaps the only thing that can make it worse is to place users in that structure as
well. Which some people actually do. The only real reason to put organizational structure in this
form is to satisfy the needs of legacy applications. Avoid this approach whenever you can.

The clever reader have surely noticed that the big Groovy expression above is explicitly fetching
objects from the database. This may cause a performance problem in case that such expression is
evaluated often or if the structure is very deep. This is usually not the case with ordinary
organizational structures, therefore this approach is usually not problematic. However, it is always
a good thing to keep performance in mind, especially if your user population is bigger than few
thousands of users.

Finally, we still depend on ordering of the data feed. We want to create "higher" entries in LDAP
first, otherwise an attempt to create "lower" entries would fail. This can be solved by using the
"create on demand" approach mentioned above. However, it is going to be problematic and
cumbersome when organizational unit display names are used instead of identifiers. However, in
that case this little details does not matter that much anyway, as it is likely you will suffer for many
different reasons if organizational display names are used instead of identifiers. Always use

307

organizational unit identifiers if you can. We really mean it. You can thank us later.

Focus and Projection
Synchronization of an organizational structure is an application of a generic synchronization
principle. Almost any resource object can be synchronized with almost any midPoint object - and
vice versa. Principle of the synchronization is essentially the same as in user-account case that we
have seen in previous chapters. In that case the accounts were linked to user, midPoint
synchronized the data from account to user and from user to accounts. The synchronization follows
user-account links.

Figure 12. User and accounts

Synchronization of an organizational structure is based on the same principle. However, there is an
org instead of user, and there are various resource objects instead of accounts. It may look like this:

308

Figure 13. Org and projections

There may be user, org, service, role or almost any midPoint object on the midPoint side. That may
be synchronized with account, group, role, privilege, organizational unit or almost any resource
object on resource side. As you can see, the terminology becomes quite cumbersome. Saying
"almost any midPoint object" and "almost any resource object" is not very natural or precise.
Therefore, we have decided to use focus and projection terms:

Figure 14. Focus and projections

309

The object that is "in the middle" is called focus or focal object. It is in the centre of the
synchronization, it is its focal point. Every relevant piece of data is reflected onto the focal object by
the synchronization mechanisms.

User is a typical focal object. Other midPoint objects can be focal objects as well, most notably org,
role and service.

The state of focal object is projected back to the resources. Therefore, the objects that reside on the
resources are called projections. An account is a typical projection object, but there is wide variety
of other object classes such as groups, organizational units, (resource-side) roles, privileges, access
control lists, teams and so on.

Focus and projection

Focus and projection may sound like strange words to use for identity management
concepts. Many identity management systems work with just user and account.
However, midPoint is more flexible, more generic. When we designed the generic
synchronization mechanism, we needed to find good names for the generalization
of user and account concepts. We tried hard, but we could not find anything better
than focus and projection. There are only two hard problems in computer science,
after all.

There is always one focus, one focal object in the center. There may be any number of projections
linked to the focus. There may be several projections on one resource. However, each projection has
to be unique, it needs to have a unique combination of kind and intent. This is the reason that we
consider kind and intent to be coordinates, as they uniquely identify a projection on a particular
resource.

This is a very flexible concept that can be used for various purposes. We have already seen how it
can be used for synchronization of organizational structure. Similar principle can be used to
synchronize Active Directory groups, automatically creating application role for each Active
Directory group. This principle provides a mechanism to create multiple accounts for one user on
one resource. For example, it can be used to create administration accounts for some users. In this
case we would use explicit kind and intent in the construction:

<role oid="0e9c448c-1f87-11eb-9703-b3d28c537192">
 <name>System Administrator</name>
 <inducement>
 <construction>
 <!-- Active Directory resource -->
 <resourceRef oid="1e1e5a1c-1f87-11eb-8ace-1fbd338f61c5"/>
 <kind>account</kind>
 <intent>admin</intent>
 </construction>
 </inducement>
</user>

The System Administrator role above specifies that a special admin account should be created for
system administrators. When this role is combined by an ordinary Employee role, the administrator

310

will get two accounts: the usual employee account (intent=default) and a special-purpose
administration account (intent=admin).

Conclusion
MidPoint organizational structure is a versatile and powerful mechanism. It can be used to
organize users in units, teams and projects. It can be used to group variety of other midPoint
objects. However, organizational structure becomes incredibly powerful when combined with
other midPoint mechanisms. Authorizations can take advantage of organizational structures to
implement delegated administration schemes. Organizational structures are used in recertification
campaigns. MidPoint multi-tenancy mechanism also relies on organizational structures.
Organizational structure is a universal mechanism to organize midPoint objects.

There are many universal mechanisms in midPoint, synchronization mechanism being one of the
prominent ones. Synchronization was designed to work with many types of midPoint objects,
including organizational structure. Expressions and mappings give bring the power to transform
organizational structure data during synchronization, supporting diverse set of use cases. Similar
mechanisms can be used to synchronize roles and services, granting midPoint enormous flexibility
in identity management deployment.

Yet, we are just starting to uncover the full power of midPoint.

311

Chapter 10. Troubleshooting
The problem is not that there are problems. The problem is expecting
otherwise and thinking that having problems is a problem.

— Theodore Rubin

MidPoint is one big and comprehensive system. Generally speaking, identity management systems
tend to be big and complex. They have a lot of things to do. There is a lot of data mapping,
synchronization, policies, access control models, expressions and all such stuff. While each
individual mechanism in itself is relatively simple, the combination of those mechanisms often
creates something that would put the famous labyrinth of Knossos to shame. Especially junior
engineers tend to create configurations that are unnecessarily complex. Those configurations may
work for common cases. But then there comes a corner case and the result is a puzzled look at
junior engineer’s face and a mysterious smile of his senior colleagues. At that point junior
engineers tend to panic and switch to high-energy trial-and-error mode. Which usually does even
more harm. What is really needed here is to stand back, to think about the situation and start to
troubleshoot the problem in a systematic way.

But even senior engineers often get into trouble. This is no weakness. MidPoint is really flexible and
sometimes it is hard to figure out what exactly is going on. In fact, midPoint has surprised even its
authors on more than one occasion. When midPoint misbehaves, then the cause is almost always a
configuration problem. But there are usually thousands upon thousands of users, roles, policies and
expressions. There is a lot of places where a little treacherous problem can hide and live happily
ever after.

All of that was perfectly clear to midPoint developers even before midPoint project started.
MidPoint developers are more than just programmers. Writing midPoint code takes a good part of
developer’s day. But there is also testing, diagnostics of bugs and helping our colleagues and
partners to figure out what is going on when the things get really tough. The developers would be
lost without an efficient method to diagnose the behavior of midPoint. Therefore diagnostic systems
were an integral part of midPoint design.

This chapter will provide an overview of the diagnostics mechanisms in midPoint. But even more
importantly, it will describe the method that can help to find the problem in a systematic and
reliable way. That is what every engineer should learn and use every day. In fact, troubleshooting is
perhaps the most important skill for smooth deployment of any software system.

Designed for Visibility
MidPoint is designed, developed and maintained by a very unique team. What is really unique in
midPoint core team is the presence of identity management engineers very early in midPoint
design. Several key people that took part in midPoint design were involved in IDM projects since
early 2000s. That experience was crucial – especially bad experience from the use of the
technologies that were available at the time. One of the most important lessons that can be learned
from fist-generation IDM systems is a lesson of visibility. All those systems were closed, their
vendors jealously guarding all the secrets of inner workings of those systems. This made

312

troubleshooting a very demanding task. Engineers often had to resort to desperate measures, such
as calling vendor’s support help desk. But even such drastic actions usually did not help much. It
was a real struggle.

When midPoint project started, the team agreed to take a different approach. MidPoint is radically
open. It is an open source project from the day one. There is a reasonable documentation, even
including architectural documentation and design notes. All of that is public. And most importantly,
the visibility goes deep down in midPoint implementation. Great attention was paid for proper
logging as that is the primary troubleshooting mechanism. There are various diagnostic
mechanisms in midPoint user interface, performance metrics and so on. And all of that is improved
in every midPoint release.

However, the most important thing is to know how to use those mechanisms properly. Even the
best diagnostics mechanism will not do any good for you if it shows the data that you do not need at
the moment. It is important to know where to start, where to look and what to look for. And that
are the questions that this chapter should answer.

Systematic Approach
Where to start? That is a question that troubles most engineers that are new to midPoint. Senior
engineers would probably think that this is a silly question and the answer is obvious. But it is not.
And it gets even harder to figure out how to follow the trace of the problem deeper into midPoint
configuration.

Start with the obvious. Maybe there is an error message right in front of your eyes. MidPoint
usually provides a lot of details that come with error message. Then there are log files. MidPoint
logs a huge amount of information, it just needs to be enabled.

The usual troubleshooting sequence goes like this:

1. What exactly is the problem? What are the symptoms? Does the operation fail? Is there an
error message? Does it crash? Did it produce wrong results? Or are there no results at all? What
was the supposed result? Can this me an error in the input data?

2. If there is an error message, what is that message saying? Is there any additional information
in the message or in the operation result that comes with the message? Where is the error
coming from? It is an error from a connector? Or an error from an expression?

3. Is there any additional information in the log file? Are there any errors or warnings in the log
file that may cause the problem?

4. What was midPoint doing, exactly? Is there any information about the operation progress
when log level is set to DEBUG? What are the intermediary results of the processing? Are those
correct? At which point in the operation are data getting wrong?

5. Where exactly is the problem? Which component, configuration, mapping or expression are
causing it? What are the details of the operation? Are there any hints if you set logging level of
that component to TRACE?

The first step is perhaps obvious – even though too many people fail to see what is right in front of
their eyes. But once you have opened your eyes and checked for the obvious causes, then there is

313

time to go deeper.

Once you have ruled out the obvious cases you will need to have a look at midPoint log files. You
will need to follow the trace and examine the operations that midPoint was doing. The best strategy
here is one of divide and conquer. In other words, start in the middle. Find a convenient starting
point in the middle of the processing. Where exactly that middle is depends on the nature of the
problem. If the problem is related to a connector, then the best starting point is probably a
connector framework. Does the operation make sense? Are the values correct? If the answer is
"yes", then the problem is probably in the connector. If the answer is "no" then the problem is in
midPoint configuration. Either way you know where you should focus your investigation. If that
problem is in midPoint, then in which part it is? Are data in the user object correct? If they are,
then the problem is probably in the outbound mappings. Have a look at those. And so on. Start with
a big thing. And then follow the clues and dive into the details.

Error Messages and Operation Results
Error messages are the most obvious troubleshooting mechanisms. MidPoint error messages
usually provide enough information to diagnose and fix trivial problems right away.

MidPoint error messages are in fact part of a more complex system of operation results. Operation
result is a data structure that accompanies every midPoint operation. The operation records
important points during the processing in the operation result. Operation result is hierarchical.
There is one big operation at the top. But that usually consists of smaller operations which in turn
consist of even smaller operations. Connector operations are somewhere at the bottom. If the top-
level message does not provide information about the problem, then dig deeper. Expand the sub-
operations until you find the root cause.

Operation result can be used to get a rough idea what midPoint was doing and what are the results.
Each of the operations in the result has a status:

314

Status Meaning

SUCCESS Operation completed. The operation has finished
successfully. There are no errors.

WARNING Operation completed. But there are warnings.

PARTIAL_ERROR Operation completed. Some parts of the
operation were successful, other parts of the
operations resulted in an error. However, the
operation was not stopped and the execution
continued despite the errors.

Partial error is often indicated in case that user
modification is successful but account
modification fails.

FATAL_ERROR Operation was interrupted due to an error. The
error prohibited completion of the operation.

HANDLED_ERROR Operation completed. An error was experienced
during execution of the operation. However, the
error was handled and the system was able to
compensate the effects of the error. The results
should be equivalent to a successful operation.

NOT_APPLICABLE Operation was not even started because the
operation is not applicable to the inputs.

IN_PROGRESS Operation is in progress. The operation was
started, but it was not yet finished.

This status is seen for operations that execute
“in the background”, in running tasks and so on.
But it may also be used for operations that are
waiting for an external event, such as approval
operations or operation retries.

UNKNOWN Status of the operation is not known.

This status code should not be normally seen.
However, it may happen under special
circumstances. For example, if a bug in midPoint
or a connector leaves the operation in an
uncertain state or in case that unforeseen error
appeared and it was not handled properly. This
status usually indicates a programming bug.

Operation result is a very useful data structure. It has many purposes. For example, it is stored in
the tasks and provides data for later diagnostics. It can summarize the operations, provide
performance data and so on. But that means that the operation result cannot be too big. And
therefore the granularity of the operation result is usually quite rough to pinpoint serious issues.

315

Issues that are really tricky usually cannot be resolved by examination of operation results. For that
we need to go deeper still.

Logging
Logging is the best tool in the troubleshooting toolbox. Logging provides information about all the
important things that happen in the system. It also goes very deep, and it can provide very fine
details about midPoint operations. Logging is universal and very powerful tool. It is the best hope to
find the cause even for the trickiest of problems.

Similarly to every other tool, the most important thing is to know how to use it properly. This is
especially important for midPoint logging. The default logging setting logs only a very little
information. This is a reasonable detail for a production system that has been properly configured
and tested. It is not enough in case that you are chasing a configuration. In that case, the logging
system needs to be reconfigured to log more information. Beware, if logging system is set to its full
power you will get a huge stream of data that is likely to completely overwhelm you. The important
information will surely be there. However, they will be lost in the flood of other data. Therefore
logging need some skill and experience to manage it correctly.

MidPoint is using logging approach that is well established in the industry. MidPoint logging
principles should be quite familiar to any deployment engineer. However, it is perhaps worth to
provide a quick overview of those basic principles.

MidPoint log files are located in midPoint home directory. This is usually var sub-directory of
midPoint installation directory. MidPoint home directory contains sub-directory logs and midPoint
logfiles are there. There are usually several files:

• midpoint.log is the primary midPoint log file. Almost all log messages from midPoint will be
recorded here. This is the right file to examine. The truth is in there.

• midpoint.out is file where the standard output of midPoint process is recorded. Only a very few
things are usually logged here. Those are the things that happen before midPoint logging system
is enabled, therefore midPoint cannot control and redirect logging of those messages. Which
that the messages usually describe events that happen before midPoint starts and after it stops.
This file does not need to be inspected routinely. However, it is a useful place to look while
experiencing startup issues.

Log files are usually rotated. Which means that when there is too much data in one log file the file
is renamed. Oldest files are removed. Otherwise the log files would fill all available disk space.

Log messages have a structured format. They look like this:

2019-08-16 16:40:25,863 [PROVISIONING] [main] INFO
(com.evolveum.midpoint.provisioning.impl.ProvisioningServiceImpl): Discovered local
connector connector: ConnId com.evolveum.polygon.connector.ldap.LdapConnector v2.3
(OID:268678c0-b5b3-4b13-a399-c2fbd903e51d)

The fields are described in the following table.

316

Field Description Example

Timestamp Timestamp of a moment when
the message was generated.

2019-08-16 16:40:25,863

Component name Name of the component where
the message originated.

[PROVISIONING]

Thread name Name of thread in which the
message originated.

[main]

Log level Severity level of the message. INFO

Logger name This is usually package name or
a fully-qualified name of the
class that produced the
message. But there may be
special-purpose loggers with
special names.

com.evolveum.midpoint.provisio
ning.impl.ProvisioningServiceI
mpl

Message Content of log message. This is
usually single-line message. But
multi-line messages are
common on finer log levels.

Discovered local connector
connector: ConnId
com.evolveum.polygon.connector
.ldap.LdapConnector v2.3
(OID:268678c0-b5b3-4b13-a399-
c2fbd903e51d)

As midPoint takes advantage of parallel processing, the thread name is often useful to filter out
messages that belong to a single operation. The logger name is sometimes abbreviated, therefore
com.evolveum.midpoint.provisioning.impl.ProvisioningServiceImpl becomes
c.e.m.provisioning.impl.ProvisioningServiceImpl. Otherwise the log message format is similar to
message formats of other products and it should be quite familiar to most system engineers. This is
the default log message format. The log format can be customized if needed.

The most important aspect of efficient usage of logging as a diagnostic tool is to control granularity
of logging. This is both a science and an art. It requires some instincts and experience. The
granularity can be controlled in two "dimensions":

• Log level determines the level of details that is logged. INFO log level will log only the important
events. TRACE level will log huge amount of information that is primarily interesting for
developers. This controls depth of logging.

• Package determines which midPoint components will log their messages. Setting a log level for
a particular package also enables logging of all sub-packages and classes. This controls the
breadth of logging.

Logging setting is a combination of a package and level. Therefore, it is possible to get a very
detailed logging from a single package while keeping logging of other packages at a very rough-
grained level. And this is exactly what is needed when chasing a bug. We want to have a very
precise look at the component where the problem occurs without being overwhelmed by a flood of
data from other parts of midPoint. The trick is to know which package and level to use.

Let’s start with log levels. Each level has a precise definition of the amount of details it provides.

317

Level Circumstances Description

FATAL Critical errors. The system
cannot continue operation, will
crash or stop working

This is bad. The system is going
down. There is not way that the
system can run. Big problem.
This should not happen.

ERROR Error that seriously affects the
system, but the system as a
whole can recover.

Typically caused by errors in
the data, network errors and so
on. This is not good. Sometimes
the system can recover just by
itself. But manual intervention
of system administrator is
usually needed.

WARNING Suspicious situation. System
may be able to operate
normally, but there may be a
hidden or temporary problem
or an indication of future error.

Important messages that should
not occur in a well-configured
and tuned systems. If they
appear they should be
investigated. However, the
investigation can wait.
Immediate action is usually not
required.

INFO Important changes in system
state, start/stop of important
system tasks, etc.

Those events occur normally in
almost all running systems.
Unless you have a very busy
system this log level can be
enabled all the time in
production.

DEBUG Execution messages, state
changes, expression evaluation
messages and similar messages
for system administrator.

This log level is dedicated for
system administrators to debug
the configuration. It will
provide reasonable amount of
messages that can be used to
find configuration problems.

TRACE Fine-grained messages about
execution details.

This log level will provide a lot
of data, lot of details. Its
primary purpose is to allow
developers to find a bug in
production systems. However,
this can also provide precious
details for system
administrators when
troubleshooting really tricky
problems.

The levels are organized in a hierarchy. When DEBUG level is set for a particular package, the
package will also log all messages with higher (rough-grain) levels. The usual log level to start with

318

when chasing a bug is DEBUG log level. This may be too much for some packages or too little for other
packages. But it is a good overall starting point.

Log levels are simple and well defined. However, figuring out proper package name is much
harder. Engineers that understand midPoint architecture and source code have a huge advantage
here. Logging package names are directly derived from Java packages and classes used in midPoint
source code. But even non-developers can learn how to use the package names efficiently.

The first thing to keep in mind is that midPoint is composed from subsystems and components.
Each subsystem and component has its own package name. Those can be used to control logging of
individual parts of midPoint. Following table provides an overview of those architectural blocks.

Subsystem/component Package name Description

GUI com.evolveum.midpoint.gui
com.evolveum.midpoint.web

User interface. This subsystem
drives all interaction with the
user.

Note: the *.web package is
legacy, but it is still used by a lot
of code. Both packages are
needed for complete GUI
logging.

Model com.evolveum.midpoint.model This subsystem implements
most of the IDM logic in
midPoint. User processing,
RBAC, organizational structure,
policies – everything is
processed here.

Provisioning com.evolveum.midpoint.provisio
ning

Communication with external
systems. This subsystem is
responsible for communication
with the connectors,
management of shadow objects,
driving live synchronization,
manual connectors, operation
retries, management of
resources and connectors and
so on.

ConnId org.identityconnectors.framewo
rk

ConnId connector framework.
This is responsible for running
the connectors and passing
operation to the connectors.

319

Subsystem/component Package name Description

Repository com.evolveum.midpoint.repo Primary responsibility is to
store midPoint objects in the
database. But there is also task
management, authorization
processing, expression
evaluation and so on.

Schema com.evolveum.midpoint.schema Definition of midPoint data
model and various utilities.

Prism com.evolveum.midpoint.prism Library that is parsing and
storing objects in
representation data formats
(XML/JSON/YAML).

Those package names can provide rough boundaries for logging. Enabling TRACE level on an entire
subsystem can still provide a lot of data, but it is better than enabling TRACE for whole midPoint. The
best approach here involves a look at midPoint source code. But there is a still a way to do it
without a source code:

1. Enable DEBUG level on the entire subsystem. This is likely to provide a log of data, but it should
not be overwhelming.

2. Look at the log file and try to figure out in which part the interesting things happen. Where the
things are getting out of control. Observe name of the packages that are used in those messages.

3. Set TRACE level only for those packages or classes where interesting things happen. You will get
much more details.

4. Optionally mute some packages that show too much data by setting their log level to INFO.

This is a good overall approach. But there are few very specific packages that tend to attract
problems. Therefore they are often set to finer log levels. Below is a list of those packages.

Component Package name Description

Clockwork com.evolveum.midpoint.model.im
pl.lens.Clockwork

The "controller" that drives
computation of all changes in
midPoint. Change of every
object is passing through
clockwork (unless it is "raw").

Enabling logging on clockwork
will provide rough overview of
the processing.

320

Component Package name Description

Projector com.evolveum.midpoint.model.im
pl.lens.projector.Projector

The "brain" that computes all
effects of the change. It is
invoked as part of the
clockwork.

Enabling logging will provide
overview of the computation.

Change Executor com.evolveum.midpoint.model.im
pl.lens.ChangeExecutor

The "hand" that executes all the
computed changes.

Enabling logging will provide
an overview of computed
changes and the result of their
application (success or failure).

Lens com.evolveum.midpoint.model.im
pl.lens

Sub-component responsible for
computing and processing all
ordinary changes on objects. It
includes clockwork, projector
and executor.

Setting TRACE level here will
provide all the gory details
about the processing. Lots of
data. Use only in deep despair.

Mappings com.evolveum.midpoint.model.co
mmon.mapping.Mapping

Code that is processing
mappings.

Enabling logging will provide a
short overview of mapping
inputs and outputs with some
insights into the inner
processing.

Expressions com.evolveum.midpoint.model.co
mmon.expression.Expression

Expression evaluation code.
Enabling logging will provide a
lot of details about expression
evaluation. This is likely to
produce a log of data.

Script expressions com.evolveum.midpoint.model.co
mmon.expression.script.ScriptE
xpression

Logs a lot of details about script
expression evaluation (Groovy,
JavaScript, …).

Provides a lot of details.

321

Component Package name Description

ConnId API Operations org.identityconnectors.framewo
rk.api.operations

Special package used to log
summary of all connector
operations that go through
ConnId framework. This is the
API side of the framework
(midPoint-ConnId boundary).

ConnId SPI Operations org.identityconnectors.framewo
rk.spi.operations

Special package used to log
summary of all connector
operations that go through
ConnId framework. This is the
SPI side of the framework
(ConnId-connector boundary).

Security com.evolveum.midpoint.security Package that contains security-
related components.

This is especially useful for
debugging authorizations.

Setting DEBUG log level to clockwork, projector or change executor is a good starting point for
diagnostics of problems related to mappings and assignments. The ConnId operation log is a good
starting point for connector related problems. And security package is perhaps the only really
efficient mechanism to debug misbehaving authorizations.

Logging is the best troubleshooting tool to handle even the most complex issues. Therefore make
sure you take full advantage of this tool. The importance of logging can hardly be overstated. Make
sure you know how to set up logging properly and how to interpret log messages. This is a skill that
takes some time to learn. But it is a crucial investment to make. The time will be repaid many times
over. Therefore, if you have any problem that looks strange, remember one simple rule: always
look at the log files. The answer will be there.

Auditing
Purpose of the auditing mechanism is to record all operations in midPoint for accountability
purposes. Auditing will be used by security officers to inspect system activity, it may be used for
forensic purposes or it can simply provide a data for statistical analyses. However, the fact that
auditing records all operations in the system can be a significant benefit for troubleshooting.

MidPoint user interface is quite comprehensive. Despite that complexity, most operations of the
user interface should be easily understandable in an intuitive way. However, there are cases when
it is not clear what exactly is user interface trying to do. And some operations can even be quite
counter-intuitive. For example, designation of a deputy is an operation on a different user than
most people would intuitively expect. It is always an advantage to see all the details of an operation
that user interface tries to initiate. And that is where auditing mechanism comes in. The auditing
subsystem records all the operations in a precise, structured way. Maybe midPoint does unexpected
thing just because the operation request itself does not make sense. Audit trail can be examined to

322

make sure that the operation is correct. Also, the results of the operation are recorded in the audit
trail. Audit may be a quick and efficient way to get an overview about the operation as a whole.

Audit may also be very handy when exploring bulk operations, such as results of synchronization
or reconciliation runs. The tasks in which those operations run will provide overview of the results,
e.g. they will provide the number of errors. But the task data structure cannot hold the details of
each operation. Such data structures would be huge. However, there are audit records for each of
those operations. Those records can be used to figure out what went wrong exactly: which objects
have failed, what operations were attempted, what exactly is the outcome.

Audit trail is one of the few places in midPoint where historical data are kept. All other parts of
midPoint are concerned about here and now, historical data are usually kept only for informational
purposes. But audit log is different. Audit log stores historical data, therefore it can be used to get
an overview of midPoint operations in the past. Common use of audit trail is to get overview of
daily operations. For example, audit records can provide data on how many operations were
processed during the past day, which operations have failed during last few hours and so on. There
is a special type of report to show such information. There is also a dashboard widget that is
designed to show such audit-based information for monitoring purposes.

However, please keep in mind that midPoint is an identity management system. It is not a SIEM
system or a data warehouse. MidPoint is not designed to keep and process massive amount of
historical data. Therefore even the use of audit trails has its limits. Keeping audit trail in midPoint
database for a short period of time is usually perfectly acceptable. However, a more suitable system
should be used for a long-term storage and processing of audit trail data.

Typical midPoint deployment records audit trails in the database table. This is the right method to
use for production deployment. However, there is another option. Audit records can be also
recorded in the log files. This is not something that is recommended for a production deployment.
In that case it is quite likely to flood the logs and it may even disclose sensitive data. However,
directing audit records into system logs may provide interesting benefits in development
environments. For example, in case that a detailed debug logging is used, audit records will provide
summary of operation and the outcome in the same log together with all the details. It makes it
easier to analyze the log files. As audit data is recorded close to the operation start and operation
end, audit log entries also provide a “frame” for the operation. It may be easier to find start and end
of the operation in the logfile.

Recording audit messages can be enabled in user interface, in the part where ordinary logging is
configured. There is an “Audit” section on that page. Audit log message looks like this:

2019-08-19 15:02:05,367 [MODEL] [pool-3-thread-6] INFO
(com.evolveum.midpoint.audit.log): 2019-08-19T15:02:05.367+0200 eid=1566219725367-0-1,
et=MODIFY_OBJECT, es=REQUEST, sid=DF97547B47BC6795D941B8C28AFB6089, rid=d0c90fdf-d101-
457b-baf9-ea0371637a1d, tid=1566219725331-0-1, toid=null, hid=localhost,
nid=DefaultNode, raddr=127.0.0.1, I=FocusType:00000000-0000-0000-0000-
000000000002(user), T=PRV(oid=df2210ad-3eec-4f59-9b11-46479b9ebc7c,
targetType={.../common/common-3}UserType, targetName=alice, relation={.../common/org-
3}default), TO=null, D=[df2210ad-3eec-4f59-9b11-46479b9ebc7c:MODIFY],
ch=http://midpoint.evolveum.com/xml/ns/public/gui/channels-3#user, o=null, p=null, m=

323

This is a semi-structure message that provides summary of significant fields of the audit record.
Detailed audit logging can also be enabled. In that case the deltas will be dumped in the log files.

Troubleshooting Clockwork and Projector
MidPoint has many components that have diverse responsibilities. But there is one set of
components that can be described as a heart (or rather a brain) of midPoint. It is the set of
components known as "lens". Clockwork and Projector are two most prominent classes in that set.
Projector is responsible for computing the values, running the mappings, processing assignment
and almost anything else related to the computation of identity data. Clockwork is responsible for
controlling the process. It invokes Projector as many times as is needed to complete the
computation. Clockwork also invokes ChangeExecutor to carry out the changes.

The overall request processing in midPoint works like this:

1. User clicks on Save button in midPoint user interface. User interface code computes what
operation needs to be done.

2. Operation on ModelService is invoked. This is usually executeChanges(…) operation. Deltas that
describe requested changes are passed as a parameter of this operation.

3. The operation is passed to Clockwork to control the operation.

4. Projector is invoked to compute all the changes. The changes are recorded in model context. The
changes are computed, but not executed yet. Mappings and expressions are evaluated at this
point.

5. Clockwork figures out what to do with the operation. There may be a need to drive the operation
through approval process. Or a special hooks may be invoked. Maybe the operation violates the
policy rules therefore it needs to be stopped. Clockwork does what needs to be done.

6. ChangeExecutor is invoked to carry out the changes. Changes to users, roles and other focal
objects are carried out by changing the data in midPoint repository. That is quite
straightforward. However, changes to projections (objects that reside in resources) are much
more complicated.

7. Provisioning service is invoked to carry out changes to projections. The changes are expressed
as changes to shadow objects (ShadowType). Some of those changes are recorded in midPoint
database, such as changes in identifier or metadata. However, most of the changes need to be
carried out on a resource by using a connector.

8. Connector framework (ConnId) is invoked to initiate resource operation by using appropriate
connector.

9. Connector is invoked. Connector initiates the operation on resources and gets the results.

10. Operation results get back to ChangeExecutor and then to Clockwork. Results are summarized. If
there is an error it is decided whether to continue or whether to stop the operation. At the end
Clockwork records the final audit record and returns control back to the caller. Operation is
finished.

Sometimes it is not possible to compute everything in a single pass. There may be dependencies
between resources, result of one operation may be an input to another operation. For that reason
clockwork and projector work in waves. Therefore several steps described above may be repeated

324

in each wave. Clockwork and projector exchange control in each wave until the operation is done.

Following picture provides a structural view of this setup.

This process is moving around a lot of data. Those data are recorded in model context. It is a data
structure that describes the operations, it holds all related objects, intermediary computation
results and all other important data. This data structure is absolutely crucial for the entire process.
But it also provides valuable troubleshooting information. When appropriate log packages and

325

levels are enabled, the model context is dumped to log files at important moments during the
computation. Often the best way how to find a problem is to watch how the model contest changes
during the computation.

The model context is putting together the focus and projections that belong together. Focus is
usually a user, projections are accounts. In such case, the model context groups together a user
with all the accounts are associated with that accounts. These are usually accounts that are linked
to the user. But it also may be a new account that was not yet created, an old account that was
recently deleted, etc. MidPoint groups all these objects together to allow efficient computation of
assignments and mappings and other policies.

Model Context has three parts:

• The context itself contains information about the entire computation (such as computation
state and wave number).

• Focus part which contains information about focal object. There is at most one focus.

• Projection part which contains information about each projection. There may be multiple
projections.

Focus and projection parts have similar structure. Both of these parts contain:

• Old object: the object (focus or projection) as it was before the computation. This means really
the beginning of computation. Please note that the computation can take several days e.g. if the
request waits for approval.

326

• Current object: the object as it was last time the Projector loaded the object. This is usually
quite recent information (at most few seconds old).

• New object: the expected form of new object after the computation. This item is here mostly for
informational purposes and for diagnostics. The actual value of the result may be slightly
different (e.g. if two operations are carried out over the same object in parallel).

• Primary delta: The request delta. This is the delta that was explicitly entered in the GUI,
supplied to the web service or otherwise specified in IDM Model Interface invocation. This is the
"command" that midPoint should execute. This defines what user wants. This delta will be
executed exactly as it was specified.

• Secondary delta: The computed delta. Secondary delta originates from execution of mappings
or hooks or other automated mechanisms. This describes what midPoint has computed. This
delta will be executed, but it can be recomputed several times during the process.

• Synchronization delta: The detected delta. The delta that was detected by synchronization.
MidPoint assumes that this delta was already executed and all it can do is to react to this. It is
used as an input to the computation. This delta will not be executed again.

This description is slightly simplified. The real thing is more complex. However, this description
should be sufficient to understand the overall process.

Model context is dumped at strategic places during clockwork and projector computation. The
dumps look like this:

---[PROJECTOR (INITIAL) context projection values and credentials of
resource:10000000-0000-0000-0000-000000000204(Dummy Resource Blue)(default)
]--------------------------------
LensContext: state=INITIAL, Wave(e=0,p=0,max=0), focus, 1 projections, 2 changes,
fresh=true
 Channel: null
 Options: null
 Settings: assignments=FULL
 FOCUS:
 User, oid=c0c010c0-d34d-b33f-f00d-111111111116, syncIntent=null
 User old:
 user: (c0c010c0-d34d-b33f-f00d-111111111116, v5, UserType) name: guybrush
.....

Those dumps provide crucial information for troubleshooting. Their importance for diagnosing
really hard problems cannot be overstated. It is more than recommended to get used to read and
follow those dumps through the computation process. It will save a huge amount of time.

Why is it so important to know all of this? You need to know this to find your way through this
labyrinth. MidPoint provides quite a lot of diagnostic data for each step and each sub-step of each
step. You can try to enable full logging to get all the details. But what you get is a digital equivalent
of a flash flood and you are very likely to get drowned. The information that you are looking for
will be almost certainly there, but it will be lost among all the innocent-looking data. This is a good
way how to spend a lot of time and lose your sanity in the process. But it is not an efficient
debugging method.

327

The efficient debugging method is to proceed in steps. Start with high-level information. Then focus
your eyes a bit deeper. Try to figure out which steps of the processing are working well and which
steps are wrong. The have a closer look at those steps by enabling more detailed logging. The look
deeper and deeper until the problem is found.

The process usually goes like this:

1. Have a look at input and output of the operation as a whole. There are several ways to do that.
You can use "preview" operation of user interface to see the input. You can examine the
operation result in the user interface to see the outcome of the operation. Or you may have a
look at the audit trail. Enabling auditing to a log files may also help.

2. Have a look at clockwork. Clockwork can provide a summary of the operation when DEBUG log
level on com.evolveum.midpoint.model.impl.lens.Clockwork package is enabled. The summary is
an important branch in the troubleshooting process. The summary may suggest whether the
problem with the operation is in the computation (Projector) or whether it is in the connectors
and resources (Provisioning).

3. Have a detailed look at the Clockwork process. Clockwork summary provides only a brief
summary in a very compact form. That information may not be detailed enough to figure out
what is going on. Therefore you may need to go deeper. Enabling TRACE log level on Clockwork
will provide detailed data about all the stages of clockwork processing. Model context is
dumped in each step. And it is this dump of model context that provides valuable
troubleshooting data. Have a look at those dumps and try to figure out where exactly the
operation goes wrong. After that you should be able to decide whether the problem is in
computation (Projector) or execution (Provisioning).

4. In case you suspect provisioning issues but you are not sure it may be helpful to have a detailed
look at ChangeExecutor. This component is responsible to carry out all the changes from
Projector and Clockwork. Enabling DEBUG or TRACE logging on
com.evolveum.midpoint.model.impl.lens.ChangeExecutor will provide details about each
operation and its outcome.

Overall, clockwork summary is a good starting point. The summary looks like this:

328

###[CLOCKWORK SUMMARY]######################################
Triggered by focus primary delta ObjectDelta(UserType:c0c010c0-d34d-b33f-f00d-
111111111111,MODIFY: PropertyDelta(/ {.../common/common-3}organizationalUnit,
REPLACE), PropertyDelta(metadata / {.../common/common-3}modifyTimestamp, REPLACE))
Focus: focus(user:c0c010c0-d34d-b33f-f00d-111111111111(jack))
Projections (1): account(ID {.../connector/icf-1/resource-schema-3}uid = [jack],
type 'default', resource:10000000-0000-0000-0000-000000000104(Dummy Resource Red)):
KEEP
Executed:
 ObjectDelta(UserType:c0c010c0-d34d-b33f-f00d-111111111111,MODIFY: PropertyDelta(/
{.../common/common-3}organizationalUnit, REPLACE), PropertyDelta(metadata /
{.../common/common-3}modifyTimestamp, REPLACE)): SUCCESS
 ObjectDelta(ShadowType:a3ebbe89-227b-42ff-9d00-f42bee3cf151,MODIFY:
PropertyDelta(attributes / {.../resource/instance-3}ship, REPLACE),
PropertyDelta(metadata / {.../common/common-3}modifyTimestamp, REPLACE)): SUCCESS
##

At this point you should know the rough outline of the problem. At the very least you should know
whether the problem is in:

1. Projector: the problem is that midPoint does not compute the values correctly.

2. Provisioning: the values are computed correctly, but there is a problem when midPoint tries to
execute the operation.

If the problem is in the computation then you need to have a closer look at Projector. The first step
should be to enable DEBUG logging of com.evolveum.midpoint.model.impl.lens.projector.Projector.
The output of this logging is similar to the output of Clockwork trace. Each step of Projector
computation is recorded and model context is dumped. Watch the changes in model context closely
and try to figure out where wrong results occur. This is usually all that is needed to figure out the
nature of the problem. The problem is often in the mappings. In that case, follow the instructions in
the next section to debug the mappings. If you still cannot figure out what is going on there are still
finer details that can be enabled. The projector consists of many "processor" classes, such as
ActivationProcessor or AssignmentProcessor. Each of those are responsible for one part of the
computation. Enabling TRACE logging on them provides a very fine details about the computation.
Package names of those classes can be found in midPoint source code. But it is usually more
convenient to enable TRACE logging on the entire com.evolveum.midpoint.model.impl.lens package at
this point. Doing so will also show all the names of all the "processors" that take place during the
computation. Those names can be used to focus the logging output only to specific parts of
computation.

The things may get quite messy if the problem is in the execution of the operation. There are many
components to consider. There is midPoint provisioning code, ConnId connector framework,
connector and then the target system itself. There is almost uncountable number of combinations,
configurations, network conditions and other circumstances where things may go wrong. The first
step should be to figure out whether the problem is on midPoint side or on the resource side. Once
again the best strategy is to find a suitable point in the entire process and to check operation status
here. Connector framework is such a suitable point. There is special logger that can be used to
record summary of all the operations of connector framework:

329

org.identityconnectors.framework.spi.operations. Enabling TRACE logging on this logger will record
all the operation requests and results that pass between ConnId framework and the connector.
Some connectors provide similar facility that can provide even more details. For example, LDAP
and AD connectors can log details of all LDAP operations by enabling TRACE logging on
com.evolveum.polygon.connector.ldap.OperationLog. This method is usually preferable as it can
clearly indicate whether the problem is caused by wrong operation request or whether the problem
occurs on the LDAP or AD server. If case that the problem is in the connector or somewhere on the
resource side there is a separate troubleshooting guide below. In case that the problem is in
midPoint, then the best strategy would be to enable logging of midPoint provisioning components:
com.evolveum.midpoint.provisioning. Setting the logging to DEBUG level should provide enough
information to locate the problem. Desperate engineers can try to use TRACE level here. But in that
case, it is perhaps a good idea to leave some provisioning classes to DEBUG level (such as
ResourceManager) as they are usually too loud at TRACE level.

Lens, Clockwork and Projector. Where do those names come from? Naming is a
notoriously hard thing. Software engineers create things that are not alike
anything in the real world. Therefore it is often very hard to find good names for
components. The recommended practice is to find appropriate metaphor for the
system. In other words: find something in the real world that something similar as
you do. When midPoint was young we were implementing a component that
mapped user data to accounts. However, this component was supposed to be
generic. It mapped user to accounts, but also role to entitlements, org to OUs and
so on. The obvious name "Mapper" was problematic, as we had a concept of
"mapping" already. Such name would be confusing. Therefore, we have chosen a
concept of projecting user data to accounts in the same way as movie is projected
to a screen in a theater. That was also a reason for "focus" and "projection" and to
use name "lens" for the whole package. Some time later we needed a name for a
controller that will drive the projector. We though about a planetarium or a
telescope driven by a clockwork mechanism. MidPoint has evolved since then and
those names may no longer be a perfect metaphor. But they are there and we got
used to them.

Troubleshooting Mappings and Expressions
Mappings and expressions often contain custom scripting code. This means that midPoint is very
flexible and can satisfy diverse requirements. But it also means that mappings and expressions are
often the source of problems. Especially some scripting expressions tend to be quite complex.
Creating, testing and maintaining those expressions would be almost impossible without any
debugging and troubleshooting facilities.

MidPoint contains code that can be used to trace execution of mappings and expressions on a very
detailed level. The trace shows inputs and outputs and deltas that are taken into consideration
when the expression or mapping is evaluated. There are two options how to enable this tracing.

First option is to enable the tracing globally for all expressions and mappings by setting one or
more of the following loggers to TRACE level:

330

Component Package name Description Verbosity

Mappings com.evolveum.midpoint.
model.common.mapping.M
apping

Code that is processing
mappings.

Enabling logging will
provide a short
overview of mapping
inputs and outputs with
some insights into the
inner processing.

Medium

Expressions com.evolveum.midpoint.
model.common.expressio
n.Expression

Expression evaluation
code.

Enabling logging will
provide a lot of details
about expression
evaluation. This is
likely to produce a log
of data.

High

Script expressions com.evolveum.midpoint.
model.common.expressio
n.script.ScriptExpress
ion

Logs a lot of details
about script expression
evaluation (Groovy,
JavaScript, …).

Provides a lot of details.

Very high

Setting logger levels to TRACE will log all execution of mappings and expressions. However, this may
be a huge amount of information, especially in complex deployments with many mappings and
expressions. Therefore, there is an alternative way that can be used to trace mappings and
expressions individually. There is a special-purpose trace property in the mapping:

<mapping>
 ...
 <trace>true</trace>
 ...
</mapping>

And there is a similar property in expression:

331

<mapping>
 ...
 <expression>
 <trace>true</trace>
 ...
 </expression>
 ...
</mapping>

This is a nice method to look at one particular troublesome mapping without flooding the log files
with traces of all the mappings in the system. However, it still may not be entirely easy to locate the
dump of the mapping in the log files. Therefore it is a good practice to name your mappings:

<mapping>
 <name>my-pretty-mapping</name>
 ...
</mapping>

Mapping name will be recorded in the mapping and expression dumps, therefore it can be easily
located in the log files. Mapping names are also used in error messages and they are likely to be
used in diagnostic outputs that will be developed in midPoint in the future. Therefore it is a very
good practice to put names to mappings. It is probably an overkill to name all the mappings in the
system. However, naming complex mappings can make a lot of difference in troubleshooting.

Dumping a mapping or expression will provide overview of inputs and outputs. But that alone may
not be enough to figure out what is wrong inside the expression. Therefore script expressions can
explicitly invoke a logging facility. MidPoint has script expression functions that can be used to log
messages from the scripting code. It works like this:

<mapping>
 ...
 <expression>
 <script>
 <code>
 ...
 log.error('The {} is broken, {} is to blame', thing, reason)
 ...
 </code>
 </script>
 </expression>
 ...
</mapping>

Such messages are recorded in the system log using special-purpose logger
com.evolveum.midpoint.expression and the appropriate level. The message itself is composed from
several parts using {} placeholders.

332

Troubleshooting Connectors
MidPoint is using the ConnId connector framework to manage identity connectors. All ordinary
connectors are running under the control of this framework. It means that midPoint calls the
ConnId framework and the framework calls the connector. Therefore, when it comes to
troubleshooting connector problems there are several places where a problem can occur and also
several places where you can get diagnostic data:

1. MidPoint: midPoint may invoke wrong operation at the first place. This may be caused by a
misconfiguration or a bug. We have already covered most of those cases.

2. ConnId: the framework may misinterpret the operation. The framework also simulates some
operations and it may post-process the results.

3. Connector: this is the tricky part of the story. Each connector is different. Very different. But
there are ways. More on this below.

4. Resource: it is possible that the problem is caused by resource misconfiguration. E.g. the
connector is not allowed to see all data, there are some limits, etc. We will not go into details
here. See the documentation that goes with the resource for troubleshooting details.

The ConnId connector framework stands between midPoint and the connectors. It knows about
every operation that midPoint invokes on every connector and it knows about all the return values.
This can be easily enabled by using the following log configuration:

org.identityconnectors.framework.api.operations: TRACE
org.identityconnectors.framework.spi.operations: TRACE
org.identityconnectors.framework.common.objects.ResultsHandler: TRACE

The ConnId operation traces look like this:

TRACE (org.identityconnectors.framework.api.operations.SearchApiOp): method: search
msg:Enter: search(ObjectClass: inetOrgPerson, null,
com.evolveum.midpoint.provisioning.ucf.impl.ConnectorInstanceIcfImpl$2@643dc940,
OperationOptions:
{ALLOW_PARTIAL_ATTRIBUTE_VALUES:true,PAGED_RESULTS_OFFSET:1,PAGE_SIZE:20})
...
TRACE (org.identityconnectors.framework.api.operations.SearchApiOp): method: search
msg:Return: org.identityconnectors.framework.common.objects.SearchResult@a90221a

This is a very useful mechanism. It will log every operation of every connector. If you suspect that
the connector is not executing the right operation this is the right place to check it. You can see
what is the operation that midPoint is passing to the connector. If that operation looks good then
the problem is most likely in the connector (see below). If the operation does not make sense, then
the problem is usually in the provisioning (see above).

However, the operation is logged by the ConnId framework on relatively high level and the
operation is still quite abstract. If you need more details about what really gets executed you have
to rely on the connector logging.

333

Please note that the ConnId framework has two "faces": API and SPI. The API is facing midPoint.
MidPoint invokes ConnId API operations. The SPI is facing the connector. Connector implements SPI
operations and ConnId framework is invoking them. You can see the distinction in the class names
that are written in the logfiles, e.g. SearchApiOp vs SearchOp (if there is no Api or Spi in the operation
name then it is assumed to be SPI). There is also similar distinction in the package name of the
logger. Most API and SPI operations are direct equivalents. But there may be subtle differences. E.g.
The get API operation is executed as search (executeQuery) SPI operation.

Most connector operations are "pure" request-response operations: there is one request and one
response. These are operations such as create, modify, delete. In this case you will see one request
in the log files and one response. And that is the whole operation. Like this:

2017-02-01 10:44:16,622 [main] TRACE (o.i.framework.api.operations.CreateApiOp):
method: create msg:Enter: create(ObjectClass: inetOrgPerson, [Attribute: {Name=uid,
Value=[will]}, Attribute: {Name=__NAME__,
Value=[uid=will,ou=People,dc=example,dc=com]}, Attribute: {Name=cn, Value=[Will
Turner]}, Attribute: {Name=sn, Value=[Turner]}, Attribute: {Name=givenName,
Value=[Will]}], OperationOptions: {})
2017-02-01 10:44:16,623 [main] TRACE (o.i.framework.spi.operations.CreateOp): method:
create msg:Enter: create(ObjectClass: inetOrgPerson, [Attribute: {Name=uid,
Value=[will]}, Attribute: {Name=__NAME__,
Value=[uid=will,ou=People,dc=example,dc=com]}, Attribute: {Name=cn, Value=[Will
Turner]}, Attribute: {Name=sn, Value=[Turner]}, Attribute: {Name=givenName,
Value=[Will]}], OperationOptions: {})
...
2017-02-01 10:44:16,641 [main] TRACE (o.i.framework.spi.operations.CreateOp): method:
create msg:Return: Attribute: {Name=__UID__, Value=[675f7e48-c0ee-4eaf-9273-
39e67df4cd2c]}
2017-02-01 10:44:16,641 [main] TRACE (o.i.framework.api.operations.CreateApiOp):
method: create msg:Return: Attribute: {Name=__UID__, Value=[675f7e48-c0ee-4eaf-9273-
39e67df4cd2c]}

The above example illustrates a very common create operation. It should be interpreted like this:

1. …api.operations.CreateApiOp Enter: MidPoint invokes ConnId API. The object to create is logged
as an operation parameter. This is what midPoint sends.

2. …spi.operations.CreateOp Enter: ConnId invokes the connector. This is what the connector
receives.

3. Connector executes the operation. Logs from the connector will be here (if connector logging is
enabled).

4. …spi.operations.CreateOp Return: Connector operation is finished. The connector returns the
result to ConnId.

5. …api.operations.CreateApiOp Return: Operation is finished and post-processed by the
framework. Framework returns the result to midPoint.

This is quite straightforward and it applies to vast majority of connector operations. However, there
are some peculiarities. For example, there are four update operations:

334

• update(…) in UpdateOp: This replaces attribute values. It is (roughly) an equivalent to midPoint
modify/replace deltas.

• addAttributeValues(…) and removeAttributeValues(…) in UpdateAttributeValuesOp. This adds or
deletes attribute values. It is (roughly) an equivalent to midPoint modify/add and modify/delete
deltas.

• updateDelta(…) in UpdateDeltaOp: This operation allows complex combinations of add,delete and
replace values. This is a new operation designed to replace older operations above.

New connectors implement updateDelta(…) operation only. Other update operations are
considered to be obsolete. However, they are still used by many connectors.

Search operations are also a bit strange. First of all, the SPI provides only one operation for all
search and get operation and that operation is executeQuery(…). Then the results of each object
found by the search operations is passed back to midPoint by using a callback method: handle(…).
Therefore interpreting search operations takes a keen eye and a bit of practice.

ConnId framework logs should indicate whether the problem is on the "connector-side". Which
means that the problem is either in the connector or that the resource itself is not behaving
according to expectations. The next step should be to have a look inside the connector. But each
connector is different. The connectors have to adapt to the resource communication protocol and
therefore they are expected to use variety of client and protocol libraries. Each library may have its
own method of troubleshooting. Therefore there is no universal way troubleshoot a connector.
However, there is (almost) always some way. Connector documentation should provide some
details about troubleshooting. But unfortunately, most connectors do not. The best way is to have a
look at connector source code. Enabling logging by using the connector package name is usually
quite a safe bet. The logger name is usually the same as the package name of the connector classes.
Look in the documentation or directly inside the connector JAR file to find out the package name.
You may also need to enable logging of the libraries that come with the connector. You can examine
these if you look in the lib directory inside the connector JAR file.

Some connectors have really good logging, such as the connectors in the LDAP connector family.
The LDAP connector will log all the LDAP operations if you set the
com.evolveum.polygon.connector.ldap.OperationLog logger to DEBUG level.

335

2016-08-30 17:14:20,043 [main] DEBUG
[](c.evolveum.polygon.connector.ldap.OperationLog): method: null
msg:ldap://localhost:10389/ Add REQ Entry:
Entry
 dn: uid=jack,ou=People,dc=example,dc=com
 objectClass: inetOrgPerson
 uid: jack
 userPassword: deadmentellnotales
 sn: Sparrow
 cn: Jack Sparrow
 description: Created by IDM
 givenName: Jack
 l: Black Pearl
 displayName: Jack Sparrow

2016-08-30 17:14:20,091 [main] DEBUG
[](c.evolveum.polygon.connector.ldap.OperationLog): method: null
msg:ldap://localhost:10389/ Add RES uid=jack,ou=People,dc=example,dc=com: Ldap
Result
 Result code : (SUCCESS) success
 Matched Dn : ''
 Diagnostic message : ''

This logging can be used in two connectors that are used in majority of midPoint deployments:
LDAP connector and Active Directory connector. This logging is much more natural and easier to
understand than the ConnId framework logging. Therefore, a look at this log should be the first
thing to do when there are problems with LDAP and AD connectors.

However, not all connectors are built with troubleshooting in mind. Some connectors will barely
log anything. This is all connector-dependent. If the connector author did a good job you will get
what you are looking for. If the author did a poor job, you are mostly out of luck. But one way or
another, this is the best chance to learn what the connector is doing. If that fails, you have to resort
to packet sniffer and similar tools.

Troubleshooting Authorizations
MidPoint authorizations provide a very powerful mechanism for a fine-grained access control. This
mechanism is quite simple in principle. But the configuration can get very complex especially if a
sophisticated RBAC structure is in place. Setting the authorization up is not entirely easy task. It is
often quite difficult to tell why the user is not authorized for a specific action or why the user can
access more than he is supposed to. Therefore this page describes basic mechanisms how to
troubleshoot authorizations.

The basic troubleshooting steps are simple in theory:

1. Enable logging of authorization processing.

2. Repeat the operation.

3. Figure out which authorization is wrong.

336

4. Fix it.

5. Rinse and repeat.

Yet, the practice is much more complex. As always.

The authorizations are processed in midPoint security component. The processing of every
authorization is logged. Therefore, to see the authorization processing trace simply enable the
logging of security component:

com.evolveum.midpoint.security: TRACE

However, please keep in mind that this is quite intense logging. It can easily impact the system
performance and flood the logs on a busy system with a lot of authorization. It is better to
troubleshoot the configuration in a development or testing environment.

When the security logging is enabled then you can see following messages in the logs:

2017-01-23 14:32:37,824 [main] TRACE (c.e.m.security.impl.SecurityEnforcerImpl): AUTZ:
evaluating security constraints principal=MidPointPrincipal(user:c0c010c0-d34d-b33f-
f00d-111111111111(jack),
autz=[[http://midpoint.evolveum.com/xml/ns/public/security/authorization-model-
3#read])]), object=user:c0c010c0-d34d-b33f-f00d-111111111111(jack)
2017-01-23 14:32:37,824 [main] TRACE (c.e.m.security.impl.SecurityEnforcerImpl):
Evaluating authorization 'read-some-roles' in role:7b4a3880-e167-11e6-b38b-
2b6a550a03e7(Read some roles)
....
2017-01-23 14:32:37,824 [main] DEBUG (c.evolveum.midpoint.security.api.SecurityUtil):
Denied access to user:c0c010c0-d34d-b33f-f00d-111111111111(null) by jack because the
subject has not access to any item

There is a set of similar messages for every operation that midPoint attempts. First message
describes the operations and its "context": who has executed it (principal), what was the object and
target of the operation (if applicable). The last line usually summarizes the decision: allow or deny.
The lines between describe the processing of each individual authorization. If you examine that
part carefully, then you can figure out which authorizations were used. The result of authorization
evaluation can be one of these:

• Authorization denies the operation. That’s a dead end. If any authorization denies the operation
then the operation is denied. No other authorizations need to be evaluated.

• Authorization allows the operation. That’s a green light. However, other authorizations are still
evaluated to make sure that there is no other authorization that denies the operation.

• Authorization is not applicable. The authorization does not match the constraint for object or
target. Or it is not applicable for other reasons. Such authorization is skipped.

If there is a single deny then the evaluation is done. The operation is denied. Deny is also a default
decision. I.e. if there is no decision at the end of the evaluation, then the operation is denied. At
least one explicit allow is needed to allow the operation.

337

All authorization processing is recorded in the log. There is a record of processing of every
operation, every authorization, evaluation of every authorization clause, whether the authorization
is applicable or not, whether it denies or allows the operation.

Authorization of operations such as add or delete is quite easy. The result is simple: the operation is
either allowed or denied. But it is a bit different for get operations. The entire get operation can still
be denied if the user does not have any access to the object that he is trying to retrieve. But the
common case is that the user has some access to the object, but not all the items (properties). In
such a case the operation must be allowed. But the retrieved object needs to be post-processed to
remove the fields that are not accessible to the user. This is done in two steps.

Firstly, the set of object security constraints is compiled from the authorizations. The object security
constraints is a data structure that describes which properties of an object are accessible to the
user. There is a map (itemConstraintMap) with an entry for every item (property) which is explicitly
mentioned in the authorizations. This entry contains explicit decisions given by the authorizations
for every basic access operation (read, add, modify, delete). And then there are default decisions
(actionDecisionMap). These decisions are applied if there is no explicit entry for the item. This object
security constraints data structure is usually logged when it is compiled.

Secondly, the object security constraints are applied to the retrieved object. The constraints are used
to remove the properties that are not accessible to the user. This process is not easy to follow in the
logs. Therefore it is better to inspect the object security constraints structure. If it is correct then also
the resulting object will be most likely correct.

Object security constraints and the user interface.

The object security constraints has much broader application than just
authorization of the read operations. This data structure is (indirectly) used by
midPoint user interface when displaying edit forms for objects. The data from this
structure are used to figure out which fields are displayed as read-write, which
fields are read only and which fields are not displayed at all. The object security
constraints structure is always produced by the same algorithm in the security
component. Therefore, the interaction of authorizations and GUI forms can be
diagnosed in the same way as the get operations.

Search operations are very different than common operations such as add or delete and they are
also different than get operations. Search operations will not result in an access denied error
(except for few special cases). If the user that is searching has access only to some objects, then only
those objects will be returned. There is no error, because this is a perfectly normal situation. The
extreme case is that user has access to no object at all. But although this situation is not entirely
"normal" it is also not in any way special. The search will simply return empty result and there is
also no error. You need to keep this in mind when troubleshooting the read authorizations. Attempt
to get inaccessible objects will result in a security violation error. But searching for them will
simply return empty result and there is no error.

The search operations are interesting for another reason. Operations such as get, add or delete have
precise specification of object: the object that is being retrieved, added or modified. But it is entirely
different for search operations. The object is a result of the search operation, not the parameter. We
cannot examine the object before the search and decide whether we allow or deny the operation.

338

There is no object before search operation. Also, we cannot simply search all objects and then filter
out those that are denied. That would be totally inefficient and it will completely ruin paging
mechanisms. A completely different strategy is needed for search operations.

Search authorizations work the other way around: at first, the authorizations statements are
compiled to a search filter. For example, if the authorization allows access only to active roles the
authorization is compiled to a filter activation/effectiveStatus=enabled. Then this filter is
appended to the normal search filter and the search operation is performed. This approach ensures
that the search returns only the objects that the user is authorized to see. It also makes the search
as efficient as possible and maintains page boundaries. But that is not all. Another round of post
processing is needed to filter out only the items that are not visible to the user. This is the same
filter as is applied to get operations.

Finally, there is a couple of things to keep in mind:

• The authorizations are designed to be additive. Each role should allow the minimum set of
operations needed for the users to complete their job. MidPoint will "merge" all the
authorizations from all the roles. Use allow operations, avoid deny operations if possible. It is
much better not to allow an operation than to deny it.

• Deny always wins. If there is a single deny in any applicable authorization in any roles, then
the operation is denied. It does not matter if there are thousands of allow authorizations, deny
always wins. What was once denied cannot be allowed again. We need this approach because
we do not have any way how to order the authorization in many roles. Do not use deny unless
really needed.

• There are two phases: request and execution. The operation needs to be allowed in both
phases to proceed. Please keep in mind that object may be changed between request and
execution due to mappings, metadata and properties that are maintained by midPoint. This is
also the reason why we have separate authorizations for request and execution.

• Name the authorizations. Each authorization statement can have an optional name. Specify a
reasonably unique name there. Then use that name as a string to find the appropriate trace in
the log files.

Authorization traces are quite verbose and there is quite a lot of them. Many traces need to be
examined to figure out what exactly is going on. Troubleshooting is a hard work. This mechanism
of recording authorization processing in the log is the best way that we have figured out to
troubleshoot the authorizations. But we know that it is not ideal. If you have any better idea we are
more than open to suggestions.

Reporting a Bug
MidPoint is perfect. There are no bugs. Therefore you can skip this section entirely.

No, that is not really the case. MidPoint is a real software deployed in a real world. And while we
spend a huge amount of time and effort to maintain midPoint, test it and fix the bugs, the bugs have
a way to always get in. This is also given by the very nature of midPoint. MidPoint is flexible and
comprehensive. It is nearly impossible to test midPoint for all the conceivable configurations and
use cases. Whenever you deploy midPoint there is a chance that some parts of your configuration

339

or usage patterns are unique. Those parts might not be used by anybody else yet. Therefore there
may be bugs that nobody ever experienced yet. That is the fate of all flexible software products that
live in the real world.

In case that you find a bug that needs to be fixed you have several options:

1. Fix the bug yourself. MidPoint is an open source product. We will gladly accept bugfixes.
However, midPoint is also a substantial product and we need to keep it maintainable. Therefore
all contributions including the bug fixes have to be reviewed. The fixes need to be good enough
to be accepted. Writing an automated test for the bug is usually required as part of the bugfix
contribution.

2. Report the bug and wait. The bug will be fixed by someone eventually. However, there is no
telling how long you will need to wait. If it is a security-related bug, then it will be fixed as soon
as possible. If the bug is severe and it affects a lot of users then it is likely to be fixed soon.
However, such bugs are very rare. It is likely that your bug will be quite exotic and it can only
be reproduced in your deployment. In that case, it is almost certain that you will need to wait
for a very long time. Several years may pass before someone finds the time to have a look at
your problem. Those issues are known as community issues and they are usually seen at the
very tail of developer’s work queues. Except for one case: security issues. Security issues are
always prioritized regardless of who the reporter is.

3. Purchase midPoint support from Evolveum. This will dramatically increase the priority of
your bug report. Software development cannot be easily predicted, therefore we still cannot
guarantee precise time period to fix the bug. However, typical fix time will be counted in days,
weeks or in very rare and complicated cases in months. Those issues are known as subscriber
issues and they are always prioritized over community issues.

In any of those cases, there is a recommended procedure for bug diagnostics and reporting. There
are bug reporting standards that apply to anybody, even midPoint subscribers. Evolveum provides
3rd-line support only. This means that it is expected that the issues has already passed through 1st

and 2nd lines of support. The bug report should be really a report of midPoint bug. It should not be a
configuration issue. Proper diagnostics techniques should be employed to investigate the issue
before it is reported. The rest of this section will describe the recommended procedure.

Diagnostics is the first step that is absolutely mandatory. Troubleshooting techniques described in
this chapter should be used to find out what is going on. MidPoint is a very flexible product and
vast majority of midPoint issues are caused by wrong configuration. Therefore, please make sure
that the problem is not one of those. Simple mis-configuration may easily look like a bug. Try to go
through midPoint documentation and understand how midPoint works. Re-read relevant parts of
this book. MidPoint development team invests a huge amount of time and effort to make the error
messages and log entries are understandable. Then please make sure you use those facilities. Please
follow the troubleshooting guides above. They are usually very helpful.

Reproducing the problem is a second step. The easiest way for us to fix a problem is being able to
reproduce it. In such case, we do not just blindly fix the problem but we can also make sure it is
really gone. In most cases we create a test case in our automated test suite to make sure the
problem will gone and it will not appear again. Therefore, your best strategy to make sure that the
problem is fixed quickly and does not appear again is to show us how to reproduce the problem in
our environment. Saying that “this and that does not work” usually does not help as the same use

340

case will work perfectly in other configurations. Please describe your configuration in the report.

Try to figure out what is the minimal configuration necessary to reproduce the problem. We
appreciate if you could reproduce the problem using our sample resources and objects with
minimal customization. This saves you a lot of time describing your environment to us and it also
saves us a lot of time to try to re-create your environment in our lab. This approach also helps you
to check your configuration and to make sure you are not reporting mis-configuration as a bug.

In a very rare cases the problem cannot be easily reproduced using samples or similar simple
setup. In that case we need to work with what we have. Therefore, we either need to know quite a
lot about your environment to be able to set it up in our lab. Or we need access to your
environment or your cooperation with diagnosing the problem. In such case, please use your
common sense in what comes into the bug report. Please keep in mind that midPoint is open source
project and the bug reports are public, therefore please be careful when providing sensitive
information in bug reports.

When you are sure that the problem is not caused by mis-configuration, it is time to report the
issue. The best way to submit a bug report is to use Evolveum bug tracking system. The registration
is open to everybody. This is also the only bug reporting method available for community issues.
Using Evolveum tracker allows you to track the progress of issue resolution, add additional
information, etc. Just please keep in mind that the tracker is public and open to anyone following
the spirit of open source. Therefore, be careful about submitting a sensitive information.

Please note that security issues revealing a potential security vulnerability should not be reported
by using the tracker. Information in the tracker is public and this may lead to unintentional
disclosure of sensitive information. Special e-mail address is provided for responsible disclosure of
security-related issues:

security@evolveum.com

Typical bug report contains following information:

• What operation have you tried or what do you want to achieve. Some "bugs" may be caused by
trying to achieve something using the wrong mechanism. Having a broader perspective helps us
to help you.

• If there is a form or other input to the operation, then please describe how it was set up or filled
in. E.g. an XML snippet used to import, data entered into input field, request deltas retrieved
from an audit log and so on.

• What kind of resource definition was used, how it was modified, etc. We need to know only the
relevant parts. We prefer if you reproduce the problem with the simplest configuration possible
(see above).

• Any other special configuration that you feel can influence the outcome, such as custom
schema, strange things in expressions, etc.

• If the operation produced an error message in GUI, include that error message as well.

• If there is an exception in the log files, please make sure that you include full stack trace of the
exception. The exception stack trace is usually a very efficient pointer to likely cause of the

341

problem.

• Relevant part of the log files. You may want to have a look at the list of useful loggers above to
correctly setup your logging to get the most useful data in the logs.

• Your environment: operating system, Java platform version, target system version. You do not
need to bother with this if the bug is obviously not environment-specific.

• Indication of midPoint version (release) or git branch/revision that was used.

Not all of the above is required in a bug report. Use your common sense. As a rule of the thumb too
much information is usually better than too little information. But sometimes too much non-
relevant information may obscure the tiny problem that would be obvious if just the right amount
of information is provided.

Useful Troubleshooting Tips
Finally, there are some generic troubleshooting tips. Those are not specific to midPoint and those
tips should be a second nature to any experienced engineer. Some of those were already covered.
However, it may still be useful to summarize.

First of all, try to keep your troubleshooting effort methodical and systematic. It makes very little
sense to just randomly poke around and hope that the bug will show its ugly head. Even though
such random methods may work occasionally, they will require a lot of effort in the end. Try to
follow a divide-and-conquer method. Find a boundary in the middle of midPoint, e.g. Clockwork
component. Examination of clockwork traces will show you whether the problem is in the
mappings or it is in the provisioning. Is the problem in provisioning? Then select another boundary.
LDAP connector operation traces may be a good bet in that case. That will show you whether the
problem is in midPoint or it is in the LDAP server. Are operation parameters wrong? It means that
problem is in midPoint, somewhere between model and the connector. Have a look at debug logs of
provisioning component. Maybe there is wrong object class in the resource definition. Have a look
at debug logs on the connector. Maybe connector configuration is wrong? The log files will guide
you to the problem.

MidPoint log files may look like a maze. But it all makes sense. MidPoint has good component
structure and the log files reflect that. You just need to understand how midPoint works and you
will not get lost. Just make sure that you never forget to look at the log files. Always look at the log
files. When it comes to troubleshooting logfiles are your best friends.

There is one troubleshooting method that is universally applicable to almost any problem. The
method involves some specialist equipment. However, this methods provides surprising, almost
unbelievable results. To make this method work you have to strictly follow those steps:

1. Describe your problem to a rubber duck.

Yes, a rubber duck. That strange object that usually floats in bubble baths. The duck is a good
listener. Therefore just go ahead and describe you problem to the duck. Step by step. Talk about
every detail that you have explored. Every possible solution that you have tried. Do not hurry. The
duck has unlimited patience. You have to literally talk to the duck. Doing it just in your head does
not work. Talk to the duck. The duck will help. It is a wise animal.

342

As ridiculous as this process might sound, it really works. It does wonders. It is known as rubber
duck debugging method. Of course, it does not have to be a rubber duck. Any object will work as
long as you really talk to it. However, choosing an object with eyes make you feel less stupid while
you talk to it. Rubber duck is a popular choice.

That is it. Troubleshooting is not an easy work to do. Although it may sometime resemble
witchcraft, it is in fact a science. And an art. It needs some time to find your way. But it is a time
well spent. It will be repaid many times over.

343

Chapter 11. MidPoint Development,
Maintenance and Support

Those who do nothing but observe from the shadows cannot complain
about the brightness of the sun.

— Frank Herbert

MidPoint is a professional open source project. This means that midPoint is developed by using
professional methods, but the product is still available under open source license.

Professional Development
MidPoint is developed by a professional developers. The development is lead by senior developers
in the midPoint core team that have decades of software engineering experience. There are also
few younger developers in early stages of their careers. MidPoint development team is first of all a
community of developers that enjoy working together on a next-generation software.
Professionalism is a strict requirement for all midPoint development, but it is mostly the
engineering passion that really moves the project forward.

All midPoint core developers work for Evolveum. Evolveum is the company that created midPoint.
Evolveum also maintains midPoint. Vast majority of work on midPoint is being done by midPoint
core team. All the core developers are paid for their work on midPoint. The developers can pay
their bills from the income that midPoint generates. Evolveum income from midPoint is necessary
to make sure that the developers have all their time available for midPoint development. This
means that midPoint can be properly maintained.

Professional development also means that professional software engineering methods are used to
develop and maintain midPoint. MidPoint development is firmly founded on principles of
continuous integrations. There are literally thousands of automated integration tests that are part
of midPoint build process. Thousands of additional automated tests are running every day. There
are tests that closely reflect real-world configurations and use cases. There are tests with real
resources. All of that is an integral part of midPoint development. MidPoint is a comprehensive and
very flexible system. Professional quality assurance is essential for midPoint to work reliably.

Open Source
MidPoint is an open source project. All of midPoint source code is available under two open source
licenses. We have chosen Apache License 2.0 as this is one of the most liberal licenses out there. We
are also based in European Union and therefore midPoint is also under the terms of European
Union Public License (EUPL). But there is much more to open source than just a license. Evolveum
is fully committed to the open source approach. MidPoint is completely developed in public. Entire
history of midPoint source code is public. Every commit of every developer is immediately
available to anyone. Complete midPoint source code is available. There are no private parts that are
held back by purpose. There are no private branches with extra features. Even all the support
branches are completely public. When it comes to the source code midPoint is as true to the open

344

source methods as it gets.

Even though vast majority of midPoint development is done by Evolveum, open source approach is
absolutely critical for the success of midPoint. Open source is the only way that allows midPoint
users to understand midPoint completely. All non-trivial software needs to be customized in some
way and open source brings the ultimate power of customization. Open source allows participation.
Open source is great approach to avoid vendor lock-in. Open source brings longevity to the project.
Open source has so much advantages. Evolveum is completely committed to the open source
approach.

MidPoint has started as an open source project. MidPoint source code was available from the day
one. And as far as we have something to say about it midPoint will remain open source forever.

MidPoint Release Cycle
MidPoint has stable development cycle. There are two feature releases every year. As the name
suggests, those releases are bringing new features and major improvements.

In addition to that, there are several maintenance releases. Those releases bring bugfixes and minor
improvements. Maintenance releases are published as needed, there is no strict schedule. Timing of
maintenance releases is influenced by midPoint subscribers.

Every couple of years there is a special long-term support (LTS) release. This release is supported
for a longer time than usual. This release is ideal for people that prefer stability over new features.

MidPoint Support and Subscriptions
MidPoint support and subscription is a service provided by Evolveum. There are several service
offerings with different scope and service level. But generally speaking, the most common service is
3rd-line support. Which basically means that we will fix midPoint bugs. Obviously this includes
assistance with diagnostics of difficult issues where it is not entirely clear whether it is a bug or
configuration issue. Simply speaking, midPoint support service is a way how to make sure that your
midPoint deployment will run without any problems. There are also subscription offerings
designed to help you deploy midPoint in the first place. Some subscription offerings also contain
feature development and improvements (a.k.a. 4th-line support). Those subscriptions are ideal way
to make sure midPoint will be able to do anything that you need for your project.

MidPoint support and subscription services provide significant funding for midPoint development
and maintenance. Therefore, it is perfectly natural that midPoint subscribers get high priority for
resolution of their issues, feature requests and so on. This limits the time that midPoint core team
has available for other tasks. Therefore there are some rules:

• Every new midPoint feature must be sponsored. This means that a customer with an active
midPoint subscription has endorsed the feature. Of course, this has to be a high-end
subscription that includes feature development. Or, alternatively, someone have to pay for the
development cost of that feature. However, direct feature sponsoring is very limited as most of
the midPoint development capacity is reserved for subscribers.

• MidPoint architecture and quality is the primary responsibility of Evolveum team. Part of

345

Evolveum income is reserved to maintain midPoint - to keep the architecture up to date, to
make systemic quality improvements, to maintain midPoint in the long run and so on. In some
cases Evolveum will sponsor feature development. Those are usually strategic features that lead
midPoint development in the right direction. Or those may be experimental features aimed at
exploring a particularly interesting functionality. However, Evolveum will not sponsor any
"customer" features. Those need to be covered by subscriptions.

• Evolveum will eventually fix any bugs in midPoint. Those bugfixes will be committed to
midPoint primary development branch (master branch). The fixes that make it into
development branch will be part of the next feature release. However, as midPoint release cycle
is fixed, not all of the bugs will be fixed in each release. The bugs that were reported as part of
subscription or support service will be fixed first. If there is still some time, then other (non-
subscriber) bugs will be fixed as well. But there are no guarantees for that. If the time before the
release runs out, bugs reported by non-subscribers will not get fixed. In fact, such non-
subscriber fixes may have to wait for several releases until they finally get fixed.

• Every feature release has a support branch. This is where the maintenance releases come from.
However, every bugfix or improvement is developed on master branch first. It has to be
backported to the support branch. Which takes time. Therefore, there are very strict rules for
backporting. Any bugfix, improvement or any other update will go to the support branch only
if:

◦ Backport to support branch is explicitly requested by customer with active support or
subscription service.

◦ The target release is still in its active support period (i.e. it is not after "end of life").

◦ It is a security issue. Security issues have absolute priority. Those will be fixed immediately
regardless of who reported them (subscriber or non-subscriber). Fixes for severe security
issues will also get automatically backported to all active support branches.

◦ It fixes a severe issue that affect large number of users.

Simply speaking, if you want to make sure that midPoint works for you, then purchase a support or
subscription. Those services will help you, that is what they are for. But the money from support
and subscription services also enable long-term midPoint maintenance and new feature
development. Getting midPoint support or subscription is the right thing to do.

MidPoint Community
MidPoint is a proper open source project. And as all good open source projects midPoint has a
vibrant community. This is both engineering community and business community. The primary
communication channel of the engineering community is midPoint mailing list. Mailing list is used
to discuss midPoint futures, announce new releases, discuss configuration issues, provide feedback
to the development team and so on. MidPoint community is open to anyone.

Business community is formed mostly from Evolveum partners. Evolveum partners deliver
midPoint solutions, provide 1st-line and 2nd-line support services, provide professional services,
customized solutions based on midPoint and so on. The possibilities are endless. Even the business
community is open. Entry-level partnership is open to anyone. However, there are several
partnership levels and it takes some effort for a partner to level up. There is a rich (and growing)
network of midPoint partners. The partners can deliver solutions based on midPoint almost

346

anywhere on planet Earth.

347

Chapter 12. Additional Information
Logic’s useless unless it’s armed with essential data.

— Leto II, Children of Dune by Frank Herbert

We have tried to make this book as comprehensive as possible. But no book can possibly include all
the information that an IDM engineer would ever need. Therefore, this chapter describes the
sources of additional information about midPoint.

MidPoint Documentation Site
MidPoint documentation site is the most comprehensive information about midPoint. This is where
all the midPoint documentation is stored. But there is much more. There is connector
documentation, midPoint architecture, developer documentation, midPoint internals and all kinds
of information including midPoint release planning and roadmap. Everything is public.

However, the docs are so comprehensive that it is often not entirely easy to find the right page. We
have done what we could to organize the information. The pages are organized hierarchically.
Many pages have "See Also" section that points to additional information. Yet, the practice shows
that if you want to find something in the docs, you need to have at least a faint idea what you are
looking for. This book should give you that idea. If you know what you are looking for, then the
docs search bar is your friend. If you enter the correct search term, then there is high probability
that you will quickly find the right page.

URL: https://docs.evolveum.com/

Samples
The midPoint projects maintains quite a rich collection of samples. These are sample resource
definitions, role and organizational structure examples and other various samples. They are
usually provided in the XML form. The samples are maintained in a separate project on GitHub.
Those samples are also part of midPoint distribution package.

URL (version 4.4): https://github.com/Evolveum/midpoint-samples/support-4.4/master/samples
URL (latest development version): https://github.com/Evolveum/midpoint-samples/tree/master/
samples

Book Samples
This book contains many examples and configuration snippets that are taken from various places.
Some smaller snippets are taken from midPoint docs or from the sample files (see above).

Some chapters contain mostly complete configurations of the midPoint deployment. These
configurations have a separate folder in the midPoint samples. Look for a folder book in midPoint
samples. All the important files used in this book are there, sorted by chapter number.

348

https://docs.evolveum.com/
https://github.com/Evolveum/midpoint-samples/support-4.4/master/samples
https://github.com/Evolveum/midpoint-samples/tree/master/samples
https://github.com/Evolveum/midpoint-samples/tree/master/samples

URL (version 4.4): https://github.com/Evolveum/midpoint-samples/support-
4.4/master/samples/book/
URL (latest development version): https://github.com/Evolveum/midpoint-samples/tree/master/
samples/book/

Story Tests
MidPoint developers like to create and maintain complete end-to-end automated tests. These tests
are usually inspired by real-world midPoint deployments. We call them story tests. These tests are
important to maintain midPoint quality and continuity. However, they are also excellent source of
inspiration and they have often proved useful as examples of midPoint configuration.

• Documentation: https://docs.evolveum.com/midpoint/reference/samples/story-tests/

• Code and configuration: https://github.com/Evolveum/midpoint/tree/master/testing/story

MidPoint Mailing List
MidPoint project attracted a vibrant community during the years. The main community
communication channel is midPoint mailing list. The mailing list is used for announcements, user
suggestions and also what we at Evolveum call community support. The mailing list is used to ask
questions about midPoint. Experienced community members usually answer these questions and
provide pointers to additional information. The whole midPoint development team is also
subscribed to the mailing list and they provide answers when needed. However, this is a best effort
service. Please do not abuse this communication channel and try to keep the following community
guidelines:

1. Be polite. Mailing list is a best effort service. Nobody is (directly) paid to answer mailing list
questions. The engineers that answer the questions are doing that in addition to their day-to-day
responsibilities and they are doing that because they want to help the community. Therefore, if
you are asking for help, do so politely. If you are answering a question please respect other
members. Everybody started somewhere and it is natural that novice users do not know
everything. Please tolerate the differences in skill sets.

2. Do some research before asking a question. Do not ask trivial question that can be easily
answered by googling the question, by searching for it in the midPoint docs or mailing list
archive. If you are getting an error try to read error message very carefully and try to think
about the possible causes. Try to experiment with the configuration a bit. Look at the
troubleshooting section in the docs. Spend at least a couple of minutes to make your own
research before asking the question. If that research does not provide the answer, then it is a
good question for the mailing list.

3. Provide context. If your post looks like "my midpoint is broken, please help" then it is very
unlikely that you will get any answers. Try to describe your problem in more details. Make sure
to describe relevant bits of your configuration. Be sure to include error message. Look in the log
files if necessary. And most importantly: describe what you are trying to achieve. Maybe the
root of your problem is that you are using completely wrong approach. The community may
point your nose in the right direction - but only if they know what is your goal.

4. Give back. Mailing list is not one way communication channel where users ask questions and

349

https://github.com/Evolveum/midpoint-samples/support-4.4/master/samples/book/
https://github.com/Evolveum/midpoint-samples/support-4.4/master/samples/book/
https://github.com/Evolveum/midpoint-samples/support-4.4/master/samples/book/
https://github.com/Evolveum/midpoint-samples/tree/master/samples/book/
https://github.com/Evolveum/midpoint-samples/tree/master/samples/book/
https://docs.evolveum.com/midpoint/reference/samples/story-tests/
https://github.com/Evolveum/midpoint/tree/master/testing/story

developers answer them. There is already a significant body of knowledge distributed among
community members that are not midPoint developers. If you adhere to these guidelines and
ask a question it will most likely be answered. But for that there needs to be someone who is
answering. Therefore do not just ask the questions. If you know the answer to the question that
someone else asks then please go ahead and answer it. Do not worry that your answer may not
be perfect. Even a partial answer will be greatly appreciated by any novice user. Simply
speaking: Do not only take from the community. Try to repay what the community gave you.

You may also be tempted to send your questions directly to Evolveum or midPoint developers.
However, the developers have many midPoint users, partners, customers and contributors to deal
with in their day-to-day job. The first responsibility of any midPoint core developer is to make sure
that midPoint development will continue. The developers naturally prefer to spend time doing
tasks that bring funding to the midPoint project. Therefore, the developers will strictly prioritize
the communication. Answers to midPoint subscribers are the highest priority, mailing list is second
and answers to private messages from the community are absolutely the lowest priority. We prefer
efficient spread of knowledge about midPoint. Mailing list is good for that, but private
communication is not. That’s the primary reason for this priority setup. Besides, if you contact a
developer directly, then only that developer can answer your question. But if you send the question
to the mailing list there are more people that can potentially answer the question. Therefore, unless
you have active subscription the mailing list is your best option.

Mailing list URL: http://lists.evolveum.com/mailman/listinfo/midpoint

Evolveum Blog
Vast majority of midPoint development and maintenance is conducted by Evolveum team. The
people of Evolveum present their professional opinions by the means of Evolveum blog. The blog is
very technology-friendly. The information provided on the blog goes often quite deep. This is also a
channel how Evolveum shares information about midPoint development plans and business
activities related to midPoint. It is a very valuable resource for anyone that has a professional
interest in midPoint.

URL: https://evolveum.com/blog/

350

http://lists.evolveum.com/mailman/listinfo/midpoint
https://evolveum.com/blog/

To Be Continued
Hanc marginis exiguitas non caperet.
(There is not enough space in the margin to write it.)

— Pierre de Fermat

This is it then. That was the last real chapter of this book. Yet, we have not yet covered all
capabilities of midPoint. In fact, we are not even close. We have only scratched the surface of what
midPoint can provide. The other chapters are not written yet. There is still so much to write about:

• Authorizations: MidPoint works with sensitive data and there is a need to strictly control
access to that data. Therefore, midPoint has a fine-grained authorization system for controlling
access to itself. Authorization mechanisms are very powerful allowing many scenarios from
delegated administration to partial multi-tenancy.

• Archetypes: Users, roles, orgs and services are the four basic object types of midPoint. They are
quite powerful. Yet, there is often a need to define special behavior for employees, agents,
students, academic staff, partners and other types of persons. We would also like to see business
roles, application roles, system roles. The enterprises would be lost without their divisions,
departments and sections. There are always shades, flavors and subtypes to objects. That is
what the archetypes do. They can be used to create subtle flavors of functionality suitable for
individual object types.

• MidPoint queries: MidPoint often needs to find objects in the repository. There is a special-
purpose query language that is used in many places in midPoint.

• Security: MidPoint works with quite a sensitive data, therefore it is quite important to keep
midPoint secure. There are many security-related settings, ranging from the usual network
security mechanisms, through authentication to a midPoint-specific settings.

• Identity management miscellanea: There are various interesting features that were not
mentioned yet: iteration, password policies, notifications, auxiliary object classes, provisioning
dependencies, deputies, constants, function libraries, provisioning scripts and so on. Those may
be little features, but they are essential pieces of the puzzle. It is almost impossible to have a
complete identity management solution and not to use any of those features.

• Requests and approvals: Browse available roles, select role, request role, approve role, assign
role, provision accounts. That is the basic mantra of many identity management deployments.
Of course this is easy to do in midPoint. But there is much more: multi level approvals, optional
approval steps, dynamic approver selection, escalation and so on. MidPoint has most of the
features already built-in, you just need to configure them.

• Entitlements: Managing accounts if fine. Yet, it is not the whole story. There is huge difference
between a regular account and an administrator account. Fortunately, midPoint can easily
manage membership in groups, roles, assignment of privileges and other entitlements. In this
case we really mean entitlements on the resources, such as Active Directory groups, distribution
lists, Unix groups and so on. MidPoint is designed to this quite easily.

• Manual resources: Obviously, you want most of the resource to be connected to midPoint by a
connector so they can be automatically managed. But there are always few bothersome
resources that just won’t comply. Maybe they are too small to justify the cost of building a

351

connector. Maybe there is just no good way for the connector to manage the resource. But
midPoint one again comes to the rescue. MidPoint has a concept of manual resource where the
work is done by system administrator instead of connector. There is even a way how to create
semi-manual resource that can read the data, but provisioning is still manual. And there is a
way how to integrate this with ITSM system.

• Auditing and history: No identity management system can be complete without an auditing
facility. MidPoint can store every operation to the audit trail: changes in users, accounts, roles -
even internal configuration changes. This is stored in a format that can be used to integrate
midPoint with a data warehouse or a SIEM system. Also midPoint user interface has a facility to
display the audit trail. And it can even look into the past: it can reconstruct the objects as they
were at a certain point in time.

• Policy rules: MidPoint is much more than just an identity management system. The identity
governance features of midPoint are based on a powerful and universal concept of policy rules.
The rules can be used to express role exclusions, thus defining a segregation of duties (SoD)
policy. The rules can be used to define policy-based approval. The rules can control role
lifecycle. The rules can define compliance policies. The rules can do it all. The rules are here to
govern the identities.

• Access certification: This is known by many names: certification, re-certification, attestation, …
 but whatever the name is it is still the same process. Simply speaking, this is a method to
review roles assigned to the users to make sure the users still need the roles that they have. This
is a method how to get a grip on the principle of least privilege even in environments that are
naturally inclined to ad-hoc operation. But it is very useful mechanism in almost all
environments. And midPoint provides many flavors of certification mechanisms from a
scheduled mass recertification campaigns focused on roles assignments to an ad-hoc
recertification of a single used after he is moved to a new organization.

• Data protection: Identity management is no longer a wild west where anybody can do
anything. Now there are strict data protection rules, regulations and legislation. Being a good
identity governance system midPoint can assist in managing the data protection and privacy
policies. MidPoint can be really helpful in managing compliance to the data protection
regulations such as European GDPR legislation.

• User interface customizations: MidPoint has a general-purpose user interface that can be used
for user self-service, identity administration and system configuration. The user interface is
designed to be dynamic. It will automatically adapt to resource schemas, extension of midPoint
schema, authorizations and so on. Therefore, usually there is no need to customize user
interface at all. But there are cases when the deployment need to deviate from the default
behavior. And midPoint is prepared to that. There are many ways how to customize user
interface: colors, stylesheets, localization, custom forms, tabs, whole new custom pages. In
extreme cases midPoint can be customized beyond recognition.

• Integration with midPoint services: MidPoint is a great system. But even great software does
not live in isolation. There is always need to integrate the systems together. Integration runs
through midPoint veins, because that is what the connectors really do. But often there is a need
to integrate midPoint with other systems that is beyond the capabilities of a connector. Maybe
there is a password reset application that needs to interact with midPoint. Maybe there is a
analytic software that needs to get midPoint data. MidPoint was designed from the day one to
be a service-based application. Therefore there are REST and SOAP services packed with

352

features. Actually almost anything that midPoint does can be controlled by using those services.

• Advanced concepts: There are still some features that were not explained in previous chapters:
consistency mechanisms, personas, multi-connector resources and so on. Some of those features
are seldom used, but they may save your project. Other features are used all the times, but they
are a natural part of midPoint and therefore they are almost invisible. But all those features
deserve explanation. And there is also a need to describe how midPoint itself is developed – as
there is a lot of experimental and incomplete features. But, as this is midPoint, even those
features may be extremely useful. This chapter may also be interesting to people who would
like to extended midPoint in an unusual way or those that want to contribute to midPoint
development.

• MidPoint Deployment: There are many paths from downloading midPoint packages to a
working system. Some of those paths are easier than other. MidPoint design was build on many
years of practical identity management experience. Therefore, midPoint has mechanisms that
can be used to efficiently overcome some of the notorious problems in identity management –
provided that midPoint is used correctly. This chapter aims at giving advice how midPoint
should be used in practical projects. How to plan the project, what information to gather, how to
design the deployment, how to prepare the environment, plan the migration, handle project
extensions and changes and so on.

• Management of IAM program: Identity management is very similar to information security:
Identity management has no end. Identity management is not a project. It is a program. It is an
endless cycle of gathering data, planning and execution. The environment around identity
management is always changing, therefore identity management must change as well. But
midPoint is designed for this kind of longevity. This chapter will describe how to handle this
endless cycle. How to make midPoint configuration open to extensions. How to gather data.
How to handle new feature requests. How to do upgrades. How to keep identity management
solution sustainable.

• Deployment examples: This book uses a lot of examples in all the chapters. But those are
examples designed to demonstrate one specific aspect of midPoint functionality. This chapter
will be different. There will be complete examples of practical midPoint solutions. After all, the
way that copying and pasting is one the best ways how to learn.

Those chapters are still missing. They are not written yet. Obviously, the best people to write those
chapters are the people from the Evolveum team: people that designed and implemented midPoint,
people that support midPoint deployments, people that work with midPoint every day, people that
eat, breathe and sleep midPoint. But those people are just engineers. They need to pay their bills.
They cannot put away their day-to-day responsibilities to work on this book. Obviously, funding is
needed to finish the book. As this book is available for free there is no direct income that could
provide the funding for next chapters. There is only one way: sponsoring.

If you like this book, then please consider sponsoring some of the next chapters. The market
economy is, unfortunately, quite ruthless. Therefore, it is pretty straightforward: if there are no
sponsors, it is very unlikely that there will be any new chapters. Therefore, please sponsor this
book if you can. If you cannot afford to sponsor this book, then please at least help us to spread the
word: a word about midPoint and a word about this book. Any form of help is more than
appreciated.

353

Conclusion
A conclusion is the place where you get tired of thinking.

— Steven Wright

This book is not finished yet. In fact, it is just a beginning. The book is written continually in an
incremental and iterative fashion as fast as time and money allow.

Your contributions and donations will surely speed up completion of this book. Also consider
getting midPoint subscription. That is the source of funding for midPoint development. Evolveum is
no mega-corporation that can fund open source development from huge profits in other areas.
There are no other areas. Evolveum is open-source-only company. Everything we do is focused on
open source projects. Evolveum is not a start-up either. We are not funded by venture capital, and
we do not have millions to spend. Evolveum is a self-funded company. We can spend only what we
earn on subscriptions, sponsored features and services. There is no other income. MidPoint
development can only go as fast as the money allow. The same principle applies to midPoint
documentation and this book. It will grow proportionally to the Evolveum income. Therefore, if you
liked this book please consider supporting us. Both money and your time are more than
appreciated.

We hope that you enjoyed reading this book at least as much as we enjoyed writing it – and as we
enjoy creating midPoint in the first place. MidPoint is quite a unique software project. It would not
be possible to maintain and develop this project without you. The whole Evolveum team would like
to thank all past, present and future midPoint supporters for making this exciting project a reality.
Together we have created interesting and useful software product. We hope that together we can
make midPoint even better.

Thank you all.

354

Glossary
Eskimos had over two hundred different words for snow, without which
their conversation would probably have got very monotonous.

— So Long, and Thanks for All the Fish by Douglas Adams

Identity management and governance parlance may sound like an alien language to a newcomer.
Therefore, perhaps preparing IDMish-to-english dictionary might be a good idea.

There are a lot of terms listed in this part of the book. Many of the terms have several meanings,
some of them might be confusing, and there are alternative terms and various "dialects". Identity
management, similarly to many fields of technology, is also riddled by many buzzwords, invented
by marketing departments rather than scientists and engineers. Therefore, compiling a clear,
simple, exact and consistent terminology is almost an impossible task. We have tried to do our best
here.

Individual terms are accompanied by acronyms and alternative terms where appropriate. There is
also a reference to vocabularies used by standards. Some terms have specific meaning when used
in midPoint ecosystem. In that case the midPoint-specific meaning is explained as well.

Although the glossary is certainly incomplete, and we reserve the right for our own interpretation,
we hope that this will help you safely navigate the stormy waters of identity management letter
soup.

Attribute-Base Access Control (ABAC)

A mechanism for managing of user access to information systems based on values of user
attributes. Attribute-Based Access Control (ABAC) evaluates the access dynamically, using an
algorithm that takes "attributes" as an input, and outputs access decision (allow/deny). The
attributes are usually user attributes from the user profile, supplemented with context
attributes, such as time of access and user’s current location.

See also: Access Control

Abstract Role

In midPoint terminology: Abstract role means any type of object that acts as a role. This means
that abstract tole can be used to hold inducements, which give privileges to other objects. Role,
org, service, archetype are abstract roles in midPoint.

See also more information at docs.evolveum.com.

See also: Inducement, Role, Org, Archetype

Access Certification

Access certification helps with management of access rights. These rights also called privileges,
role assignments, authorities or authorizations need to be assigned to the right users in the right
systems at the right time. Access Certification means reviewing the settings such as assignments
of roles to users to make sure that employees have accesses to the systems they need.

355

https://docs.evolveum.com/midpoint/architecture/concepts/abstract-role/

Alternative terms: Access Re-certification, Re-certification, Attestation

Access Control

Access control is an abstract concept of controlling access of users to applications. It is a very
broad and general term, however it usually refers to a mechanism to define and evaluate
authorization policies. Two commonly-used access control mechanisms are role-based access
control (RBAC) and attribute-based access control (ABAC).

X.1252 term: access control

See also: Role-Base Access Control, Attribute-Base Access Control

Access Management (AM)

Access Management (AM) is a security discipline that provides access to authorised users to
enter particular resources. It also prevents non-authorised users from accessing the resources.
Thus the goal of Access Management is to unify the security mechanisms that take place when a
user is accessing specific system or functionality. Single Sign-On (SSO) is sometimes considered
to be a part of Access Management.

Account

Data structure in a database, file or a similar data store that describes characteristics of a user of
a particular system (resource). Accounts are used to control access of users to applications,
databases and so on. Account is a persistent data record, stored in an application or a database.
This term is usually not used to describe ephemeral information about user’s identity, such as
information temporarily stored only for the duration of user’s session. Such information is often
referred to as "principal".

Account is different from a generic data record (e.g. "identity" or "principal"). The purpose of
account is to provide user’s access to the system, generic data record may not provide such
access.

In midPoint terminology: An account strictly means a data structure in source/target system
(resource). Term "user" is used to describe a similar data structure in midPoint itself.

Alternative terms: User account

See also: User, Principal

Active Directory

An identity repository created by Microsoft that stores and arranges identity information. Based
on this information, it provides access and permissions to users to enter particular resources
and therefore improves organization’s security.

Agent

Active entity, usually a software component that plays an active part.

In identity management field, the term "agent" often means an active software component
installed into a controlled system, used to mediate management of identities. It is similar in
function to identity connector, however unlike the connector, the agent has to be installed into a
controlled system.

356

X.1252 term: agent

See also: Identity Connector

Anonymity

A situation when an object cannot be distinguished from similar objects, where an identity of an
object cannot be determined.

X.1252 term: anonymity

See also: Identity

Application Programming Interface (API)

Set of procedures, functions or methods that can be used by another program or component.
APIs are usually interfaces exposed by an application, meant to be used by other application.
Therefore APIs are important integration points between applications and services. In the past,
APIs were usually created as a programming language library, such as C or Java library. Since c.
2010, APIs usually take form of HTTP-based RESTful service.

See also: RESTful Service

Archetype

In midPoint terminology: Archetype is a formal definition of object subtype in midPoint.
Archetypes can give specific characters to basic midPoint types such as user, role or org. For
example, archetypes can be used to further refine concept of user to represent employees,
students, contractors and partners.

See also more information at docs.evolveum.com.

Assignment

In midPoint terminology: Assignment is a relation that directly assigns privileges, organizational
membership, policy elements or other midPoint concepts to assignment holder objects (usually
users). Assignment is quite a rich, flexible and universal mechanism. Assignments can be
conditional, there may be time constraints, parameters and other details specifying the relation
between assignment holder (usually user) and target (usually role or org). Many types of objects
can be a target of an assignment, allowing for a significant expressive power.

See also more information at docs.evolveum.com.

See also: Inducement, Assignment Holder, Focus

Assignment Holder

In midPoint terminology: An object that can hold assignments. Assignment holder can be
considered a "source" of an assignment, a source of a relation that an assignmnt represents.
Almost all object types in midPoint are assignment holder, capable of containing an assignment.

See also: Assignment, Focus

Authentication

Authentication is a mechanism by which a computer system checks that the user is really the

357

https://docs.evolveum.com/midpoint/reference/schema/archetypes/
https://docs.evolveum.com/midpoint/reference/roles-policies/assignment/

one she or he claims to be. Authentication can be implemented by a broad variety of
mechanisms broadly divided into three categories: something you know, something you have,
something you are. Traditionally, authentication is done by the means of by username and
password. Authentication is often followed by authorization, however, authentication and
authorization are two separate mechanisms.

ISO 24760 term: authentication

X.1252 term: authentication

See also: Identification, Authorization

Authenticated Identity

ISO 24760 term, describing "identity information" created to record result of authentication. This
may mean data such as authentication strength, timestamps and similar information. In
software development, it is often referred to as "authenticated user" or "authenticated
principal".

Alternative terms: Authenticated user, Authenticated principal

ISO 24760 term: authenticated identity

See also: Authentication, Principal

Authorization

Authorization is a mechanism by which a computer system determines whether to allow or deny
specific action to a user. Authorization is often controlled by rather complex rules and
algorithms, usually specified as part of an access control model. Authorization often follows (and
required) authentication, however, authentication and authorization are two separate
mechanisms.

In rare cases, "authorization" is understood as a process of allowing access, granting permissions
or giving approval. Such as "authorization" of a request to join a group.

X.1252 term: authorization

See also: Authentication, Role-Base Access Control, Attribute-Base Access Control, Coarse-grain
Authorization, Fine-Grain Authorization, Access Control

Authorization Service

A system that provides authorization information to an application. It usually makes a decision
whether a specific operation should be allowed or denied by the application. I.e. authorization
system is performing the authorization decision instead of the application. Authorization
systems often use complex policy, user roles or additional attributes to make the decision.
Authorization servers usually implement functionality of Policy Decision Point (PDP). Typical
protocols and frameworks: XACML, Open Policy Agent (OPA), SAML authorization assertions,
proprietary mechanisms

Alternative terms: Authorization Server

358

See also: Authorization

Biometrics

Automated recognition of persons, based on their biological or behavioral characteristics.

Alternative terms: Biometric authentication

X.1252 term: biometric recognition

See also: Authentication

Blinded Affirmation

A method to provide strictly limited information to another party, without revealing any
unintended information. Blinded affirmation is often used to demonstrate that a certain user is a
member of an organization, without revealing any additional information about the user to a
third party. Blinded affirmation usually relies on ephemeral identifiers or pseudonyms.

ISO 24760 term: blinded affirmation

See also: Ephemeral Identifier, Pseudonym

Certificate Authority (CA)

Entity that issues digital certificates. Certificate authority is usually a trusted third party,
certifying correctness of the data presented in certificates that it issues. The most common form
of certificate authority is an authority that issues X.509 digital certificates, containing public
keys. Certificate authority signs the certificates, thus certifying that a specified public key
belongs to a specified identity.

See also: Digital Certificate, Trusted Third Party

Cloud Computing

Internet-based computing when resources like storage, applications or servers are used by
organizations or users via Internet. Data could be accessed any time from any place, without any
installations and is stored and processed in third-party data centers which could be located
anywhere in the world. Cloud computing is considered to lower organization’s costs by avoiding
the need of purchasing servers as well as to speed up the processes with less maintenance
needed. Due to data being centralized at one place, it is considered to be secure and easily
shared across bigger amount of users.

Coarse-grain Authorization

Authorization concerning big architectural blocks, such as entire applications or systems. E.g.
coarse-grain authorization usually decides whether a user can access an application, or access
should be denied, without providing any additional details. Coarse-grained authentication is
usually being made at the "perimeter" of the system, e.g. by infrastructure components, when a
user is accessing an application. Typically, this authorization is based on simple policy rules,
such as a role or group assigned to the user.

See also: Authentication

359

ConnId

ConnId is an open source identity connector framework project. It originated from Identity
Connector Framework (ICF) developed by Sun Microsystems in late 2000s. ConnId is an now an
independent open source project, used by several identity management platforms.

Alternative terms: ConnId Framework

See also: Identity Connector, Identity Connector Framework

Consent for Personal Data Processing

Consent for personal data processing is given by a user, to indicate agreement for processing of
personal data. In personal data protection frameworks (such as GDPR), consent has a strict
structure, it is given for a very specific processing scope. Consent can be revoked by the user any
time. Consent is just one of several personal data processing bases (lawful bases). Consent is
perhaps the most well know, and also the most misused basis for personal data processing.

Alternative terms: Consent

See also: Personal Data Protection, Personal Data Processing Basis, General Data Protection
Regulation

Credential

Information used to prove the identity during authentication. Credentials can be digital
(information), physical (an object such as ID card) or a combination of both (an ID card with a
tamper-proof chip containing cryptographic keys). Perhaps the most common type of digital
credential is a password.

Alternative terms: Credentials

ISO 24760 term: credential

X.1252 term: credential

See also: Authentication

Credential Issuer

An entity that creates and provisions credentials to entities.

ISO 24760 term: credential issuer

See also: Credential

Credential Service Provider (CSP)

ISO 24760 term, describing an entity responsible for management of credentials in a domain.

ISO 24760 term: credential service provider

See also: Credential

360

Cross-domain

Anything that involves interaction between two or more domains. Specifically in context of
identity and access management, it usually means transfer of information between domains that
are under separate control, or transfer of information that needs to be somehow limited (e.g.
only a subset of attributes is transferred).

Cross-domain techniques employ special mechanism to protect the information, or to make
transfer between domains more reliable or secure. For example, special identifiers (often
ephemeral pseudonyms) are used to refer to identity data.

See also: Domain, Identity Provider, Relying Party, Identity Federation

Data Minimization

A process of reducing the amount of data to the necessary minimum required for processing.

Data minimization often takes place in context of privacy and personal data protection,
minimizing identity data to the necessary minimum.

Alternative terms: Minimization

X.1252 term: data minimization

See also: Privacy, Personal Data Protection

Data Origin

Organization or entity that have created or assigned a particular value. Origin is often part of
data provenance, description of the method how a value was acquired by a system.

Origin may be relative, describing only an immediate origin of the information, a "previous hop,
a system that have relayed the information to our system. Such origin may not have created or
assigned the information, it may have only relayed or copied the information originated in a
third system. Origin is often recorded in a form of metadata.

Alternative terms: Origin, Domain of Origin

ISO 24760 term: domain of origin

See also: Digital Identity Attribute, Data Provenance

Data Provenance

Description of the method how a value was acquired by a system. Provenance information
almost always contains description of data origin. It is supplemented by additional information,
such as timestamps and assurance information.

Provenance may be relative, describing only an immediate origin of the information, a "previous
hop, a system that have relayed the information to our system. In other cases, provenance
information may include a complete path from the ultimate origin of the information,
describing all the systems that it has passed and all the transformations that were applied.
Provenance is often recorded in a form of metadata.

361

Alternative terms: Provenance

See also: Data Origin, Metadata

Decentralized Identifier (DID)

An identifier that does not require centralized registration authority. Technologies supporting
decentralized identifiers vary, many of them are based on distributed ledger technologies (e.g.
blockchain).

X.1252 term: decentralized identifier

Delegated Administration

Type of administration where chosen users have administrator permissions. They can manage
other users, create passwords for them, move them into groups, assign them roles, etc.

Delta

In midPoint terminology: Delta is a data structure describing a change in data. It describes the
data items (and values) that were added, removed or replaced. Delta is a relativistic data
structure, it contains only the data that were changed.

See also more information at docs.evolveum.com.

Alternative terms: Prism Delta

See also: Prism

Digital Identity

Digital representation of identity: set of characteristics, qualities, believes and behaviors of en
entity, usually represented as a set of attributes.

Digital identity should not be confused with identifier. Digital identity is a set of characteristics
(complex data), while identifier is (usually simple) value used to refer to digital identity.

Alternative terms: Identity, Network Identity, User Profile

ISO 24760 term: identity information

X.1252 term: digital identity

See also: Identity, Digital Identity Attribute, Entity

Digital Identity Attribute

A value representing a characteristic or property of an entity. An attribute is a part of digital
identity.

Alternative terms: Attribute

ISO 24760 term: attribute

X.1252 term: attribute

362

https://docs.evolveum.com/midpoint/devel/prism/concepts/deltas/

See also: Digital Identity, Identifier, Entity

Digital Certificate

Digital document, containing an information protected by cryptographic means. Digital
certificates are usually used to bind an information to a digital identity. Perhaps the most
common use of certificates are certificates of public keys, binding public key to identity of the
owner, signed by a trusted third party (certificate authority). The most prominent specification
of a format of such digital certificate is X.509.

Alternative terms: Certificate

X.1252 term: certificate

See also: Certificate Authority, Trusted Third Party

Directory Service

A database intended as a store of simple objects, shared between applications. Directory services
are often used to store identity data. The data are used by other applications, that are accessing
the directory service by using a well-known protocol. Lightweight Directory Access Protocol
(LDAP) is the most common protocol used to access directory services.

Directory services used to be the usual method to implement functionality of identity data store.
However, other databases and technologies are used to implement similar functionality.

Alternative terms: Directory Server

See also: Identity Data Store, Lightweight Directory Access Protocol

Domain

An environment under an autonomous control. A domain is often an organization, managing a
set of information systems and databases, keeping the information consistent. However, it may
also refer to a smaller information set within an organization, such as a single database or
directory server.

Identifiers are often designed to be unique within a particular domain, such as an organization
or a database.

Alternative terms: Domain of applicability, Realm, Context, Scope

ISO 24760 term: domain

X.1252 term: domain

See also: Digital Identity, Identifier

Enrollment

A process of entering new identity data into a specific system (usually in a domain). Enrollment
usually involves validation and verification of the information and its origin, such as
verification of identity assertion that relied the information to the system.

The terms "enrollment", "registration" and "onboarding" are overlapping and they are often

363

used as synonyms. Strictly speaking, "enrollment" is the verification process, "registration" is an
act of recording information to data store, and "onboarding" is a complete business process
making sure that a new person in an organization is well-equipped for activities within the
organization.

ISO 24760 term: enrollment

X.1252 term: enrollment

See also: Identity Registration, Onboarding, Identity Assertion

Entitlement

A privilege or right of access given to the user. An "entitlement" is a very overloaded term. It can
be used to represent any kind of privilege, ranging from a very high-level business role to the
finest filesystem permission in a specific system.

In midPoint terminology: An Entitlement is a resource object representing privilege, access right,
resource-side role, group or any similar concept. However, unlike account, the entitlement does
not represent a user.

Alternative terms: Privilege, Access Right

X.1252 term: privilege

Entity

Being (su as person or animal), thing, concept or anything else that has recognizably distinct
existence. An entity is usually described by a set of characteristics, known as its identity. An
entity can have several identities.

ISO 24760 term: entity

X.1252 term: entity

See also: Identity, Digital Identity

Ephemeral Identifier

An identifier used only for a very short duration. Ephemeral identifiers are valid usually only
during a single session, or even during a single protocol exchange (e.g. authentication).
Ephemeral identifiers are almost always randomly-chosen. When ephemeral identifiers refer to
a digital identity, they are efficiently a short-lived pseudonyms.

ISO 24760 term: ephemeral identifier

See also: Identifier, Pseudonym

Federated Identity

Digital identity intended to be used in several domains, usually by the means of identity
federation. Information about federated identity is transferred between domains, usually in a
form of identity assertions exchanged between identity providers and relying parties.

ISO 24760 term: federated identity

364

See also: Identity Federation, Digital Identity

Fine-Grain Authorization

Authorization made on very detailed information and is providing more detail control within
the application operation. E.g. authorization to approve the transaction in an accounting system,
with amount up to a certain limit. Typically, fine-grain authorization requires detailed
knowledge of both the user profile (attributes) and the operation context (operation name,
parameters and their meaning). Due to this requirement, fine-grain application is often
implemented directly in application code.

See also: Authentication

Focus

In midPoint terminology: An object that can is a focus of computation, an object central to
midPoint computation. The focus is usually a user, but it can be a role, org or a service. Focus is
the center of a computation, the hub in hub-and-spoke (star) data synchronization in midPoint.
The "spokes" in the computation are represented by projections.

See also more information at docs.evolveum.com.

Alternative terms: Focal Object

See also: Assignment, Projection

Fulfillment

Fulfillment is a functionality of identity management (IDM) system, making sure that users have
appropriate access to systems. Simply speaking, this is the functionality that creates accounts,
associates them with entitlements (e.g. groups), modifies passwords, enables/disables accounts
and deletes them in the end. Fulfillment is a name used for identity provisioning together with
deprovisioning and associated activities.

See also more information at docs.evolveum.com.

Alternative terms: Provisioning/deprovisioning

See also: Identity Management, Identity Management System, Identity Provisioning, Identity
Deprovisioning, Manual Fulfillment

General Data Protection Regulation (GDPR)

General Data Protection Regulation 2016/679 (GDPR) is European Union regulation on personal
data protection and privacy. It defines rules for processing of personal data in European Union,
European Economic Area, with provisions of the regulation applicable to other parties as well.

See also: Personal Data Protection

Generic Synchronization

Advanced model of synchronization where not only users and accounts are synchronized, but
also groups to roles, organizational units to groups, roles to ACLs and so on.

365

https://docs.evolveum.com/midpoint/reference/schema/focus-and-projections/
https://docs.evolveum.com/iam/iga/fulfillment/

Governance, risk management and compliance (GRC)

Governance, risk management and compliance (GRC) is a discipline that helps organizations to
have more control over processes and be more effective. Governance is the set of decisions and
actions by which individual processes as well as the whole organization are lead to achieve
specific goals. Risk management identifies, predicts and prioritizes risks with aim to minimize
them or avoid their negative influence on organizations' aims. Compliance means following
certain rules, regulations or procedures. A GRC software facilitates this problematic by taking
care of all three parts by one single solution. It is a very helpful tool for business executives,
managers or IT directors. Thanks to it it is possible to define, enforce, audit and review policies
responsible for the exchange of information between internal systems as well as between the
external ones.

Identifier

A value, or a set of values, that uniquely identify an identity in a certain scope.

An identity usually have several identifiers, used in various situations and contexts. Identifiers
may be compound, composed of several values.

ISO 24760 term: identifier

X.1252 term: identifier

See also: Identity, Digital Identity, Digital Identity Attribute, Entity

Identification

A process of recognizing an identity as distinct from other identities in a particular scope or
context. Identification is almost always performed by processing identifiers, using them to
reference an identity in an identity database.

Identification is a process distinct from authentication. Authentication is a process of proving an
identity (verification), whereas identification does not assume any such proof.

The term "identification" usually refers to a process of looking up identity data based on a simple
identifier, such as username or reference identifier. In some cases, process of identification
involves a correlation, looking up or matching identity information in a more complex way. For
example, a system may compare registration data entered by the user with the content of its
identity database, in an attempt to determine whether such user is already registered.

ISO 24760 term: identification

X.1252 term: identification

See also: Digital Identity, Identifier, Authentication, Identity Correlation

Identity

The fact of being who or what a person or thing is. Set of characteristics, qualities, believes,
behaviors and other aspects of en entity. Identity can be applied to persons, things, even
intangible concepts, known as entities. An entity can have several identities (often known as
personas). In context of information technologies, parts of identity can be usually represented in
a form of digital record, known as digital identity.

366

Identity should not be confused with identifier. Identity is a set of characteristics, while
identifier is a value used to refer to identity.

ISO 24760 term: identity

X.1252 term: identity

See also: Identifier, Digital Identity, Entity

Identity and Access Management (IAM)

Identity and access management (IAM) is a field concerned with managing identities (e.g. users)
and their access to systems and applications. IAM is concerned with all the aspects dealing with
"identity", with many subfields that specialize in selected aspects. Access management deals
(AM) especially with access to applications, including authentication and (partially)
authorization. Identity management and governance (IGA) deals with management of user data
(e.g. user profiles), synchronization of identity data and applying policies. Other IAM subfields
deal with storage of identity data, transfer of the data over the network and so on.

See also more information at docs.evolveum.com.

See also: Identity Management, Identity Governance and Administration, Access Management,
Identity Data Store

Identity Assertion

Statement made by an identity provider regarding properties or behavior of an identity.
Assertions are used by relying parties. The most common assertion is perhaps authentication
assertion, relying information about authentication event from identity provider to relying
party. Assertions may contain other information as well, usually identity attributes and
authorization decisions.

Alternative terms: Assertion, Claim

ISO 24760 term: identity assertion

X.1252 term: claim

See also: Digital Identity Attribute, Identity Provider, Relying Party

Identity Correlation

Process of comparing identity information, with an aim to find a matching identity. Correlation
is usually employed during identity enrollment or registration, when a system determines
whether the new identity is already known to the system. For example, a system may compare
registration data entered by the user with the content of its identity database, in an attempt to
determine whether such user is already registered. If such a comparison involves simple and
reliable identifiers (such as username or employee number), it is called "identification".
However, in many cases such identifiers are not available, and the system needs to combine
several identifiers or employ sophisticated techniques to find matching identity. Some identity
correlation techniques involve probabilistic matching techniques or machine learning methods
to find suitable candidates, which are later reviewed by human operator.

367

https://docs.evolveum.com/iam/

Alternative terms: Identity Matching

X.1252 term: correlation

See also: Identification, Enrollment, Identity Registration, Identifier

Identity Information Authority (IIA)

ISO 24760 term, referring to an entity related to a particular domain that can make provable
statements on the validity and/or correctness of one or more attribute values in an identity.

ISO 24760 term: identity information authority

See also: Identity Provider, Domain

Identity Connector

Usually small and simple unit of code that connects to a remote system. The purpose of identity
connector is to retrieve and manage identity information, such as information about user
accounts, groups and organizational units. The connectors are usually written for and managed
by a particular connector framework.

Alternative terms: Connector

See also: Identity Connector Framework, ConnId

Identity Connector Framework

Generally speaking, a programing framework (library) for creating and managing identity
connectors. However, this rather generic term often refers to the Identity Connector Framework
(ICF), originally developed by Sun Microsystem in 2000s. The ICF was releases as an open source
project by Sun, only to be later abandoned after Sun-Oracle merger. The ICF was a base for
several forks, including ConnId and OpenICF.

Alternative terms: Connector Framework, ICF

See also: Identity Connector, ConnId

Identity Data Source

A system that is the source of identity data, usually data about users. The data are usually
created and maintained in such systems manually. There are often multiple identity data
sources in an organization with various characteristics. Some data sources are considered
authoritative, providing reliable information about identities. Other data sources usually
contain user-provided information, such as data entered by the user during registration process.
Almost all data sources contain partial information only, information that is limited both in
breadth (only some identity types) and depth (only some attributes). Data source may be an
intermediary, providing information acquired from other systems.

Alternative terms: Source System

Identity Data Store

A database, designed and/or dedicated to store identity-related data. Identity data store is
usually shared among many applications, it is accessed by many systems reading the data.

368

Applications read data from identity data stores, often using them for authorization, and
sometimes even authentication purposes. Structure of data in the data store is often application-
friendly, containing pre-processed and derived information. Identity data store also usually
contain entitlements, or similar information that can be used for authorization purposes. There
are usually several identity data stores in an organization, managed and synchronized by an
identity management system.

Traditionally, directory servers (such as LDAP serves) are used as identity data stores.

Identity data store is similar to identity register, and in fact many identity data stores are
identity registers. The difference is that identity register has a more formal data structure,
usually functioning as an authoritative data source. Whereas identity data store usually contains
information copied from other system, including application-friendly derived data. However,
the exact boundary between functions of identity register and identity data store is not exactly
defined.

Alternative terms: Identity Store, Identity Database, Directory Service

See also: Identity Register

Identity Deprovisioning

Identity deprovisioning is as well as identity provisioning a subfield of Identity and Access
Management (IAM). It is an opposite to identity provisioning. While identity provisioning takes
care of creating new accounts, determining the roles for individual users and their rights or
making changes in them, deprovisioning works oppositely. When an employee leaves the
company, his account is deactivated or deleted and he loses all the accesses to both internal and
external systems. This way organization minimizes information theft and stays secure. Identity
provisioning together with deprovisioning and associated activities is known as "fulfillment".

Alternative terms: Deprovisioning

See also: Fulfillment

Identity Evidence

Data and documents that support verification of identity data (identity proofing). Identity
evidence is used in identity proofing process to achieve higher level of assurance of identity
information.

Alternative terms: Evidence of Identity, Identity Proof

ISO 24760 term: identity evidence

See also: Identity Proofing, Level of Assurance, Verification, Digital Identity Attribute

Identity Federation

Identity federation is an agreement between several domains, specifying the details of exchange
and use of shared identity information. The information in identity federation is usually
transferred by the means of identity assertions, exchanged between identity providers and
relying parties.

369

From user’s point of view, identity federation is a process of sharing user’s identification and
personal data between multiple systems and between organizations, so the user doesn’t have to
register for each organization separately and can seamlessly access systems in federated
organizations.

ISO 24760 term: identity federation

X.1252 term: federation

See also: Domain, Federated Identity, Identity Assertion, Identity Provider, Relying Party

Identity Governance

Business aspect of managing identities including business processes, rules, policies and
organizational structures. Any complete solution for management of identities consists of two
major parts – identity governance and identity management.

Alternative terms: Governance

See also: Identity Governance and Administration, Governance, risk management and
compliance, Identity Management

Identity Lifecycle

Set of identity stages from creation to its deactivation or deletion. It contains creation of an
account, assignment of correct groups and permissions, setting and resetting passwords and in
the end deactivation or deletion of the account.

See also: identity-provisioning,

Identity Management (IDM)

Identity Management (IDM) is a process of managing digital identities and their accesses to
specific resources in the cyberspace. It ensures appropriate access in appropriate time and helps
to manage user accounts as well as to synchronize data. Identity management deals with digital
identity lifecycle, managing values of digital identity attributes and entitlements.

Alternative terms: Identity Administration, User management, User provisioning

ISO 24760 term: identity management

X.1252 term: identity management

See also: Access Management, Identity Lifecycle, Identity Provisioning, Identity Governance and
Administration, Digital Identity, Digital Identity Attribute

Identity Management System (IDMS)

A system that provides identity management functionality: it is managing identities and their
accesses to specific resources in the cyberspace. It ensures appropriate access in appropriate
time and helps to manage user accounts as well as to synchronize data.

Identity management (IDM) systems are concerned about the "management" side, maintaining
user data, policies, roles, entitlements and so on. IDM systems usually do not "apply" or enforce

370

the policies. The policies are transformed as needed and provisioned to other systems (a.k.a.
"target systems") that interpret and enforce the policies. The process of provisioning (and
"deprovisioning") of data and policies is known as "fulfillment".

In a broad sense, IDM systems are used to manage the policies and data in all connected systems
in the organization. IDM systems make sure that the data are consistent, that all the policies are
applied, that user profile data are up to date, detecting and removing illegal access and generally
keep all identity-related information in order across all the systems.

Note: ISO 24760 definition seems to include identification and authentication as functions of
identity management systems. While almost all IDM systems implement such functions, they are
mostly used for internal purposes, e.g. for system administration access. IDM system usually do
not provide identification and authentication services to other systems. ISO 24760 definition is
closer to definition of identity and access management (IAM) system. However, complete IAM
functionality is usually provided by a combination of several systems in practice.

Alternative terms: IDM System, Provisioning System, User Provisioning System

ISO 24760 term: identity management system

See also: Identity Management, Identity Lifecycle, Identity Provisioning, Identity Governance
and Administration

Identity Proofing

Verification of evidence to make sure that identity information are true and up-to-date. Identity
proofing is used to achieve higher level of assurance of identity information.

Alternative terms: Initial Entity Authentication

ISO 24760 term: identity proofing

X.1252 term: identity proofing

See also: Digital Identity Attribute, Level of Assurance

Identity Provider (IdP)

System that provides identity-related information to applications (known in this context as
"relying party" or "service provider"). Such information usually includes user identifiers (which
may be ephemeral), user name(s) and affiliation. The information is usually provided in form of
identity assertions (claims).

Identity providers are often authenticating the users. In that case, identity providers usually
include information describing the authentication, such as statement that user was
authenticated and indication of authentication mechanism strength. Identity provider
authenticates the users in its own capacity, it never reveals user’s credentials to the application
(relying party). In fact, many identity providers are focused on authentication only, providing
only a very minimal identity information (often just a single identifier), in which case the
authentication-related information forms the most important part of provided information.
Such identity providers effectively work as cross-domain single sign-on (SSO) systems.

371

Although most identity providers include user authentication, there are also providers that do
not (directly) authenticate the users, sometimes called "attribute providers". Identity provider
may provide also additional information of the user to the application, such as information
about user attributes and entitlements.

Identity provider is often managed by a different organization than the relying applications
(service providers), thus providing cross-domain identity mechanism. Typical protocols and
frameworks used by identity providers include: SAML, OpenID Connect, CAS

ISO 24760 term: identity information provider

X.1252 term: identity service provider

See also: Relying Party, Identity Federation, Cross-domain, Identity Assertion

Identity Provisioning

In broad sense, identity provisioning is a subfield of Identity Management (IDM), concerned
with technical aspects of creating user accounts, groups and other objects in target systems. It is
a technology thanks to which many identity stores are synchronized, merged and maintained.
Identity provisioning takes care of technical tasks during the whole user lifecycle - when new
employee is hired, when his responsibilities change or he leaves the company (deprovisioning).
It helps the organization to work more effectively as its goal is to automate as much as possible.

The provisioning system usually takes information about employees from the Human Resource
(HR) system. When new employee is recorded into HR system, this information is detected and
pulled by the provisioning system. After that, it is processed to determine set of roles each user
should have. These roles determine and create accounts users should have, so everything is
ready for new users on the very first day. If a user is transferred to another department or his
privileges change, similar processes happen again. If an employee leaves the company, identity
provisioning systems makes sure all his accounts are closed.

In a specific sense, identity provisioning means a process of creating accounts, assigning
entitlements and similar actions, making sure a user has appropriate access to information
systems. Identity provisioning together with deprovisioning and associated activities is known
as "fulfillment".

Alternative terms: User provisioning, Provisioning

See also: Identity Management, Identity Lifecycle, Fulfillment

Identity Register

A repository (database) of identity information, usually structured in a formal manner. Identity
registers are almost always indexed using a reference identifier. They are usually designed for a
specific purpose of being an authoritative data sources for other systems.

Identity register is similar to identity data store, and in fact many identity registers function as
identity data stores. The difference is that identity data store has less formal, usually application-
friendly data structure, containing pre-processed and derived information. Identity data store
also usually contain entitlements, or information that can be used for authorization purposes.
However, the exact boundary between functions of identity register and identity data store is

372

not exactly defined.

Alternative terms: IMS Register, Reference Register

ISO 24760 term: identity register

See also: Identity Registration, Reference Identifier, Identity Data Source, Identity Data Store

Identity Registration

A process of recording new identity data into identity register or identity data store. Registration
process may involve storing the information is several distinct data stores or registers. The
recording process may be indirect, e.g. mediated by synchronization process of an identity
management system.

Informally, the registration process often involves the data acquisition process as well, such as
asking user for the data using a form.

The terms "enrollment", "registration" and "onboarding" are overlapping and they are often
used as synonyms. Strictly speaking, "enrollment" is the verification process, "registration" is an
act of recording information to data store, and "onboarding" is a complete business process
making sure that a new person in an organization is well-equipped for activities within the
organization.

Alternative terms: Registration

ISO 24760 term: identity registration

X.1252 term: registration

See also: Enrollment, Onboarding, Identity Register, Identity Data Store

Identity Resource

In IAM field, a Resource is usually an network-accessible asset capable of managing identity
information.

In midPoint terminology: An Resource is a system that is either identity data source or
provisioning target. IDM system (midPoint) is managing accounts in that system, feeding data
from that system or doing any other combination of identity management operations. Identity
resource should not be confused with "web resource" that is used by RESTful APIs.

Alternative terms: Provisioning Resource, Resource

See also: Resource, Identity Connector

Identity Governance and Administration (IGA)

Identity governance and administration (IGA) si a subfield of identity and access management
(IAM) dealing with management and governance of identity-related information. IGA systems
store, synchronize and manage identity information, such as user profiles. Complex data,
entitlement and governance polices can be defined, applied to identity data. IGA system are
responsible for evaluating the policies, making sure the data are compliant, addressing policy
violations. IGA is often considered an umbrella term covering identity management, identity

373

governance, compliance management, identity-based risk management and other aspects
related to management of identities. Identity Governance and Administration (IGA) includes
both the technical and business aspects of identity management.

See also more information at docs.evolveum.com.

See also: Identity Management, Identity Governance, Governance, risk management and
compliance, Identity and Access Management

Inducement

In midPoint terminology: Inducement is an indirect representation of an assignment, a relation
that assigns privileges, organizational membership, policy elements or other midPoint concepts
to assignment holder objects (usually users). Inducement has the same data structure as
assignment, and very similar functionality. However, while assignment represents direct
relation, inducement is indirect. For example, assignment can be used to assign an account or a
group membership directly to a user. Inducement can facilitate the same functionality, however
it is usually placed in role. As the role is assigned (using an assignment) to the user, inducements
placed in the role are indirectly applied to a user.

See also more information at docs.evolveum.com.

See also: Assignment, Role

Joiner-Leaver Processes

Joiner-Leaver are human resources (HR) process, handling employees joining the organization
and leaving the organization. They are constrained versions of joiner-mover-leaver processes,
not considering movement of employees in organizational structure.

Alternative terms: Joiners and Leavers

See also: Joiner-Mover-Leaver Processes, Onboarding, Offboarding

Joiner-Mover-Leaver Processes (JML)

Joiner-Mover-Leaver (JML) are human resources (HR) process, handling employees joining the
organization, moving within organizational structure and leaving the organization. JML process
can be understood as handling events of employee lifecycle from the point of view of
organizational and business processes. Generally speaking, this process is not limited to
employees. However, when similar processes are applied to other types of persons (students,
contractors) they are often referred to as "on-boarding" and "off-boarding".

JML processes are (manual) business processes in their nature. Despite that, the JML processes
are important for identity management, as they provide the contextual framework for identity
management technology to fit in. Moreover, identity management deployments are usually
automating some parts of the JML processes.

Alternative terms: Joiners, Movers and Leavers

See also: Onboarding, Offboarding, Joiner-Leaver Processes

374

https://docs.evolveum.com/iam/iga/
https://docs.evolveum.com/midpoint/reference/roles-policies/assignment/assignment-vs-inducement/

Lightweight Directory Access Protocol (LDAP)

Lightweight Directory Access Protocol (LDAP) is industry-standard protocol (RFC4510) for
accessing directory services.

See also: Directory Service, Identity Data Store

Level of Assurance (LoA)

Measure of reliability of identity information. Information with low levels of assurance are
usually user-provided information that were not verified in any significant way. Higher levels of
assurance are usually achieved by identity proofing, a process of verifying the information.
Level of assurance is usually stored as metadata, describing the specific value that was verified.

X.1252 term: assurance level

See also: Digital Identity Attribute, Identity Proofing, Metadata

Linkability

Ability to determine that two digital identities represent the same entity. Linkability is usually
deterministic, based on a reliable identifier.

X.1252 term: linkability

See also: Identity Correlation

Manual Fulfillment

Manual process of creating, updating and deleting accounts, entitlements and similar objects,
driven by identity management system, but exexcuted by human operator. Manual fulfillment is
initiated by an identity management system, usually as a consequence of change in user
privileges or policies. Identity management system creates a ticket for system administrators,
containing instructions to create/modify/delete an acccount or entitlement in a specific
information system. Actual action is executed manually, by the system administrator. Manual
fulfillment is used for systems, for which automatic identity connector is not available.

Alternative terms: Manual Provisioning/deprovisioning, Manual resource, Manual connector

See also: Fulfillment, Identity Provisioning, Identity Deprovisioning, Identity Connector

Metadata

Data about data. Metadata describe properties of data, such as the method how the data were
acquired (a.k.a. "provenance"), how reliable the data are (e.g. level of assurance) and so on.

Alternative terms: Meta-data, Meta data

See also: Data Origin, Data Provenance, Level of Assurance

Minimal Disclosure

A principle, stating that only the minimal amount of information is disclosed as is required to
perform a specific function or provide a service. Minimal disclosure principle is often used in
cross-domain data transfer, such as when using identity providers or identity federations. Only
the information required to perform a service is disclosed to the other party, no extra

375

information is provided.

Alternative terms: Minimal Disclosure of Personal Information

ISO 24760 term: minimal disclosure

See also: Digital Identity, Personal Data Protection, Privacy, Identity Provider, Identity
Federation, Selective Disclosure

Mutual Authentication

Authentication process in which all involved parties authenticate to all other parties. Usually a
two-sided process, where both sides of a connection authenticate to each other, i.e. server
authenticates to client and client authenticates to server.

X.1252 term: mutual authentication

See also: Mutual Authentication

Non-Repudiation

Property of a system, protecting against denial from one of the parties. The involved parties
cannot deny that an action took place.

X.1252 term: non-repudiation

Offboarding

Business process that takes place when a person leaves an organization. The aim of offboarding
is making sure that the person no longer has access to sensitive data and premises of the
organization. From IT point of view, this often means identity de-provisioning, e.i. deactivation
of user accounts in various applications, databases and identity data stores. This process is often
automated using an identity management system. However, a complete offboarding process is
usually more complex, including non-IT steps such as returning the provided equipment.

Alternative terms: Off-boarding

See also: Identity Deprovisioning, Joiner-Mover-Leaver Processes

Onboarding

Business process that takes place when a new person enters an organization. The aim of
onboarding is making sure that the person is well-equipped for any tasks and activities within
the organization. From IT point of view, this often means identity provisioning, e.i. creation of
user accounts in various applications, databases and identity data stores. This process is often
automated using an identity management system. However, a complete onboarding process is
usually more complex, including non-IT steps such as providing the person with appropriate
equipment and training.

The terms "enrollment", "registration" and "onboarding" are overlapping and they are often
used as synonyms. Strictly speaking, "enrollment" is the verification process, "registration" is an
act of recording information to data store, and "onboarding" is a complete business process
making sure that a new person in an organization is well-equipped for activities within the
organization.

376

Alternative terms: On-boarding

See also: Enrollment, Identity Registration, Identity Provisioning, Joiner-Mover-Leaver Processes

Open Source (OSS)

The meaning of this term is very simple - it is something people can wilfully modify according to
their own needs or wishes. Firstly, this term was known in the context of software, which code
was publicly exposed and available for modification. Later open source spread widely. There are
open source projects, products, participations and many others.

Many organizations and people choose open source software, hence it is considered to be more
secured and grants people more control over it. This software can also be more stable as many
other people may contribute their own ideas, correct it or improve it.

Open source products are free and the creators usually charge other organizations for support
or software services as implementation or deployment.

Alternative terms: Open Source Software, FOSS, Free and Open Source Software

Org

In midPoint terminology: Org is a type of midPoint objects, object that represent various forms
of organizational units and structures. Org can represent company, division, section, project,
team, research group or any other grouping of identities. Orgs are not limited to grouping
people, orgs can be used to group most midPoint objects (any assignment holder object).

See also more information at docs.evolveum.com.

See also: Organizational Structure

Organizational Structure

A hierarchical arrangement of authority, rights or duties in an organization. It determines the
assignment, control or coordination of roles, responsibilities and power. A character of the
organizational structure is highly dependant on the organization’s strategy and goals.

The theme of organizational structure is closely linked to identity management. Organizing the
company into this structure, assigning rights to individuals, working groups or project and
controlling everything from one place – that are advantages that any high quality IDM solution
is supposed to provide.

Orphan Account

An account without an owner, an account that does not seem to belong to anybody. Orphan
accounts often originate as testing accounts that are not deleted after the testing is done. They
may also belong to former users, but were not properly deleted or disabled. Orphan accounts
are almost always a security risk, especially testing accounts with weak passwords. Most identity
management systems have processes that scan systems for orphan accounts.

Alternative terms: Orphan

Password Management

Gives the organization an opportunity to meet the highest security standards thanks to the

377

https://docs.evolveum.com/midpoint/reference/org/

ability of having access to business systems and networks under control. Most of the employees
usually pick just simple passwords and use same ones in multiple systems or applications.
Password management helps to compose strong and unique passwords for both users and
resources and ideally takes care of them during the whole user life cycle.

Alternative terms: Credential management

See also: Credential

Policy Enforcement Point (PEP)

Functional component with a responsibility to enforce policy decisions. The "policy" usually
refers to access control and/or authorization policy. Policy enforcement points are usually part
of applications or infrastructure components, with an ability to analyze and intercept policed
operation. Policy enforcement point only enforces the policy, it does not interprets or decides the
policy. PEP depends on policy decision point (PDP) to interpret the policy and make a decision.

See also: Authorization, Access Control, Policy Decision Point, Policy Management Point

Persistent Identifier

An identifier that cannot be changed or re-assigned to another identity. Once assigned, the
identifier always references the same identity. Persistent identifiers are usually used as
reference identifiers, and reference identifiers are usually persistent, resulting in "persistent
reference identifiers".

Depending on a policy, persistent identifiers can be re-assign to another identity after the
original identity was deleted (identifier re-use). However, there is usually relatively long interval
during which the identifier cannot be re-assigned.

Alternative terms: Non-reassignable identifier

See also: Identifier, Reference Identifier

Personal Data

Data about a person, usually processed in an information system. The definition of "personal
data" slightly differ from case to case. For example, GDPR defines personal data as "any
information which are related to an identified or identifiable natural person". However, the
general understanding is that "personal data" are any data that relate to a natural person, that
describe the person in some way. This is different from personally identifiable information (PII),
as personal data may not uniquely identify a person. For example, person’s full name is
considered personal data, however, a name such as "John Smith" is not entirely unique or
identifiable in most contexts.

Alternative terms: Personal information, Identity data, Identity information, Personal profile

See also: Personal Data Protection, Personally Identifiable Information, General Data Protection
Regulation

Personal Data Erasure

Erasure (deletion) of personal data, usually due to explicit request from user (e.g. "delete
account" request), or due to lack of lawful basis for personal data processing.

378

Alternative terms: Erasure, Data erasure

See also: Personal Data Protection, Personal Data, Personal Data Processing Basis, General Data
Protection Regulation

Personal Data Processing Basis

Basis for processing of personal data. Legal data protection frameworks (such as GDPR) usually
mandate that personal data cannot be processed unless there is a basis for that processing. The
basis may be a contract, legal obligation, consent, or similar legitimate interest for processing of
the data. Some frameworks (such as GDPR) are enumerating the available processing bases.

Alternative terms: Basis for processing, Legal basis, Lawful basis

See also: Personal Data Protection, Personal Data, General Data Protection Regulation

Personal Data Protection

Personal data protection is a field dealing with protection of personal information, rules for
their processing, storage and erasure. It is closely related to privacy, as one of the main goals of
personal data protection is to limit exposure of personal data, thus minimizing potential for
their abuse.

Alternative terms: Data Protection, DP

See also: Personal Data, General Data Protection Regulation

Personally Identifiable Information (PII)

Information that allows a person to be (directly or indirectly) identified. Obviously, government-
issued identifiers, such as birth numbers, social security numbers or serial numbers of various
identity documents are usually considered to be personally identifiable information. However,
interpretation of what information is "personally identifiable" depends on the context. Even a
simple full name of a person may be considered personally identifiable information in some
contexts. Personally identifiable information usually require special protection or processing
regime. Personally identifiable information should not be confused with personal data. PII are
used as an identifier, pointing out a specific person in a group of other persons. Personal data
describe certain person, there is no requirement for personal data to be "identifiable".

Alternative terms: Personal identifiers

X.1252 term: personally identifiable information

See also: Personal Data

Policy Decision Point (PDP)

Functional component with a responsibility to interpret policy and make decisions. The "policy"
usually refers to access control and/or authorization policy. Policy decision point (PDP) can be
part of applications, or they may be provided by dedicated infrastructure components
(authorization services). PDP interprets the policy and make a decision, which is usually
allow/deny decision. PDP does not enforce the decision, it relies on policy enforcement point
(PEP) to enforce it. PDP does not define or manage the policy either, it depends on policy
management point (PMP) to set the policy.

379

See also: Authorization, Access Control, Authorization Service, Policy Enforcement Point, Policy
Management Point

Policy Management Point (PMP)

Functional component with a responsibility to specify, manage and maintain the policy. The
"policy" usually refers to access control and/or authorization policy. Policy management point
(PMP) can be part of applications, or they may be provided by dedicated infrastructure
components (identity management and governance components). PMP specifies the policy,
usually as a result of interaction with an administrator by the means user interface. PMP does
not make policy decisions or enforce them, that is a responsibility of policy decision point (PMP)
and policy enforcement point (PEP) respectively.

See also: Authorization, Access Control, Policy Enforcement Point, Policy Decision Point, Identity
Governance and Administration

Policy Management

Set of operations defining the authorization roles or policies, or assigning roles to the particular
users. This is often manual or semi-manual operation performed in identity management system
or identity data store. Policy management is implementing the functionality of Policy
Management Point (PMP).

This term is often confused with authorization itself. However, policy management aims at
definition of the policy, while authorization is interpreting the policy.

See also more information at docs.evolveum.com.

Alternative terms: Management of Authorization Policies, Policy and Role Management

See also: Authorization

Polystring

A built-in data type for polymorphic string maintaining extra values in addition to its original
value. The extra values are derived from the original value automatically using a normalization
code. PolyString supports national characters in strings. It contains both the original value (with
national characters) and normalized value (without national characters). This can be used for
transliteration of national characters in usernames. All the values are stored in the repository,
therefore they can be used to look for the object. Search ignoring the difference in diacritics or
search by transliterated value can be used even if the repository itself does not support such
feature explicitly.

Principal

An entity or identity, information about which is managed in an information system.

Usage of the term "principal" varies significantly. Depending on context, it may refer to entity
(person), its identity or data structure describing parts of the identity (digital identity). In
information security frameworks (such as X.509), "principal" usually refers to entity or identity,
such as owner of credentials. In programming frameworks, "principal" usually refers to
ephemeral information about user, maintained during user’s session. This is usually different
from "account", as accounts are usually persistent (stored in database), while principal may be

380

https://docs.evolveum.com/iam/iga/policy-and-role-management/

ephemeral, or may refer to entities that are not users of the system (may not be able to log in). In
some contexts, "principal" is equivalent to "subject".

Alternative terms: Subject

ISO 24760 term: principal

X.1252 term: principal

See also: Subject, Entity, Identity, Account

Prism

In midPoint terminology: Prism is a name of a data representation library, which is used by
midPoint to access data in its repository. The concepts of Prism permeates all of midPoint, giving
structure to midPoint objects, and their representation in XML/JSON/YAML. Prism defines a
concept of object, container, property, item, delta and many other useful concepts.

See also more information at docs.evolveum.com.

See also: Delta

Privacy

The right to be left alone. In IT context, privacy is an ability of individuals to control the
information about themselves, to choose how the information is used to express their
individuality. Technologies that support the concept of privacy are known as privacy-enhancing
technologies (PET).

See also: Privacy-Enhancing Technology, Personal Data Protection

Privacy-Enhancing Technology (PET)

Technologies that support and enhance privacy. This usually means technologies that give an
individual an effective control over personal data, and the way how that are use to express one’s
individuality.

Most privacy-enhancing technologies are focused on limiting the spread of personal data,
making sure that only a minimal amount of data is disclosed (minimal disclosure), making sure
that user approves data transfer (consent), using pseudonyms and various anonymization
techniques to limit data exposure.

Privacy-enhancing technologies are somewhat different from personal data protection
technologies. While privacy-enhancing technologies are focused on limiting exposure of the data
(secrecy), data protection technologies are focused on controlling the way how data are used.

See also: Privacy, Personal Data Protection, Minimal Disclosure, Pseudonym

Privacy Policy

A policy that sets rules for processing of personal data, respecting privacy of an individual.

X.1252 term: privacy policy

See also: Privacy, Privacy-Enhancing Technology

381

https://docs.evolveum.comhttps://docs.evolveum.com/midpoint/devel/prism/

Private Key

In an asymmetric cryptosystem (a.k.a. "public-key cryptosystem), a part of the key pair that is
known only to the key owner.

X.1252 term: private key

See also: Public Key

Product Architecture

Concept, design and description of the products part which are assigned into subsystems. It is
also way how these subsystems interact with each other.

Projection

In midPoint terminology: Projection is a part of midPoint computation that represents the
objects in identity resources, usually accounts, entitlements or organizational units. Projection
are the "spokes" in hub-and-spoke (star) data synchronization in midPoint. Projections are
represented in the computation in a form of shadows (shadow objects), usually supplemented
with real-time data from the resource objects.

See also more information at docs.evolveum.com.

See also: Shadow, Focus, Assignment

Pseudonym

An identifier designed to avoid any inherent information about identity or entity. Pseudonyms
are meant to hide or modify perception of the entity or identity, as presented to other parties.

In user experience sense, pseudonyms can be chosen by the user to hide or alter their real
identity in information systems.

In implementation sense, pseudonym is often a randomly-generated identifier, used selectively
for communication with specific domain or system. The pseudonym is used instead of other
identifiers to avoid possibility of the other party to reveal parts of user’s identity or correlate
user’s actions.

ISO 24760 term: pseudonym

X.1252 term: pseudonym

See also: Identifier, Personal Data Protection, Privacy

Public Key

In an asymmetric cryptosystem (a.k.a. "public-key cryptosystem), a part of the key pair that can
be shared with other entities.

X.1252 term: public key

See also: Private Key

382

https://docs.evolveum.com/midpoint/reference/schema/focus-and-projections/

Role-Base Access Control

A mechanism for managing of user access to information systems based on a concept of roles.
Role-Based Access Control (RBAC) is using roles to group privileges. Roles usually represent
meaningful entities, such as job positions, organizational affiliations or similar business
concepts. One of the basic assumptions of RBAC is that management of roles is much easier as
management of individual entitlements.

A form of RBAC is standardized in a series of NIST standards (INCITS 359-2012).

RBAC is mostly concerned with using the roles to control user access to the system and other
information assets. Role definitions are usually maintained using a somehow separate "Role
Management" mechanisms.

Alternative terms: RBAC

See also: Role, Entitlement, Role Management, Access Control

Reference Identifier (RI)

An identifier that reliably references an identity in a particular scope. Once assigned, the
identifier always references the same identity, it cannot be assigned to a different identity.
Reference identifiers are often persistent, however, they can change, as long as the identifier is
not re-assigned to other identity.

Depending on a policy, reference identifiers can be re-assign to another identity after the
original identity was deleted (identifier re-use). However, there is usually relatively long interval
during which the identifier cannot be re-assigned.

Alternative terms: Non-reassignable identifier

ISO 24760 term: reference identifier

See also: Identifier, Persistent Identifier, Reference Identifier Generator

Reference Identifier Generator

ISO 24760 term, used to describe the tool that generates reference identifier, usually during an
enrollment and registration.

ISO 24760 term: reference identifier generator

See also: Reference Identifier, Enrollment, Identity Registration

Referential Integrity

Consistency constraint in a database, mandating that every reference points to a valid object.
Simply speaking, when an identifier is used to reference another object, such objects should
exist.

Referential integrity is often a concern in group management and directory services. Systems
that provide referential integrity make sure that a group points to valid members (user that
exist), or that a list of user groups points to valid groups. In case a user who is a member of a
group is removed, a system with referential integrity will either automatically remove the user

383

from the group, or it will deny the operation until user is explicitly removed from all groups
first. Systems that do not provide referential integrity would allow such operation, leaving
invalid identifier in the database, an identifier that does not point to any existing object.

See also: Schema, Digital Identity Attribute, Verification

Registration Authority (RA)

An entity that gathers and verifies identity information, for the purposes of enrollment and
identity registration. Registration authority is usually the organization that carries out identity
proofing by verifying identity evidence, such as national identity cards.

ISO 24760 term: registration authority

See also: Identity Registration, Enrollment, Identity Proofing, Identity Evidence

Relying Party (RP)

System that relies on other party (identity provider) to provide identity information. Relying
party (also known as "service provider") usually relies on identity provider to authenticate the
user, and relay the information to the relying party. Relying party has no access to credentials
(e.g. passwords), it only knows that the authentication was successful. Identity provider may
transfer identity attributes and additional information (such as authorization decisions) to the
relying party. Relying party usually has a trust relationship with identity provider.

Alternative terms: Service Provider

ISO 24760 term: relying party

X.1252 term: relying party

See also: Identity Provider, Single Sign-On, Identity Federation

Repository

A database, often a database of self-contained objects. In identity and access management
context, it usually means a database of identity information.

In midPoint terminology: MidPoint internal database. It is used to store all internal midPoint
data and vast majority of midPoint configuration.

Alternative terms: MidPoint repository

Resource

In generic terms, a Resource is any information asset, system or a service that can be
meaningfully used to obtain an information, or to initiate an action. Web resources are often
used to access information across World Wide Web, e.g. in a form of RESTful interfaces. In IAM
field, a Resource (Identity Resource) is usually an network-accessible asset capable of managing
identity information.

In midPoint terminology: A Resource is a system that is either identity data source or
provisioning target.

384

Alternative terms: Information Resource, Data Resource

See also: Identity Resource

REST

Architectural style that describes fundamental principles of World Wide Web (WWW). REST
architectural style was used to develop HTTP protocol, fundamental building block of WWW.
REST specifies a concept of resource (web resource), identified by Unified Resource Locator
(URL), access by unified interface. Although REST is designed for hypertext applications, some of
the REST principles are used for general-purpose programming interfaces, known as "RESTful"
services or APIs.

Alternative terms: Representational State Transfer

See also: RESTful Service, Application Programming Interface, Resource

RESTful Service

Usually a general-purpose programming interface (API) or network service, exposed by one
application to be used by another application. RESTful services are based on operations of HTTP
protocols such as GET, PUT and POST. RESTful services are using Unifier Resource Locators
(URLs) as addressing scheme, and also for the purposes of conveying some parameters. Despite
the name, RESTful services actually do not strictly follow principles of REST architectural style.
REST architectural style is designed for use in hypertext applications, while most RESTful
services are procedural in nature. Therefore most RESTful services adapt and bind the REST
principles for their purposes. Despite such deformations, RESTful services provide a very
popular method for application-to-application interaction over the Internet.

Alternative terms: REST Service, REST API

See also: REST, Application Programming Interface

Role

Abstract concept that usually groups entitlements (privileges, access rights) in a single object.
The purpose of grouping entitlements in roles is to make access control policies manageable,
usually using Role-Based Access Control (RBAC) principles.

X.1252 term: role

See also: Entitlement, Role-Base Access Control, Role Management

Role Management

A process of managing role definitions. It usually includes creating role definitions, maintenance
of role definitions, adapting to changed environment and decommissioning role definitions. Role
management is concerned with role definitions only, in contrast with Role-Based Access Control
(RBAC), which is mostly concerned in using the definitions to control the access.

Alternative terms: Role Modeling

See also: Role, Role-Base Access Control

385

Schema

Description of a structure of information, such as description of data types, attribute names and
types, attribute structure and multiplicity, often supplemented by additional information such as
documentation and presentation metadata.

In information systems designed to process identity information, the schema usually refers to
structure of digital identity data, names of identity attributes, their types, multiplicity,
optionality and similar properties.

Alternative terms: Data model, Identity model

See also: Digital Identity Attribute, Verification, Referential Integrity

Security Audit

Independent review of a system, in order to assess adequacy of security controls, evaluate
compliance with policies, regulations and operational procedures.

X.1252 term: security audit

Selective Disclosure

A mechanism that gives person a control over the sharing of data, usually between domains.
Selective disclosure is sometimes applied in cross-domain data transfer, such as when using
identity providers or identity federations. In case of data transfer, the user is prompted to select
that data that can be disclosed to the other domain. This process is sometimes automatic,
governed by a pre-defined data disclosure policy.

Alternative terms: Selective Disclosure of Personal Information

ISO 24760 term: selective disclosure

See also: Digital Identity, Personal Data Protection, Privacy, Identity Provider, Identity
Federation, Minimal Disclosure

Self-Asserted

An assertion (claim) made by an entity about itself. It usually means a claim that was not
verified or certified by any other party.

See also: Self-Asserted Identity

Self-Asserted Identity

An identity (usually a digital identity) that an entity declares about itself. It usually means a set
of digital identity attributes that an entity claimed about itself, without being verified of certified
by any other party.

X.1252 term: self-asserted identity

See also: Self-Asserted, Decentralized Identifier, Identity Assertion

Shadow

In midPoint terminology: Shadow objects are objects in midPoint repository representing objects

386

in identity resources, such as accounts or groups. Shadow objects are used by midPoint as a
proxy objects, or data adapters for real accounts, groups or organizational units in identity
resources. MidPoint stores identifiers of resource objects in shadow objects, together with meta-
data, policy-related information and operational data that relate to the resource object that the
shadows represent. The identifiers stored in shadow objects are used to locate the correct
resource object even in cases that is renamed or it moves. Shadow objects may contain copies of
the data of real resource objects. However, in default configuration, only identifiers are stored in
shadow objects.

See also more information at docs.evolveum.com.

Alternative terms: Shadow Object

See also: Projection

Single Sign-On (SSO)

Single sign-on (SSO) is an authentication process based on user logging into multiple systems
with single set of credentials (usually username and password)s. It is used for systems that
require authentication for each application while using the same credentials. SSO works on
central service from where the user gains access to different applications without logging in
again.

Unlike identity providers, SSO systems usually operate within a single domain. Both the SSO
server and the applications being controlled by the same organization. Implicit trust of such
arrangement allows SSO systems to be much simpler than identity federation systems, albeit
both classes of systems provide similar services and mechanisms.

Alternative terms: Single Log-On

See also: Authentication, Identity Provider, Identity Federation

Subject

An entity or identity, which is active in information system, typically a user. It is assumed that
subject has an agency, directly or indirectly. Subjects can represent organizations or similar
"legal persons" that cannot act on their own, users have to act on their behalf. In this case the
organization is the "subject", while the person that acts on organization behalf is the "user".

The term "subject" is often used in context of authorization, as part of subject-action-object
triple. Subject is the active part, a user executing certain action on a specific object. In some
contexts, "subject" is equivalent to "principal".

Alternative terms: Principal

See also: Principal, User, Entity, Identity, Account, Authorization

Target System

In IAM field, it is any system in which identity management (IDM) system is managing identity
data. IDM system is usually using identity connectors to manage data in target systems.

Some target systems can also be (partial) identity data sources, IDM system both managing and

387

https://docs.evolveum.com/midpoint/reference/resources/shadow/

reading the data.

See also: Identity Management System, Identity Connector, Identity Data Source

Trust

Confidence in or reliance on some person or quality. In information technology world, it usually
means a confidence in a correctness of an information. It is often a long-term relationship
between entities, one of the entity trusting in correctness of a whole class of information
claimed by other entity (trusted third party).

X.1252 term: trust

See also: Trusted Third Party

Trusted Third Party

An entity which makes a claims, claims that are trusted by other parties. Usually a central entity
in a system that is trusted by many entities.

X.1252 term: trusted third party

See also: Trust

User

Generally speaking, a person that is using a computing system.

In midPoint terminology: A user means a data structure in midPoint that describes a person.
Similar data structure in source/target system (identity resource) is called an "account".

Alternative terms: MidPoint User

X.1252 term: user

See also: Account, Principal, Subject

User-Centric

A system that is oriented towards the user, having user in control. In identity and access
management context it usually means a system, where users are in control of their data.

X.1252 term: user-centric

Verification

A process establishing that a particular information is correct, while the meaning of
"information" and "correct" varies from context to context. When dealing with identity
information, this usually means formal verification of identity attributes, checking the schema,
identifier uniqueness and referential integrity. However, verification may mean deeper
verification, such as checking that the information is true and up-to-date.

ISO 24760 term: verification

X.1252 term: verification

388

See also: Digital Identity Attribute, Schema, Referential Integrity

Verifier

ISO 24760 term, denoting entity that performs verification.

ISO 24760 term: verifier

See also: Verification

389

	Practical Identity Management With MidPoint
	Colophon
	Table of Contents
	Introduction
	Chapter 1. Understanding Identity and Access Management
	Directory Services and Other User Databases
	Directory Servers are Databases
	Access Management
	Identity Management
	Identity Governance
	Identity Management and Governance Terminology
	Complete Identity and Access Management Solution
	IAM and Security
	Building Identity and Access Management Solution

	Chapter 2. MidPoint Overview
	How MidPoint Works
	Case Study
	Connectors and Resources
	User and Accounts
	Initial Import
	Assignments and Projections
	Roles
	There Is Much More
	What MidPoint Is Not

	Chapter 3. Installation and Configuration Principles
	Requirements
	Installation
	MidPoint User Interface
	User Interface Areas
	User Interface Concepts
	Object Details Page
	MidPoint Configuration Basics
	Configuration Objects
	XML, JSON and YAML
	Maintaining MidPoint Configuration
	Looking Around MidPoint Installation
	Logging

	Chapter 4. Resources and Mappings
	Identity Resource Definitions
	Connectors
	Bundled and Deployed Connectors
	Connector Configuration Properties
	Testing the Resource
	Resource Schema Basics
	Hub and Spoke
	Schema Handling
	Attribute Handling
	Mappings
	Expressions
	Script Expressions
	Activation
	Credentials
	Complete Provisioning Example
	Shadows

	Chapter 5. Synchronization
	Synchronization in MidPoint
	Source Systems, Target Systems And Other Creatures
	Inbound and Outbound Mappings
	Correlation
	Synchronization Situations and Reactions
	Synchronization Tasks
	Synchronization Example: HR Feed
	HR Feed Recommendations
	Synchronization and Provisioning
	Synchronization Strategies
	Mapping and Expression Tips and Tricks
	Resource Capabilities
	Synchronization Example: LDAP Account Correlation
	Peculiarities of Reconciliation
	Deltas
	Live Synchronization
	Conclusion

	Chapter 6. Schema
	MidPoint Schema
	Data Unification
	Basic User Schema
	Operational, Experimental and Deprecated Items
	Activation
	Schema Definition
	Schema Extensibility
	PolyString and Protected String
	Advanced Schema Concepts
	Type Hierarchy
	Item Path
	Conclusion

	Chapter 7. Role-Based Access Control
	Reality, Policy and Assignments
	Roles
	Provisioning Roles
	Roles, Accounts and Attributes
	Role Hierarchy
	Role Universality
	Role Hierarchy Structure
	Assignment Gets Complicated
	Dynamic Roles
	Metaroles
	RBAC, ABAC And The Wildlife

	Chapter 8. Object Templates
	Object Templates
	Item Definitions In Object Template
	Automatic Role Assignment in Object Template
	Autoassignment in Roles
	Iteration
	Includes
	Combining the Ingredients
	Complete Deployment Example
	Conclusion

	Chapter 9. Organizational Structures
	Organizational Units
	Organizational Structure Hierarchy
	Orgs in the Database
	Orgs and Roles
	Managers
	Relation
	Multiple Organizational Structures
	Beyond Users
	Organizational Structure Synchronization
	Organizational Structure Provisioning
	Focus and Projection
	Conclusion

	Chapter 10. Troubleshooting
	Designed for Visibility
	Systematic Approach
	Error Messages and Operation Results
	Logging
	Auditing
	Troubleshooting Clockwork and Projector
	Troubleshooting Mappings and Expressions
	Troubleshooting Connectors
	Troubleshooting Authorizations
	Reporting a Bug
	Useful Troubleshooting Tips

	Chapter 11. MidPoint Development, Maintenance and Support
	Professional Development
	Open Source
	MidPoint Release Cycle
	MidPoint Support and Subscriptions
	MidPoint Community

	Chapter 12. Additional Information
	MidPoint Documentation Site
	Samples
	Book Samples
	Story Tests
	MidPoint Mailing List
	Evolveum Blog

	To Be Continued
	Conclusion
	Glossary

