Slovak University of Technology in Bratislava
Faculty of Informatics and Information Technologies

FIIT-5212-5770

Erik Suta
PERFORMANCE MONITORING OF JAVA

APPLICATIONS

Bachelor thesis

Degree course: Informatics

Field of study: 9.2.1 Informatics

Institute of Informatics and Software Engineering, FIIT STU, Bratislava
Supervisor: Mgr. Pavol Mederly PhD.

2013, May

ANOTACIA

Slovenska technicka univerzita v Bratislave
FAKULTA INFORMATIKY A INFORMACNYCH TECHNOLOGII
Studijny program: 9.2.1 Informatika

MONITOROVANIE VYKONU APLIKACIi V PROSTREDI JAVA

Autor: Erik Suta
Veduci bakalarskej prace: Mgr. Pavol Mederly PhD.
Maj 2013

Vykonnost' aplikacii aich praca so systémovymi prostriedkami nepochybne patria
medzi najdoleZitejSie vlastnosti kazdého softvérového produktu. Skiimanim tychto
parametrov sa zaobera profiling, €o je oblast’ softvérového inZinierstva, ktorej ucelom je
na zaklade zberu aanalyzy dat o vykonnosti skumaného programu pocas jeho
vykonavania dodat’ pouzivatelom informacie, na zaklade ktorych buda schopni zlepsit
vykonnost’ aplikacie. Profiling spadd pod dynamicku analyzu programu a Vv sucasnosti
existuje viacero softvérovych rieseni, ktoré pontkajii komplexnti funkcionalitu aj na
velmi Specifické profilovanie java aplikacii. Cielom tejto prace vSak bolo
implementovat’ profilovacie rieSenie do istej miery odlisné od uz hotovych rieSeni.
Odlisnost’” naSej implementdcie spoc€iva v poskytnuti pouzivatelom moZnost’
definovania profilovacich scenarov a moznost’ nastavovat’ urovne profilovania a filter
volani metéd. Overenie nasho rieSenia prebichalo okrem iného aj Vramci

monitorovania vicsej softvérovej aplikacie s otvorenym zdrojovym kodom.

KTucové slova: java, profilovanie, monitorovanie vykonnostnych parametrov aplikacie,

wicket, profilovacie scenare, architektura klient-server, java profilovaci agent

ANNOTATION

Slovak University of Technology Bratislava
FACULTY OF INFORMATICS AND INFORMATION TECHNOLOGIES

Degree Course: 9.2.1 Informatics

PERFORMANCE MONITORING OF JAVA APPLICATIONS

Author: Erik Suta
Supervisor: Mgr. Pavol Mederly PhD.
2013, May

Performance of applications and their utilization of system resources is one of the most
important properties of every software product. Research in this area is bound to
profiling. Profiling is a part of software engineering. Based on collection and analysis of
data about performance of analysed software solution during its execution, software
developers are able to enhance the performance potential of their product, what is
basically a purpose of profiling. Profiling is one of the forms of dynamic program
analysis and there are many software solutions providing complex functionality to do
even a very specific profiling of java applications. The goal of this bachelor thesis was
to implement a software solution slightly different from current existing profiling
solutions. We wanted to enable user definition of special profiling scenarios and an
option to choose between various profiling levels. The definition of method call filters
was also implemented. Our solution was evaluated by monitoring an extensive open-

source software product.

Key words: java, profiling, application performance monitoring, wicket, profiling
scenarios, client-server architecture, java profiling agent

Statement

| declare that | have worked on this bachelor thesis on my own and that | have not used
other literature than stated.

Bratislava, may 2013

signature

Thanks,

To Mgr. Pavol Mederly PhD., for his patience, time he invested to me and to making
this thesis better and for precious and appreciated advices.

Table of contents

INTRODUCTION ... 1
1 PROBLEM ANALYSIS .. 3
1.1 Java Virtual Maching ANAIYSIS...........uuuuumumiiiiiiiiiiiiiiiiiiiiiiie e 3
1.2 Profiling PrinCiples ANAIYSISuuuumiiiiiiiiiiiiiiiiiiiiiiieeeeeees 6
1.3 Analysing of Profiling Possibilities of Standard Java APlccccceeeenne. 9
1.4 Analysis of Chosen Open-Source Profiling Solutionscccccvvviiiiiinnnnn. 13
1.5 Analysis of Commercial Profiling Solutions.............ccccoevviiiiiiiiicciee e, 15

2 REQUIREMENTS ANALYSIS AND SPECIFICATION ..o 17
2.1 Functional REQUIFEMENTScccoeiiieeeeeeeee e 17
Client — Server arChitECIUIEooiiiiii e e e 17

Real — time representation of CPU and memory usage of analysed application............ 18

User defined profiling SCENAIOSuuuiiriiiiii s 18

User defined profiling [EVEISuuueiiiiiii s 19

User defined method calls filterseeiiii e 19

2.2 Non-functional REQUINEMENTSuiii e e e e e e eaaees 20
Intuitive usability and user friendly GUI ..o 20
Platform dePENUENCYoiiiiiiiii ittt e e st e e e sbreeeeenes 20
Minimal possible profiling overhead 21
Easiness of @XIENSIDIILYuuuuuiiiriii s 21
Integration with bigger open-source appliCation................eueeeeeeeieeeeeeeeeeeeeieeeeeeeeeeeeereeenen. 21

2.3 USE CASE ANAIYSIS ..uvuiiii it aaaaaaae 22

3 SOLUTION DESIGN ...oiiiiiiiiiieiiiiiiieeeieeeeeeeeeeeeeeeeeeeseeessseeesesesessssasssssssssssssssssesssssssesnnsnsnsnnnnnes 23
3.1 Profiling Engine ArchiteCture ... 23
A L= L =T (o T (=T o U PPN 25

3.2 Profiling Features and ApPProachesccccooeeeiiiiiiiiiiiii e, 27
Profiling SCENAIOS. ...cci it e st e e e breeeeeaes 27
ProfiliNg TOVEIS ...ttt 29
11 o To B o= 11 11T €SP 29

3.3 Thin Client and USer INerfacCe..........cooveuuiiiiiii it e e 30
Web container and project managementouvvviiieiiiieeeerieeieeeeerereeeeereeeeeerrereeeee————.. 30
APACNE WICKET ...ttt et e e eaeeaeesasasassaasssssssssssssssssanssnnnnnnnnns 31

3.4 Technology SUMMArY LiSt........ccoiiiiiiiiiiiiiiie e 34

4 IMPLEMENTATION ..ottt e s e s et s st et s s e s es e s s s sessesssnsnnnnnnnne 35
4.1 Profiling Agent Implementation.............cooooviiiiie 35
Method Call ProfiliNg..........eeeeeii s 37

CPU USAJE PrOfiliNG. .. s 37
Memory USAQe ProfiliNgee e 38

Thread activity Profilingcoooiii e 38

ClasS PrOfilINGeeei it 39

4.2 Graphical User Interface Implementationcccccccvviiiiiiiiiiiiiiiiiiiiie 40
4.3 Profiling Scenarios Implementation ... 42
4.4 Profiling Levels Implementation............ccccovviiiiiii 44
4.5 Method Call Filters Implementationcccccviiiiiiiiiii 45

5 EVALUATION .. 47
5.1 MANUAI TESES ...t e ettt e e e e e e e et eeeaeenaee 47
5.2 Profiling Overhead TeStiNGccooeeeeeeeeeeeeeeeeeeeee e 48

5.3 TeStS WIth MIAP OINTenieeee e ettt e e e e e e aeneen 49

Y Y U (0] = LT =T =TT 50

B CONCLUSION. ... 51
BIBLIOGRAPHY . e a e 53
APPENDIX A — TECHNICAL DOCUMENTATION....uutttttttutuieieieiuueieieieistnraierenereeerernrnrererererenee 55
APPENDIX B — USER GUIDEoutitiiiiiiiititieiiieieieieiaieietsteteteretebenereresesssssesesersssrsrsssrsrsrersrsrsnane 63
B.L St M oo 63
B.2 GUIHES ... 64
APPENDIX C — TEST RESULTS ...oiiiiiiiiiiiitiititiiieiiieieieiebebabebebebebebsbsbsbsbebebebsbebsbsbsbsbsbsesbabsssrnnnnes 67
C.1 Manual TeSt RESUILS......ccooiiiiiiiie 67
C.2 Profiling Overhead Measurementcooouviiiiiiiiiiiiiiiiieeeeeeee e 68
APPENDIX D = GLOSSARY ..ottt ittt sttt sttt ettt sttt se st ese et enesbe st seseese e eteneanens 71
APPENDIX E = FIGURE LIST ..iutitiiiitieit ettt sttt ese st ste e sesesne e eteneanens 73
APPENDIX F = SOURCE CODE (CD MEDIUM)......cotiiiitiiaiiieieseeie e neenens 75

APPENDIX G = RESUMEoiiiiiiiiiiit ettt n e e e s 77

Introduction

Generally speaking, performance and efficiency of software products are one of the most
important software attributes nowadays. Modern software solutions work with parallel requests
from thousands of users simultaneously. Of course, every single user expects immediate
responses to interaction with software. “Amazon: addition of one tenth of a second in response
time is similar to 1% of revenues. Google: addition of half of a second in latency will decrease
throughput for one fifth.” [1]. Time equals money, this well known phrase relates to modern
software engineering in every way. Fast application can be developed only by using the most
efficient approaches and by writing efficient source code.

The objective of this bachelor thesis is to design and implement tool that could be used
to perform profiling of java applications. This tool should be unique in context of existing
profiling solutions and should provide enhanced profiling functionality. Existing and known
solutions do not fit our requirements, because they do not provide the ability to create specific
profiling scenarios that would enable us to monitor only chosen functionality of analysed
application. This is a limiting factor that we will try to overcome with this project.

This thesis is divided into several sections. In the first section, we performed analysis of
profiling in general and existing profiling tools used to monitor java applications. The
philosophy behind profiling is introduced here as well as the role of profiling in context of
modern software engineering. In section two and three, we analysed requirements and
specification of our tool and then proposed architecture and solution design. In section four, we
discuss implementation phase of created application, which was also tested properly. Testing
process and test results are shown and discussed in section five. Technical aspects, simplified
user guide and detailed test results can be seen in appendixes. Source code of implemented

profiling solution can be seen in attached CD medium.

1 Problem Analysis

There are many factors having influence to application performance. Software architecture
(internal software structure, division into subsystems and realization of mutual relations),
implementation (efficiency of written source code in context of specified requirements) and
hardware and software infrastructure on which specific software is being executed belong
among the most important ones. Performance attributes of developed software solution needs to
be monitored during design and implementation phase as well as after deployment in customer
environment. In general, it is almost impossible to create exact testing environment as customer
is using.

The main objective of this bachelor thesis is to create application that would be able to
monitor and evaluate performance parameters of java applications. To accomplish this mission,
we first need to analyse and deeply understand architecture and logic of java technology.
Specifically, every step from writing source code to its execution on hardware configuration of
computer needs to be understood. In this section, we will also discuss the profiling philosophy
in general as well as its importance in context of software engineering. Analysis of current
profiling techniques in context of java platform is included as well. Specifically, we focused on
profiling support in standard Java API, analysis of existing and available open-source profiling

tools as well as commercial profiling tools.

1.1 Java Virtual Machine Analysis

Java platform, respectively java programming language belongs among interpreted
programming languages. In contrast with compiled programming languages, where source code
written by programmer is compiled directly into binary form and then executed using
instruction set of processor, in case of java, another phase needs to be taken into account. Java
Virtual Machine (JVM) is the component that enters this process.

Java platform is connected to statement “write once, run everywhere”. This means, that program
one written in java can be executed on different hardware and software infrastructures without
additional source code modifications. Of course, this can be achieved only with prerequisite of
installed JVM (see Figure 1). Every processor family possesses slightly different set of basic
instructions as well as every operating systems communicates with underlying hardware layer
using different system calls and solves problems using different approaches. Thanks to above
stated facts, there exists large number of possible computer configurations. This logically
indicates the conclusion that source code compiled on one computer cannot be executed on
different machine. Java platform provides very interesting solution to this problem. As stated

above, there is one additional component between writing source code and its execution. This

component is JVM and one of its main purposes is to reduce differences between various

hardware and software configurations.

public class HelloWorld{
public static void main(String[] args){
System.out.println("Hello World!") ;
}

Figure 1: ,,write once, run everywhere®

JVM (Java Virtual Machine) is a program simulating the work of a computer system. This
program runs in operating system (although, direct implementation on hardware is possible as
well). It is a virtual computer. Same as any other program, it can be located inside computers
main memory. In contrast with any other program located inside main memory, JVM contains
functionality simulating the work of processor registers, stack or processor itself (JVM contains
own instruction set). This enables JVM to behave exactly as full-featured computer. Similar to
source code written in programming language C that is compiled to assembly code (symbolic
instruction language); source code written in java is compiled into bytecode. “Understanding
bytecode and what bytecode is likely to be generated by aJava compiler helps the Java
programmer in the same way that knowledge of assembly helps the C or C++ programmer”.[3]
This approach directly secures portability of java applications between various combinations of
hardware and operating system combinations. It also brings several disadvantages that can be
reflected in efficiency and performance of java applications. Improvement in this field has been
secured by JIT (just in time) compilation technology. It brings dynamic approach to
compilation, where written source code is analysed just before compilation and only most used
parts of source code is directly compiled. If there is a need to use source code that has not been
compiled yet, this code is dynamically compiled during the execution of application. This
technology offers large number of optimization into the field of source files compilation. Let’s

use a simple client-server application implemented in java as an example. On server side, the

most effort is made to its fast and efficient execution, so we will perform deep source code
analysis and compile as much files as we can, even all of it, if needed. Totally different situation
occurs on the side of client. Here, we prefer agile application start with sequential source code
compilation during execution. Dynamic source code compilation can be performed on source
file (.java) level, class level as well as using method code granularity. [2] JVM is an open-
source technology that respects set of standards. If all these standards are respected, every single
programmer or company can develop their own compatible JVM. At the moment of writing this
thesis, there exists about 24 proprietary and 35 open-source implementations of JVM [4]. The
most famous and known one is JVM HotSpot, implemented and distributed by software
company Oracle. JVM HotSpot uses JIT compiler and it is written in C++ programming
language. Source files of JVM are composed from about 250 000 lines of code [5]. The scheme

of java source code transformation and compilation can be seen on Figure 2.

Java source files (.java)

java bytecode (.class/.jar)

Bytecode
verifier
Memory
manager
(garbage Interpreter/
JRE collection) JIT compiler
Java APIs
PC Operating system

Figure 2: JVM work scheme.

1.2 Profiling Principles Analysis

The concept of profiling in context of software engineering is a form of dynamic analysis of
software product. In case of static analysis, analysed application is not executed. On the other
hand, when performing dynamic program analysis, analysis of basic applications performance
attributes are being measured and monitored during its execution. Some examples of these
attributes are the usage of main memory, time complexity of used algorithms (or the entire
application), frequency and duration of individual method calls and operations. The purpose of
profiling is to provide data necessary to perform performance optimization. Importance of this
aspect is discussed in previous section.

History of profiling is written since 70’s of 20" century. The first attempts to perform
program profiling during its execution were made on IBM/360 and IBM/370 platforms using
so-called sampling method. When using sampling technique, application execution is regularly
interrupted by special instruction and process of performance data collection starts. Collected
information is later evaluated to find ineffective algorithms or other parts of source code. Since
1979 UNIX based operating systems started to use simple tool called ‘prof’. This tool was used
to collect information about frequencies and execution times of individual functions. Later in
year 1982, this concept was enhanced by ‘gprof’ tool. This tool was able to summarize more
complex information composed of several function calls. [6]

Every single profiling tool analysis target application during its execution. While
collecting performance data, one simple fact needs to be taken into account. Dynamic
performance data collection itself changes normal execution of analysed application and it has
direct influence to application performance. We can categorize profiling tools by data collection
technique:

e Event-based profiling tools,

o statistical profiling tools,

e instrumenting profiler

Event-based profiling tools

Using this approach to profiling, performance information are collected based on well defined
set of events that occurs periodically during analysed application execution. Of course, we are
speaking about software based events, such as method calls, thread switch, process rescheduling
and others. The frequency and type of events causing interruption are provided by user. In
contrast with statistical profilers, this approach provides far more profiling options and

modifications.

Statistical profilers

Main technique used in statistical profiling tools is sampling. During execution of analysed
application we perform interrupts using special operating system instruction. After this
interrupt, we perform performance data collection. In general, this approach is less accurate and
specific than event-based approach. On the other hand, it has an advantage of less profiling
overhead. In some cases, profiling tools using this approach are able to detect performance

problems that are not detected using event-based approach.

Instrumenting profilers

This profiling method is based on analysed application source code manipulation. These
modifications are performed with purpose of performance data collection. This approach always
has a negative impact on analysed application performance, since injected code needs to be
executed as well as native application code. In contrast of previous profiling techniques, using
instrumentation we can perform very specific analysis of individual parts of source code. The
amount of profiling overhead can be minimized using efficient source code injection and by
choosing most appropriate method of performance data collection in specific place and time.
There are many ways of dynamic source code instrumentation:

o Manual: target application is instrumented manually by programmer. He can inject
profiling code in any place of target application. In this case, profiling possibilities are
limited only by skills and imagination of programmer,

e automatic on source-code level: Profiling code is automatically injected into target
application. How and where this code is injected is decided by so-called instrumentation
policy,

e compiler assisted,

e binary translation: compiled profiling code is injected directly into compiled target
application,

e runtime instrumentation: target application is instrumented directly before its execution.
Target program execution is fully under control of profiling tool in this case,

e runtime jump injection: similar approach as runtime instrumentation, but instead of full-
featured profiling instructions are injected, in this case we only inject jump instruction
to our profiling code that does not run within target application. This approach brings

less profiling overhead and is more lightweight solution.

Profiling code injected into target application communicates with target JVM and sends
requests to collect performance information. Target JVM using integrated profiling interface

periodically replies by sending requested information. These data are then evaluated by

7

profiling agent and sent (in raw or modified form) to profiling application that can be on same
computer, where target JVM is running or on different computer. Profiling application can be
implemented in various ways. It can be simple CLI (command-line interface) application,
graphical application etc. JVM profiling interface provides standard set of profiling events.
These are:

e entrance and exit from method call,

allocation, relocation or release of object,

e creation and deletion of heap,

e start and end of garbage collection cycle,

e method compilation,

e thread creation and deletion,

e class compilation,

e java monitor based events: entry wait, running and end of a monitor,
e monitor release,

e initialization and end of an JVM.

It is necessary to realize, what profiling really is about, realize the difference between
debugging and profiling an application. Debugging is a necessary activity in every software
development process. The purpose of debugging is to create an application with exactly the
same functionality as stated in requirements of customer. The purpose of profiling is to enhance
and improve performance attributes of analysed application. "We should forget about small
efficiencies, say about 97% of the time: premature optimization is the root of all evil"[7].
Application profiling is rather time-consuming activity, thus it is necessary to consider pros and
cons of profiling before the developer starts with this activity.

As mentioned before, profiling collects performance data mostly about CPU activity
and memory usage during execution of analysed application. Types of information collected
related to memory usage:

¢ number of allocated object of certain type,

e pieces of code invoking allocation requests,

e methods responsible for allocation requests,

e objects allocated during application execution that are not used and cannot be freed by
garbage collector. These objects are responsible for heap flooding and eventually, they
can cause a memory leak, which can lead to out of memory errors,

o excessive allocation of temporary objects that can raise the amount of garbage
collection cycles, thus lowering execution of application effective code. This can lead to

stagnation of application performance.

Information collected related to CPU activity:

e number of method calls,

e CPU usage during execution of certain method. If there are different method calls inside
of analysed method, it is possible to monitor their execution separately,

o number of CPU cycles related to certain method execution,

e user time related to execution of certain method including 1/O (Input/Output)
operations, locks, monitors etc. This time and generally all of this information mostly

depends on underlying hardware layer.

1.3 Analysing of Profiling Possibilities of Standard Java API

Basic profiling capabilities, respectively tools are built inside java standard Software
Development Kit (SDK). Version J2SE 5.0 (Tiger) has introduced Java Virtual Machine Tool
Interface (JVM TI) that provided functionality to examine state and monitor performance of
java applications running on underlying JVM. JVM provides APl (Application Programming
Interface) that can be used to develop tools, which needs direct access to JVM such as profiling
tools. During JVM initialization, special subroutines (libraries) are connected to it monitoring
its state, registering events such as described above subsequently sending all this information to
profiling tool, where further evaluation can be performed. Data in final form are then presented
to user. JIMV TI replaces the functionality of JVM PI (Java Virtual Machine Profiling Interface)
and JVM DI (Java Virtual Machine Debug Interface) and improves them in many ways. JVM PI
and JVM DI are not found in standard java API since version J2SE 6.0. JVM TI is the lowest
possible layer accessing and handling performance information. It is a basic technology that is
used by most existing profiling solutions.

J2SE provides a very simple profiling tool (which is also based on JVM TI technology).
This tool can be used to monitor CPU activity and memory usage during execution of an
application. Tool named HPROF is a simple command line program. It is a native library, which
is dynamically attached to JVM during its initialization. Various types of CPU and memory
usage can be selected using HPROF. Generated output of this tool can be in binary or text form.
Binary output of HPROF tool is used by several existing profiling solution. It is an input to
these tools later transformed to human readable form (in form of graphs and tables). This output
may be more useful to user, that rather chaotic text file generated by HPROF. HPROF can be

used from command line in following way:

Jjava —agentlib:hprof[=options] ProfilovanaTrieda(.class) [-jar
subor.jar]

In this section, we will show two very simple examples of work with HPROF tool. In
the first one, we will present CPU activity monitoring, while in the second one, memory usage

will be analysed.

Example 1: CPU activity analysis

For the purposes of demonstration in this example, we have created very simple program that
generates numbers of Fibonacci sequence using recursion. Source code can be seen on Figure 3.

package cpuTest;

public class CpuTestFibonacci {
public static void main(String[] args){
long wysledok = Fibongcci(25);
System.out.println(vysledok);

T

private static long fibonacci(int pocet){
if(pocet <= 1){
return pocet;

h

elseq
long medzivysledok = Fibomocci(pocet-1) + fFibonocci (pocet-2);
return medzivysledok;

T

Figure 3: Example of java source code analysed by HPROF tool

Generated .jar file was subsequently executed using command line (we used sampling method.

This technique was selected by attribute in cpu=t imes following example)
java —agentlib:hprof=file=fib prof.txt,cpu=times —-jar fib.jar

In generated text file, following information can be found:

CPU TIME (ms) BEGIN (total = 514) Sun Dec 02 23:33:33 2012
rank self accum count trace method

1 91.83% 91.83% 242778 301727 cpuTest.CpuTestFibonacci.fibonacci

2 0.39% 92.22% 4 300800 sun.net.www.ParseUtil.decode

3 0.39% 92.61% 6 300570 java.util.jar.Attributes$Name.isValid
4 0.19% 92.80% 1 301569 java.io.FilePermission$l.run

5 0.19% 93.00% 1 301513 java.lang.ref.Reference.<init>

TRACE 301727:

cpuTest.CpuTestFibonacci.fibonacci (CpuTestFibonacci.java:9)
cpuTest.CpuTestFibonacci.fibonacci (CpuTestFibonacci.java:9)
cpuTest.CpuTestFibonacci.fibonacci (CpuTestFibonacci.java:9)

10

Of course, this is just a simple example showing a few lines of profiling output. Generated file
is much more detailed, but it serves well as a presentation of HPROF work. In generated file,
we can see method calls sorted by their average percentage usage of CPU. Field ,,count“does
not show the number of certain method call. It shows the number of method occurrences in all

captured stack traces.

Example 2: Memory usage analysis

For the purposes of this example, we have created a simple program that continuously adds one
million of Integer objects to ArrayList. The source code of created program can be seen on
Figure 4.

package memTest;

import java.util.Arraylist;
import java.util.Llist;

public class MemoryTestHprof {
public static woid main(String[] args){
List<Integer> list = new ArraylList<Integer>();
for(int i = ©; 1 < 1eeeeee0; i++){
list.add(new Integer(i));

¥
System.out.println{"Pocet cbjektov:

+ list.size());

Figure 4: Source code example used to demonstrate memory usage analysis using HPROF

Generated .jar file was subsequently launched from command line (we used sites
analytic method using heap-sites attribute in command):

Java —agentlib:hprof=file=mem.txt,heap=sites -jar mem.jar

Following information can be seen can be seen in generated file:

rank self accum bytes objs bytes objs trace name
1 56.28% 56.28% 16000000 1000000 16000000 1000000 300404 java.lang.Integer
2 42.43% 98.71% 12063904 28 12063904 28 300405 java.lang.Object[]
3 0.06% 98.77% 16416 2 16416 2 300061 bytel[]
4 0.01% 98.79% 3736 26 3736 26 300006 char(]

The first place in object memory usage is expected. The second place is quite a surprise. Let’s

take a close look at several stack traces.

11

TRACE 300404:
java.lang.Number.<init> (<Unknown Source>:Unknown line)
java.lang.Integer.<init> (<Unknown Source>:Unknown line)
memTest .MemoryTestHprof.main (MemoryTestHprof.java:10)

TRACE 300405:
java.util.Arrays.copyOf (<Unknown Source>:Unknown line)
java.util.Arrays.copyOf (<Unknown Source>:Unknown line)
java.util.ArrayList.ensureCapacity (<Unknown Source>:Unknown line)
java.util.ArrayList.add (<Unknown Source>:Unknown line)

We can notice, that plenty of space is allocated for help arrays that are used by ArrayList
operations during addition of individual Integer objects. Let’s perform a simple modification
in analysed program. During ArrayList definition, we will provide information about

number of inserted elements to compiler. Modified source code can be seen on Figure 5.

package memTest;

import java.util.Arraylist;
import java.util.list;

public class MemoryTestHprof {
public static woid main(String[] args){
List<Integer> list = new ArrayList<Integer:(leeaaes);
for(int i = 8; 1 < 10e2000; i++){
list.add({new Integer(i});

h

System.out.println{"Pocet cbjektov: ™ + list.size());

Figure 5: Example of modified source code used during memory usage analysis with HPROF

The results of work with memory usage of modified application are different:

rank self accum bytes objs bytes objs trace name
1 78.59% 78.59% 16000000 1000000 16000000 1000000 300405 java.lang.Integer
2 19.65% 98.23% 4000016 1 4000016 1 300404 java.lang.Object[]
3 0.08% 98.31% 16416 2 16416 2 300061 bytel]
4 0.02% 98.33% 3856 26 3856 26 300006 char|
5 0.01% 98.35% 2640 5 2640 5 300043 bytel]
6 0.01% 98.36% 2160 2 2160 2 300311 bytel

This time we are not using help fields and objects during addition operations with ArrayList.
With simple code modification, we have managed to significantly improve work with main

memory.

12

1.4 Analysis of Chosen Open-Source Profiling Solutions

Offering in the field of open-source profiling solutions is pretty wide. Every single profiling tool
is slightly different from others. Choosing one most suitable for our needs may not be an easy
task. The objective of this thesis is not to describe all existing profiling solutions, nor their
reviewing, but we will focus on some of them that were mostly interesting in the eyes of an

author of this text.

Heap Analysis tool (HAT) — simple profiling tool that uses HPROF utility output as input (see
section 1.3). HAT reads HPROFs output, performs detailed analysis and present gained
performance knowledge in an interesting way. User is able to see the topology of objects
captured from heap analysis. This tool is mostly oriented on detection of memory leaks, but it

also provides basic information about application execution times.

JProbe — graphical profiling tool containing three separate units:

e JProbe ThreadAnalyser, tool oriented on detection of potential deadlocks or unwanted
blocking of execution of individual threads.

e JProbe Coverage, tool oriented mostly on test purposes rather than profiling. It helps
user to better understand performance of tested applications. It enables user to perform
several tests, which results shows us, how many times certain lines of code were
executed, what parts of code were not executed at all etc.

e JProbe Memory Debugger offers users complex and comprehensive statistics about
memory handling of executed java application. It enables us to see what objects
consumes the most memory or objects that cannot be freed by garbage collection cycle,

thus creating memory leak.

JConsole is a simple graphic profiling tool that can be used to monitor state of JVM and java
profile java applications running on it. It can be used to perform profiling on local or remote
machine using remote access. JConsole is a tool closely linked to JVM and provides
information about the usage of system resources by analysed java application. JConsole uses
JMX (Java Management Extensions) technology. JConsole is a part of standard JDK (Java

Development Kit) and it can be launched from command line using command ‘jconsole’.
VisualVM is a graphical profiling tool that integrates several existing software tools from

standard JDK providing complex profiling options. Profiling can be again performed on local or

remote machine. It can be used to perform profiling during implementation and testing phase of

13

software development lifecycle as well as after deployment in customer and production
environments. This tool is built on NetBeans platform and provides modular and easily
extensible architecture.

List of another open-source profiling solutions:

e Cougaar Memory Profiler
e JTreeProfiler

e JRat

e Extensible Java Profiler

e JMP

e TomcatProbe

e Allmon
o Perf4j
e InspectlT

e JBoss Profiler ...

Eclipse Test & Performance Tools Platform (TPTP) project is closely connected to favourite
IDE Eclipse. It is an open-source platform providing several frameworks and other services
directly used to create testing and profiling applications or plugins. TPTP contains large number
of separate complex tools that can be used in every phase of software development lifecycle. It
supports several types of java applications, from embedded java systems to standalone or
enterprise java applications. This platform is quite controversial as there is a lot of criticism on
it. It is stated by many, that Eclipse TPTP has become a victim of its own robustness and over-
engineering. There are many other profiling tools that can be used as eclipse plugins. Quick

search of profiling tools in Eclipse Market shows us 24 profiling solutions for java applications.

Netbeans Profiler is a tool directly integrated with Netbeans IDE since version 6.0. This tool is
based on results of research project JFfluid Sun Laboratories. This research project has revealed
that with using profiling technique called ‘dynamic bytecode instrumentation’ it is possible to
achieve minimal general profiling overhead. This tool also enables us to use so-called profiling
points. These points can be injected into java source files by developer and profiling tool will

retrieve the state of JVM specifically in these selected points of execution.

14

1.5 Analysis of Commercial Profiling Solutions

Of course, there are many commercial profiling solutions on the market. Our choice for the
purposes of this section was YourKit java profiler. Author of this thesis spent several hours
using this product while testing performance attributes of large open-source solution. YourKit
java profiler is quite robust tool providing large amount of profiling possibilities. It is designed
to work with different types of java applications, for example embedded systems, J2ME, J2SE
or J2EE software products. It is also able to perform remote profiling over TCP/IP. We
specifically enjoyed the functionality of so-called ‘profiling on request’. Using this function, we
can tell profiler when to perform only basic profiling in order of reducing the profiling overhead
and when to launch deep analysis (at night, for example). Using this function, developer is able
to perform profiling providing deep information about analysed application performance and

maximum possible reducing of overall profiling overhead.

¢4 Tomeat - Yourkit Java Profiler 11,094 = B8] =2

File View Memory CPU Settings Tools Help

8 %% AP AT GO QGO DO ¥ H
Remote application "Tomcat" (PID 10090) is being profiled st neptunus.evolveum.com:25005

& cpu Threads | @ Deadlocks | @ Memoy | | Garbage Coliection | @ Monitor Usag

e | @ Bxceptions | @ Probes | [§ Summan

CPU Time Threads
Total: 12h 52m 125 Inlast 3 mins: 445 In last min.: 95 Alllive threads: 50 Daemons: 28 Peak: 50 Total created: 52
100 % 55
75% 42
50 % 28
5% 14
0% T T T e T 0 T T T T T
3d 0h 8m 50s 3d0h9m 3d0h9m10s 3d0h9m 20s 3d 0h 9m 30s 3d0h 8m 50s 3d0h9m 3d0h9m10s 3d0h9m 20s 3d0h9m30s

Call Tree Method List Stack Traces CPU Usage Estimation

To update this view, select range in the graph above by dragging

Time range: [3d 0h 8 13.6005.3d Oh 9m 25.800s, duration: 125] Threads included: 47 of 47

Name: Time (ms) Samples
2 <Allthreads> 1548 100% 264 100%
% org.quartzsimpl SimpleThreadPool$WorkerThread.run() 1316 85% 60 5%
% javalang Thread.run() 192 12% 138 52%
% com.evolveum.midpoint.task.quartzimpl.cluster.C $ Thread.run() 6 2% 6 2%
W commch ThreadPoolAsyn Runner$PoolThread.run() (E 18
i java.lang.ref Finalizer$FinalizerThread.run() 6
4 javalang.ref Reference§ 0 6
i java.util.TimerThread.run{) 6
% org.apache.catalina.staitup.Bootstrap.main(String[]) 6
i org.apachewicket.utilfile. FileCleani run() 6
W org.quartz.core.QuartzSchedulerThread.run() 6
i sun.misc.GCSDaemon.run() 6
@ Sclution of petformance problems @ Connecting to profiled applications @ CPU profiling @ CPU telemetry @ CPU usage estimation Hide

Figure 6: CPU usage profiling using YourKit profiler.

YourKit provides large amount of options when it comes to filter data collected by profiling.
We can select the classes whose performance attributes are interesting to us. Of course, user can

integrate YourKit profiler with most used java IDEs like Eclipse, NetBeans or IntelliJ IDEA.

15

%3 Tomeat - Yourkit Java Profiler 11.0.9 el =]
File View Memory CPU Seftings Tools Help
SR OIAT GO QO DO P E
Remote application "Tomcat” (PID 10090) is being profiled at neptunus.evolveum.com:25005
E @& cru Threads | @ Deadlocks | @ Memory | @ Garbage Collection | @ Monitor Usage | @ Exceptions | @ Probes | [B Summary
s
é; Heap Memory Non-Heap Memory Classes
Memory Pool: All Pools < Memory Poot: ERIEcH R Currently loaded: 13115 Total unloaded: 804 Detail..
Allocated: 508 MB Used: 204 MB Limit: 508 MB Allocsted: 268 MB Used: 79MB Limit: 560 MB
600 MB 300 MB 15000
300 MB = 150 MB o 7500
T T T 0 T T 0 T T
doh10m 3d0h10m 105 3d0h 10m 205 0Oh 10m 3d0h 10m 105 3d 0h 10m 20s 3d0Oh 10m 3d0h 10m 10s 3d0h 10m 205
ClassList | Allocations | Stack Traces | CPU Usage Estimation
To update this view, select range in the graph above by dragging
Time range: [3d 0h 10m 4.7005..3d Oh 10m 14.900s, duration: 10s] Threads included: 47 of 47
Name Time (ms) Samples
) <All threads> 788100% 220 100%
A rtz.simpl SimpleT| 5 Thread.run() 664 84% 50 23%
0 java.lang.Thread.run() 80 10% 115 57%
com.evolveumn, cluster.Cl $ ManagerThread.run() a0 5% 5 2
 java.lang.ref.FinalizerSFinalizerThread.run() 41 5 2
W com.mchange.v2.async ThreadPoolAsynchronousRunner§PoolThread.run() 00 5 7
% javalang.ref. run() 00 5 02
% java.util TimerThread.run() 0 0% 5 2
% org.apache.catalina.startup. in(String(]) 0 0% 5 2
% org.apachewicket.util file FileCleaningTracker$Reaper.run() 00 5 2
W org.quartz.core QuartzSchedulerThread.run(00 5 2
% sun.misc.GCSDaemon.run() [} 5 2
@ Solution of performance problems @ Connecting to profiled applications @ Memory telemetry @ CPU usage estimation Hide

Figure 7: Memory profiling using YourKit java profiler

Graphical design of this tool is very neat and work with it is fast and intuitive. There can be
found large number of tutorial and very detailed information about the usage of this product.
The support from developers is great as well. In general, support can be a disadvantage of many
open-source solutions, not only in the field of java application profiling.

16

2 Requirements Analysis and Specification

The main objective of this bachelor thesis is to implement a software solution, which would be
able to monitor and evaluate performance attributes of java applications during their execution.
After reading the previous section devoted to profiling analysis of java applications and tools
designed to serve this purpose, observant reader might get an impression that we are trying to
develop something, that has already been created multiple times. Therefore, in this section, we
will also discuss uniqueness of our solution in the context of already existing solutions. This
section is divided into three tree sections, in the first one, functional objectives are discussed. In
second section, we will focus on non-functional requirements and in the last one, use case

model of our solution will be presented.

2.1 Functional Requirements

Based on several consultations and analysis of profiling in section one, these functional

objectives were identified:

e Active profiling data collection using multiple profiling techniques,

o real-time representation and evaluation of basic performance attributes of CPU usage
during analysed program execution (as listed in section 1.2),

o real-time representation and evaluation of memory usage during analysed program
execution (as listed in section 1.2),

o real-time thread activity profiling,

o real-time class load statistics,

¢ real-time method call profiling,

o user defined profiling scenarios,

o user defined levels of profiling, in other words, granularity of profiling,

o user defined method calls filters based on method parameter values,

o solution will provide basic information about software and hardware configuration of a

computer system and JVM, on which program analysis is running.

Client — server architecture

Client — server architecture is quite unusual for profiling solutions. Most existing java profilers
are implemented as thick clients, but thin client approach can provide several advantages. This

solution can be deployed on one of the servers of software company and all of its developers are

17

able to perform profiling of their code on unified profiling system, and since all profiled
applications are executed on this server, developers can focus on performance problems rather
than on several categories of system problems resulting from executing profiling on different
software or hardware configurations. Unfortunately, this approach also requires that all analysed
source code or every java application packed in jar format must be uploaded on profiling server
before profiling can be executed.

Real — time representation of CPU and memory usage of analysed application

Before collected data from analysed java application can be shown to user, we need to evaluate
them and transfer them into understandable form that will provide enough information to find
performance problem. Based on user defined filters and profiling attributes, data collected from

profiling will be shown in form of interactive graphs and tables.

User defined profiling scenarios

The concept of user defined profiling scenarios is quite simple and effective. Java applications,
especially enterprise java applications are often very large and complex software solutions
consisting of hundreds, even thousands of java classes and even more methods. Instrumenting
all of this source code and following data transmission and evaluation can be very expensive in
terms of usage of system resources, not to mention uselessness of this approach, when
developer has clear idea, what component of analysed application is causing performance
problem. User-defined profiling scenarios are the solution to this problem. Let’s explain this
concept on simple example.

Imagine, that analysed application offers a functionality to create a new user. This
action is often composed of several sub actions like data validation and collection from user
provided data in graphical user interface, communication with data storage, an attempt to write
this data, thus create new entry in used data storage and several other sub actions. The whole
process can be implemented in one method calling several other methods from different classes
and together, they are responsible for creating new user. The concept of user-defined profiling
scenarios offers mechanisms for analysing scenarios as described above, while ignoring every
other operation performed by analysed java application, thus minimizing general overhead
caused by profiling. Users of our profiling solution will be able to create, read, edit and delete

these profiling scenarios, as well as assigning them to profiling project.

18

User defined profiling levels

Profiling levels represents another mechanism offering developer away to perform java
application analysis in a very specific way. While when using profiling scenarios, we were able
to define which classes and which methods we want to be profiled, with profiling levels we are
able to define, what aspects of performance will be monitored. Let’s again introduce this
concept with simple example.

During testing of java application, a developer has noticed, that system memory
consumption during execution of tested application grows too much. The logical conclusion of
this situation is the obvious presence of a memory leak in tested application that needs to be
located and fixed. In this scenario, the only profiling aspect, that developer is interested in, is
analysis of memory usage of analysed java application, thus collecting and evaluating data
about CPU usage, threads and classes is irrelevant, unnecessary and raises general profiling
overhead. The way to solve this problem is the creation of profiling level and selection of all
profiling aspects, that developer needs, thus skipping unneeded profiling aspects and
minimizing general profiling overhead. Some of the already existing profiling solutions provide
similar type of functionality, but we will try to extend it by enabling user to set profiling

intervals for each aspect of profiling during creation of profiling level.

User defined method calls filters

Java applications, especially enterprise java applications are often designed to be easily
extensible. This often leads to writing methods that work with several kinds of objects or
performs several possible scenarios based on their parameters defined on method call. Let’s
imagine method addUser (), that is designed and implemented to work with several
databases, LDAP server, Active Directory server and some other forms of data storage
solutions, while the currently used data storage is determined by value of method parameter, or
combination of values of several method parameters.

Recently, developer has noticed, that work with MySQL database and actions
performed upon this database are very slow. The first step taken would be a creation of profiling
scenario and selection of method addUser (), which we want to analyse. This approach
would lead to analysis of all addUser () method calls, not just calls working with MySQL
database, so the question is, are we able to somehow define, that we only want to analyse
addUser () method calls in context of MySQL database? Of course there is a solution,
developer can create a method call filter based on values of method call parameters, thus

defining the database, with what interaction needs to be analysed.

19

2.2 Non-functional Requirements

Except above defined functional objectives of our profiling solution, other non-functional
objectives were defined during consultation sessions and based on profiling analysis discussed
in section one of this text. These are:

e Our solution will be implemented as a web application, in other words, thin client
architecture will be used,

¢ intuitive usability,

o user-friendly graphical user interface,

¢ platform dependency configuration,

¢ minimal possible profiling overhead,

o easiness of extensibility,

e integration with bigger open-source application.

Intuitive usability and user friendly GUI

Profiling solutions are designed to serve application developers. Our solution will be designed
specifically for java developers. The usage of this system assumes that user has certain level of
knowledge in java development and may be confusing for users lacking this knowledge.
Another assumption, that needs to be stated, is that user, who wants to perform profiling using
our tool (or any other profiling solution in general), needs to have knowledge of analysed java
application, otherwise, the user might not get wanted results.

Graphical user interface will be designed using modern technologies in context of web
development. Our profiling solution will be easy to use. Design should not be confusing and
should provide necessary hints when needed. User should easily figured out, how to perform
wanted actions when interacting with our solutions GUI. We will try to aim on GUI ergonomics

as well.

Platform dependency

Profiling solutions in general performs lots of interaction with underlying operating system and
the usage of system resources is frequent as well, thus platform independency in this context is a
target that is not easily achieved. Our solution will not be platform independent in its default
form, but it should be easily configured to run on every main platform. For further explanation

on this topic, simple example will be shown.

20

Our solution is running on a Linux server without any GUI libraries that are necessary
when creating graphical user interface with swing or awt. Since profiling is always performed
on this server, user, who wishes to perform analysis of his thick client application designed with
swing, will be disappointed, because his application won’t be able to run on server without
necessary libraries.

For purposes of this bachelor thesis, our solution will be designed for deployment on

Microsoft Windows based platforms.

Minimal possible profiling overhead

Our solution is designed to have as minimal profiling overhead as possible. Specific steps taken
to achieve this target are described in section 1.1. It is impossible to achieve 0% profiling

overhead, thus there will always be certain inaccuracy in dynamic application analysis.

Easiness of extensibility

We will design this profiling solution to be easily extended with other functionality. Our
solution may be used for years, thus changes in functionality might be needed and easiness of
extensibility is a way to achieve them with as simple effort as possible. The way to achieve this
non-functional objective is to take it into account from the very beginning of design of software

solution not only in context of profiling solution, but generally in software development.

Integration with bigger open-source application

The last, but not least non functional objective is integration with bigger open-source
application. This objective is out of context of this bachelor thesis, but it needs to be stated for
simple reason. Our profiling solution is designed in a way that ensures easiness of later
integration with mentioned open — source application and selection of used technology is as

well affected by this fact.

21

2.3 Use Case Analysis

In this section, we will briefly discuss use case analysis, which is an output of section 2.1 and
2.2. Based on functional, non functional objectives and consultations, these use cases were
identified:

e UCO01 Show Hardware/Software information,

e UCO2 Create profiling project (CRUD),

e UCO04 Create profiling scenario (CRUD),

e UCO5 Create profiling level (CRUD),

e UCO6 Create method call filter (CRUD),

e UCO7 Attach to running JVM,

e UCO08 Show categorized profiling results.

UC08 Show categorized
profiling results

UC04 Create profiling scenario
(CRUD)

y; \
/ |

<extends>

UCO06 Create method call
filter. (CRUD)

~—
<extends:> -~ —_ = -

Figure 8: Use case diagram of implemented profiling solution

Relations between individual use cases are shown in figure 8 using a use case diagram. In this
figure, reader can clearly see the possibility to include profiling scenarios, profiling levels and
method call filters within profiling project. These possibilities give user dynamic set of rules
and mechanism to analyse their java applications in a very specific view while keeping general
profiling overhead on minimum. Use cases marked with CRUD identifier expresses compound
use cases, what means that create, read, update and delete functionality is included in these use
cases. Detailed and more technical description of this use case diagram can be seen in appendix

A, Technical documentation.

22

3 Solution Design

In previous section, we have defined and discussed main objectives of our java applications
profiling solution. In this section, we will try to choose the most suitable technologies and
approaches that would solve individual sub problems and together meet requirements specified
in previous section.

Chosen frameworks and technologies will not be discussed in much detail, that is not
the purpose of this thesis, but we will state why each technology, framework or approach has
been chosen. In cases, where completely new solution is created and implemented (in other
words, we are not using already existing technology). We will try to describe our approach in
more detail using UML besides classic text description.

3.1 Profiling Engine Architecture

In this section, we will focus on the most important component of every profiling solution,
profiling mechanisms.

First of all, we need to find a way to tell analysed program (running in separate JVM)
that we want to collect information about its performance, apply rules of analysis, collect data
and send them to profiler server, where we will evaluate them and show them to user. To sum
up, we need to possess a certain level of control over JVM, on which analysed application is
running. There are several ways to achieve this. These techniques were described in section one.
We have chosen dynamic code instrumentation for the purposes of this bachelor thesis, because
it is the only way to perform a very specific performance analysis, which our profiling solution
will provide.

In section 1, while analysing existing profiling solutions, we have noticed, that all
profilers use java agents, programs that are created to provide control over JVM, where

analysed application is executed. These agents can be connected to target JVM in two ways:

e On start of JVM using command line commands,

e dynamically during the execution of JVM with analysed application.

Java provides simple mechanisms for both ways of connection between profiling agent and
target JVM. The first case has already been described. For the second case, java attach API can
be used. This API can be found in com. sun.tools.attach package.

So far, we have managed to attach our profiling agent to analysed JVM. Next necessary
step to take is to somehow tell target JVM, what performance information we want to collect.

The answer can be found in standard java APl again, we will use java.lang.instrument

23

package. Usage of this API provides us with functionality to transform every loaded java class

into form necessary for purposes of profiling.

Another very important question, that needs to be answered, is how to transport data

collected by profiling agent to our profiling application. Since profiling and analysed

application both run in separate JVMs, therefore in separate process, we will need to find

solution for inter process communication. There are several approaches that could be applied:

e Shared memory,

e pipes,

e queues,

e direct memory access (DMA),

e java sockets,

e java RMI (remote method invocation),

e java JMX (java management extensions), ...

The most suitable form of inter process communication for our profiling solution seems to be

the usage of java sockets, as this concept provides ability to perform remote profiling, which is

necessary for client — server architecture. So far, we have established the basic scheme for our

profiling engine, it can also be seen in figure 9. Let’s take a closer look on profiling agent and

dynamic code instrumentation in next section.

JVYM

control

AN

JVNTI

events

Agent

Application Server Process

Z
N\

socket
communication

/

Profiler GUI
(web client)

Profiler Process

Figure 9: Basic profiling architecture scheme. JVM TI stands for Java Virtual Machine Tool Interface.

24

Agent architecture

Simply said, a java profiling agents is just a set of classes packed usually in a .jar (java archive)
file, but it is the most important part of every profiling solution. Let’s construct a list of tasks

that our profiling agent will perform:

¢ Dynamic bytecode instrumentation of compiled classes,
e provision of profiling code for collecting data of selected aspects of profiling,
specifically source code for CPU, memory, thread and class activity profiling,

o way to transfer collected profiling data to profiling server.

We have already covered the third point in text above, just to repeat, java sockets will be used
as communication framework between profiling agent and profiling server.

Dynamic bytecode instrumentation or injection is a technique used to transform, or
manipulate with compiled java classes. In the context of profiling, this technique is used to
inject java code or bytecode that will catch events like method call or object creation and collect
various profiling data. Basically, there are two possible approaches, how to perform dynamic

bytecode injection:

o Direct bytecode instruction injection using ASM framework — this approach requires
certain level of knowledge of bytecode programming, thus is not very suitable for
developers without this kind of knowledge. On the other side, since we are injecting
direct bytecode instructions, we are able to skip the phase, where transformed class
needs to be recompiled. This also brings great level of risk, since we can easily inject
incorrect bytecode instructions, what can knock off entire underlying JVM,

e java code injection — using this approach, we are able to inject lines of classic java
source code. An example of framework with this functionality is Javassist API. Before
class transformation is complete, Javassist recompiles injected source code, so all errors
created during injection phase are revealed. This approach does not require any

knowledge of java bytecode at all.
For obvious reasons, we have decided to use Javassist API.

Finally, we need to create a stack of technologies that will help us collect information
about performance attributes of analysed java application. Answers can be found inside standard
java API as well as in many great third party frameworks and technologies. Untimely, we have

chosen several approaches for collecting performance information:

25

e Java Simon API — simple monitoring API. Will be used for measuring method call
times,
e package java.lang.instrument —memory profiling, class usage profiling,

e package java.lang.management — Thread and CPU time profiling,

This stack of selected profiling technologies will help us collect information we need for
profiling purposes. Of course, this list might not be final. There is a possibility that some
selected technology might not be as suitable for our profiling solution as expected. This list will
be finalized in next section.

So far, we have established basic concepts of profiling. These concepts are nothing new
in the field of java application profiling as they are probably used by other already existing
profiling solutions (some alterations are possible). This basic concept can be seen in figure 10.
We have used UML sequence diagram to create this abstract profiling concept. It does not show
profiling process with every detail, but that is not the purpose. In section 3.3, we will discuss
features that will make our solution different from others.

26

user wicketGUI profilingServer profilingClient

L: createProfilingProject

2: launchProfiling

2.1: attachAgentTolVM

2.2: modifyClasses

(0.1

2: transferProfilingData L: collectProfilingData

4; showProfilingData 3 ewaluateProfilingData

2.3: detachAgentFrom)Vhi

3: finishProfiling

Figure 10: Abstract profiling concept described using sequence diagram

3.2 Profiling Features and Approaches

In this section, we will focus on features that are specific for our profiling solution and will

bring new light to the wide field of java application profiling.

Profiling Scenarios

The concept of user defined profiling scenarios is essentially extremely simple. Users using our

profiling solution will be able to select list of classes and methods that will be instrumented and

27

profiled. In other words, they will be able to select exact application flow, or as we call it,
profiling scenario, they want to analyse. So how do we want to implement it?

At first, we need to create list of classes and methods, from which user can specify
profiling scenario. For this purpose, user will be asked to import source files of analysed
application in form of .jar or .war file. Afterwards, our solution will perform analysis of this
source files. Using java reflection APl (java.lang.reflect) we are able to dynamically
load classes from .jar/.war file and extract list of Class objects and list of Method objects for
each Class. This information is then shown to user in user interface, where he can select
analysed classes and methods. After user submits list of selected classes and methods and
launches profiling, our solution will prepare and send information about profiling scenario to
profiling java agent. Agent, now knowing about profiling scenario, will analyse only selected
methods and classes. Since profiling scenario always works with some source code (.jar/.war
file), it is always bound to specific profiling project, but profiling project can work with several
profiling scenarios. Let’s go through this concept once again using sequence diagram in figure
11.

user wicketGLI profilingServer

L: createPrafilingProject

L1 importSourceFile

1.2: analyseSourceFile

*
(0.1 L extractClass

1.1 extracthethodLlist

1.3: showExtractedData

1.4: selectMethods

L5 saveProfilingProject

Figure 11: Profiling scenario concept

28

Profiling levels

The concept of profiling levels is essentially simple as well as the concept of profiling
scenarios. Using profiling levels, user is able to select what attributes of profiling he is

interested in. Profiling aspects:

o Memory profiling,

e thread activity profiling,
e class summary profiling,
e CPU time profiling,

e method time profiling.

After this selection is complete, instruction packet will be sent to profiling agent and only data
relevant to selected profiling aspects will be collected, thus minimizing overall profiling
overhead on analysed application.

Method call filters

In section 2.1, we have stumbled upon an interesting group of problems. There often exist
methods, whose functionality depends upon parameter type or value. These methods often
works with certain easily extensible group of objects, but when it comes to profiling, we only
want to perform analysis of this method in context of interaction with certain parameter type or
value. Method call filters are the easiest way to achieve this. Our solution offers two basic types

of method call filters (other filter types may be added in future):

o Filter based on parameter value defined by user when creating profiling scenario,

o filter based on parameter type defined by user when creating profiling scenario.

This filtering may be performed on profiling agent or on profiling server while evaluating
profiling data received from agent. This choice depends on user as well. If user is completely
certain, that he will only need certain type of profiling data, agent method call filtering option
may be selected. This action ensures minimal data transfer between agent and server, but it also
means, that user will not be able to define another method filter when viewed profiling data in
graphical user interface.

Method call filter application can be also done in the phase of profiling data evaluation
on server. This will lead to higher data transfer between agent and server, but user will be able
to define different method call filter when viewing evaluated profiling data. We will leave this

option to user. Furthermore, during implementation phase of this project, set of performance

29

tests was performed. Test results are discussed in section V and detailed test results can be seen

in appendix C.

3.3 Thin Client and User Interface

As stated in previous section, thin client architecture in context of profiling application can be
considered as rare solution. We believe that this approach brings several advantages that can’t

be achieved by standard rich client profilers.

e Hardware and software infrastructure unification — it is not an unusual situation, when
an application in development behaves perfectly on your computer, but acts completely
different on your colleagues’ machines. These problems can make debugging and
performance tuning a very unpleasant task. In case of thin client approach, all
developers can perform profiling of their code on unified machine that can be easily
transformed to simulate customers’ environment. If a developer is not satisfied with
HW/SW configuration, on which profiling server is running, profiler deployment to
localhost can be performed easily,

e multiple user parallel profiling — most thick client profiling solutions are able to
perform parallel profiling of multiple java applications, but using web application as
profiling tool brings the advantages of using sessions, so multiple users from multiple
machines (from local network, or from the other side of the globe,...) are able to
perform multiple parallel profiling tasks (Although these profiling would probably be
quite inaccurate due to high load caused by high number of profiling tasks),

e simple integration with java enterprise web applications — one of the main goals of this
project is to create a profiling tool able to perform performance analysis during
execution of analysed application in customer and production environments as well as
in test environments. The best approach to do this is to integrate profiling tool with your

enterprise web application.

Web container and project management

Before developers are able to perform profiling tasks with their applications, our solution needs
to be deployed using a web container or an application server. The usage of full featured
application server for purposes of our project would be a huge overkill. For this purpose, web
container Apache Tomcat will be used. Apache Tomcat is an open source software

implementation of the Java Servlet and Java Server Pages technologies developed by Apache

30

Software Foundation. Before the project can be deployed in our web container, it needs to be
build and packed into .war file (web application archive). For this task and for overall project
management we will use Apache Maven. Apache Maven is a software project management and
comprehension tool. Based on the concept of a project object model (POM), Maven can manage
a project’s build, reporting and documentation form from a central piece of information. Both
these technologies were chosen, because we have some experiences with their usage in context
of bigger open — source software product and both solutions have properties required by the

nature of our project.

Apache wicket

Next step on a road to successful completion of established objectives is choosing the best
technology for the task of creating graphical user interface. We will need a technology to
connect presentation layer with our profiling engine.

A brief survey of a field of java web application development frameworks shows us

many alternatives:

e Apache Struts, Apache Struts 2,
e JSF (Java Server Faces),

e Spring MVC,

e Apache Wicket,

o GWT (Google Web Toolkit),

e Apache Tapestry, ...

The list could continue for another half of a page, but we believe, that reader of this text
already has an idea, that in the field of java web application development, there is no lack of
good frameworks. Therefore, the task to choose the most suitable one will not be easy. Let’s

establish the set of attributes that our framework should possess:

o Component based — nature of created application indicates significant use of forms and
other components, which could be reused thorough the application,

o form validation support,

e native Ajax support,

e java code outside of presentation layer,

e steep learning curve — by learning and working with selected framework, we should be

rewarded with gained skill and experience as much as possible, ...

31

After performing few experiments with several java web application frameworks, we
have chosen framework that seems to be the most suitable technology for our project. We have
chosen Apache Wicket framework for these reasons:

e POJO Component model — individual pages are represented by real java objects
supporting encapsulation, inheritance, events and other object oriented principles. [13]
Created components can be reused very easily,

e separation of presentation and java code — for every html page, there is java file
containing java components. Minimum interaction with markup code is required,

e native Ajax support components working properly,

e native form creation mechanisms and validation mechanisms,

e MVC based framework (more in Figure 12),

o allows to easily create state-full application over stateless HTTP protocol,

o steep learning curve, lots of tutorials, books and other study materials,

¢ large and supportive community.

We have chosen Apache wicket framework because it enables us to create web
applications with advanced functionality using mostly java code, without very deep knowledge
of web design or web development. We also find it very easy to debug wicket based web
applications, since wicket provides very useful error messages. We will integrate this profiling
tool with MidPoint open-source identity management system. GUI of MidPoint is also
implemented in Wicket, thus the choice of Wicket will provide more easiness in later
integration. For reasons stated in this three section and many others, we believe that Apache

Wicket web application framework is the best choice for our project.

32

®oC Cheese Store

Name [()Id Amsterdam]

age |3 vears |
/ N
\ 2
” \
recenves ingul renders
o a s ““/"/C—o'rridbhéﬁt' ARG S S !
Gontrolier View |
| \ 7 ;
Yo updates === === consults -\- -
;"““'\Qmadsr""/” N
| | uses
| | \
1 |
1
18" LI
| ag | sirpul type="laal" .,
i |
| |
C‘ AAAAAAAAAAAAAAAAAAAA ,l

Figure 12: Wicket Model — View — Controller implementation. Wicket components represent
View and Controller parts, using classic html code as identifiers. These components are linked with
Model part represented by arbitrary java object [12].

Since our profiling solution will be later integrated into larger open — source system using
already created GUI and because of lack of deeper web development skills and experiences on
the side of an author of this thesis we have decided to choose already existing template and join
it with our profiling engine instead of spending significant amount of time on design and
implementation of a custom web design from scratch. This approach will saves a lot of time,
which can be invested into creating even better profiling engine. Chosen web template will still

need many changes and modification to perfectly suit our solution and more importantly

33

3.4 Technology Summary List

During solution design of our profiling application, we have discovered the need of usage for

following list of APls and frameworks:

Apache Tomcat, web application container,

Apache Maven, project management tool,

Apache Wicket, web application framework,

attach APl (com. sun.tool.attach),

instrumentation APl (java.lang.instrument),

java sockets APl (java.net),

Javassist API (dynamic bytecode injection),

java Simon, simple but powerful monitoring API,

java management extensions (JMX, java.lang.management),

java reflection APl (java.lang.reflect).

This technology list may not be final, as stated in the beginning of this section, but if there are

any changes to occur, we expect that these changes will be minor. Most of the presented

technologies and APIs should prevail and together build our profiling solution.

34

4 Implementation

In this section we will focus on implementation phase of our profiling solution. We will discuss
the implementation details of all major aspects of developed profiling tool. Since the scope of
this project is quite extensive, we will not focus on every implementation detail and every line
of written source code. Technical description of developed profiling tool can be found in

Appendix A.

4.1 Profiling Agent Implementation

From functional point of view, profiling agent is the most important part of every profiling tool
and our solution is not an exception. We can say that we spent most of implementation time on
development of our agent and profiling logic in general. Java profiling agent is basically a small
group of classes, which together performs simple set of tasks necessary for every profiling tool.
An abstract concept of profiling with usage of java agent can be seen in figure 11. In this
section, we will look closely on details of agent implementation. At first, we need to connect
our agent to JVM, where analysed application is running. We can complete this task in two
ways. The first is described in section 1. Just to sum up, we can start JVM process with agent
already attached:

java —Jjavaagent:agent.jar[=options] foo(.class) [-jar foo.jar]

Second, most common way especially in context of profiling enterprise java applications is
dynamic attachment during runtime of analysed application. For this purpose, java Attach API

needs to be used:

VirtualMachine vm = VirtualMachine.attach (pid);

Where variable pid represents String or VirtualMachineDescriptor form of JVM
process that we want to analyse.

Now, when our agent is attached to analysed JVM, we need to inject effective profiling
code. First, we need to take every loaded class and verify, if this class meets user requirements
(profiling scenarios etc.), then we perform method extraction for each class and insert pieces of
active profiling code before and after this each method of loaded class. All this is done using
special methods. Depending on agent injection method, we can use premain () method (agent
connected on process start) or agentmain () method (agent attached dynamically). For these

purposes, we are using java instrumentation APl (java.lang.instrument) and Javassist

35

API. To better understand these principles, take a close look in Figure 13, where we present
strip of code of our profiling agent. After profiling is done, classes in form before code injection
are loaded back to JVM and profiling agent is detached from JVM.

goverride

public byte[] transform{ClassLoader locader, String className, Class<?> classBeingRedefined,
ProtectionDomain protectionDomain, byte[] classFileBuffer) throws IllegalClassFormatException |

try{
classPool.insertClassPath (new BytelrrayClassPath(className, classFileBuffer));
CtClass cc = classPool.get(className.replace("/","."});
CtMethod[] methods = cc.getMetheods();

for{int i = 0; i < methods.length; i++){
methods[i] .insertBefore ("injected code ...");
methods[i] .insertAfter("injected code ...");

1

byte[] newClassfileBuffer = cc.toBytecode();
return newClassfileBuffer;

}catch(Exception e} {

1

return null;

Figure 13: Class loading transformation technique

The last piece of puzzle in context of profiling agent functionality is communication with server
and profiling data transfers. For this purpose, we are using java sockets. Profiling server
represents socket server and analysed JVM represents socket client. Parallel connections of
socket clients are enabled. For each communication, separate thread is created on agent as well
as on profiling server and both threads are destroyed after profiling is no longer active. These
threads are responsible for sending instruction packets (server => client) and profiling data
packets (client => server). Simple communication scheme between profiling agent and profiling

client can be seen in Figure 14.

36

Profiling Server Profiling agent

create create

Thread Thread

instructions |
| \

l I

| % |

terminate profiling

T

v v

Figure 14: Profiling agent <> profiling server communication scheme

Communication ServerJ [Communication client

destroyThread

Method call profiling

Method call profiling is deeply explained in several places in this document. This functionality
has been implemented using event-based profiling technique. After profiling agent is attached to
target JVM and bytecode is dynamically injected before and after methods (explained above),
this code is called every time specific method call event occurs and thus we are able to catch
method call run times. Method call profiling can be specialised using user defined profiling

scenarios and method call filters.

CPU usage profiling

In context of CPU profiling in our monitoring application, we monitor these performance

parameters of CPU usage:

e Average CPU usage — percentage expression of consumption of CPU computing
capacity,

o overall elapsed time — computing time elapsed since our agent has been attached to
analysed JVM (1/O operation times and other non CPU application activity is counted
here),

e overall CPU time —amount of time application spent using CPU computing capacity.

37

For these purposes, we used Java management APl (java.lang.management), specifically
OperatingSystemMXBean and RuntimeMXBean objects, which provided necessary

performance data.

OperatingSystemMXBean operatingSystemMXBean = (OperatingSystemMXBean)
ManagementFactory.getOperatingSystemMXBean () ;

RuntimeMXBean runtimeMXBean = ManagementFactory.getRuntimeMXBean () ;

Memory usage profiling

In terms of memory profiling, we profile these performance attributes:

e Heap memory usage — used, free and maximum available memory at specific time
(these attributes are measured in bytes),

e Non — heap memory usage - initial, maximum, committed and used memory pool size
at specific time (measured in bytes as well),

e Garbage collection activity — objects pending finalization count and garbage collection

runs.

We are able to extract all these data using System.Runtime class and Java management API

(Java.lang.management), specifically MemoryMxBean and MemoryUsage Objects.

Thread activity profiling

For thread activity profiling purposes, we monitor these attributes in specific moment of

analysed application execution:

e Current thread count,
e current thread ids,
e current thread names,

e stack traces for current threads and further information about all current threads.

Again, we used Java management APl (java.lang.management) for thread activity

profiling, specifically ThreadMxXBean.

38

Class profiling

In specific time of execution of profiled application using our profiling tool, we also monitor
count of current loaded classes and their names. For these purposes, we used Javassist API,
specifically Instrumentation objectand getAlllLoadedClasses () method.

We used sampling approach when implementing CPU usage, memory usage, thread and
class activity profiling. This technique enables us to interrupt analysed application in time
intervals (which can be defined when creating custom profiling level) and collect all wanted
data. Enhanced profiling scheme in context of thread activity between profiling agent and
profiled java application can be seen Figure 15 (This figure loosely ties to figure 14).

Profiling agent

create

create
[Proﬁled applications jVMJ

Communication client ProfilingThread
Thread l | |

get memory, cpu, ... usage
| N
, |
|

collect data | | |
| |

| provide data

l// [\| I
send data I | ll |

to server

Figure 15: Profiling agent thread activity scheme during application profiling.

39

4.2 Graphical User Interface Implementation

As we mentioned in previous sections, we wanted to invest as much time as possible to creation
of meaningful, powerful and effective profiling engine, but the presence of eye catching and
neat graphical user interface is an important indicator, if developed application will be
successful and used. We decided to implement our GUI using open source web application
template. Finding template appropriate for requirements of our profiling tool was not easy, but
after long search we managed to find perfect web application template. We have decided to

work with free admin skin found on www.netdreams.co.uk [14].

Of course, this was just the beginning of GUI implementation, since we needed to
create connection between presentation layer and profiling engine written in java. As stated in
previous section, we used Apache Wicket web application framework for this purpose. Working
with this framework was very pleasant, as every dynamic web component is represented by
wicket component object, which can be easily mapped to arbitrary application data. To illustrate
work with wicket and to show reader, how exactly our GUI works, we decided to include an
example of interaction with one component from our application. It is aclassic text field
component that represents name of created profiling project. In markup code, it is represented
by classic <input> tag with text type. The important part is the wicket:id attribute that
describes, on what java component it is connected. In java code, we managed to map this
component to ProfilingProjectType object named newProject, specifically String

attribute ,,name®. The scheme of this work can be seen on figure 16.

Project Mame: Rendered

component
<tr>
<th valign="top">Project Name:</th> html representation of
<td><input wicket:id="name" type="text" class="inp-form" /></td> « component, tagged with
<tbds</td> wicket:id

</Er> G

private TextField<String> nameField = new TextField<String>({"name", new PropertyModel<String>{newfroject, "name"));:

Wicket representation of component
using java object, mapped to newProject.name String attribute

Figure 16: Wicket GUI functionality explained

Using this approach and other features of wicket framework, we have managed to create GUI
visually and functionally suitable for our profiling tool. The example of looks of our application

can be seen on figure 17.

40

http://www.netdreams.co.uk/

Profiler B search

Home Actual Profiing Start Profiling Profiling levels Profiling Scenarios

Attach to JVM Quick profiing New Project My profilings

New Project
Project Name:
Description:
4
CPU Settings: Classic [+
Memory Settings: Classic [=]
Profiling Scenario: | [=]
=
Insert JAR: Insert jarfile to be profiled
I [/Save whole jar file (only _jar path is saved. when this option is not
File option: 2 siestad)
VM Options:
4
Attach option: (|Attach on start {if not selected. agent wil attach after program start)

Figure 17: GUI appearance of our profiling tool.

We are aware of importance of neat graphical user interface. Profiling tool can be mastered in
way of used profiling features, but if it fails to present gathered and evaluated data or if it is
hard to read in this data, what directly complicates recovery of performance problem, tool is
sentenced to fail. For these reason, we have worked hard to find the best way to show users
collected profiling data and we finally decided to use Wicket Charts framework [15]. We think
that showing profiling data in form of charts brings even more clarity and easiness into finding
that specific memory leak or other performance problem. Charts used in our solution are
automatically updated using AJAX features. These charts also provide various ways of
interactivity with users, like data enlargement, specific data values in every chart point, direct
chart print or export into image file etc. Example of chart directly from profiling can be seen on

figure 18.

41

Home Actual Profiing Start Profiling Projects

Overview Memory CPU Threads Classes VM Summary

Method Run Times

Method calls
30

e~ addobject)
20 -+ deleteObject)
& getObject()

Method Time[s]

L]

Figure 18: Chart representation of gathered profiling data.

4.3 Profiling Scenarios Implementation

The concept of user defined profiling scenarios is explained in section 3.3. To sum up, main
idea of this concept is to grant user functionality to select the list of classes and methods that
would be profiled. The first implementation step was the analysis of user provided set of classes
in form of inserted .jar/.war file (this can be easily extended into list of class files, maven or ant
project). To analyse inserted class files, we need to load them to profilers underlying JVM.
Dynamic class loading is not an easy task, but we managed to complete this challenge using
java reflection APl (java.lang.reflect), specifically, we used simple reflection hack,
where we instantiated URLClassLoader method addURL after changing its visibility from
protected to public. This step was necessary to load classes from URL that were extracted from

Jar/.war file. The exact code strip can be seen below:

private static final Class[] parameters = new Class[] { URL.class };

JarFile jar = new JarFile(jarFile);

URLClassLoader sysLoader = (URLClassLoader)ClassLoader.getSystemClassLoader();
Class sysClass = URLClassLoader.class;

Method method = sysClass.getDeclaredMethod ("addURL", parameters);
method.setAccessible (true) ;

method.invoke (sysLoader, new Object[]{jarFile.toURL() });

After this analysis phase, results are shown in GUI, where user can simply select, which classes

and methods are going to be profiled. After selection is complete, the creation of profiling

42

scenario is complete and user is redirected back to profiling project configuration page. The
important thing to say in context of profiling scenarios is that every profiling scenario must be
bound to concrete profiling project, since it is built from analysis of set of java classes and this
set is bound to profiling project. One profiling project can work with multiple scenarios and the
user is able to select current working scenario before profiling is launched. After this action the
communication is started between profiling server and target JVM (see section 4.2 for details).
First packet that is sent from profiling server contains information about selected profiling
scenario. Agent receives this packet, extracts important data and takes them into account in the
phase of dynamic bytecode injection (see section 4.2). Profiling agent performs bytecode
injection only in case when transformed class or method is present in the received list of
profiled classes and methods (in other words, if it is in profiling scenario). Classes and methods
not present in this list are not instrumented, thus profiling is not executed. In figure 19, we can
see an example of profiling scenario creation in GUI. The screenshot shows one class
test.Help containing two methods, specifically printHelloWorld() and
doSomething () methods. Other methods are present, because in java, every class extends
Object class in default. User has an option to select, if these methods will, or will not be
shown during profiling scenario creation. Another interesting functionality that may be
implemented in the future (but is not in scope of this bachelor thesis) may be the creation of

complex inheritance schema of provided source files.

Class: test.Help

Methods: (" |printHelloWorld

[|doSomething
[|wait

[wait

[wait

[|equals

[|toString

[~ thashCaode

[|getClass

[|natify

[|notifyAll
Submit

Figure 19: User defined profiling scenario creation example

43

4.4 Profiling Levels Implementation

As mentioned in previous sections, profiling levels are used to define which aspects of
performance we want to examine during profiling. The list of profiling aspects can be seen in
section 3.3, so we will not state it here. Profiling levels are not bound to specific profiling
object, so we can use one level with multiple projects in contrast to profiling scenarios. In
addition to the ability of choosing, which performance aspects will be monitored, we also give
user the power to define intervals of examination of these aspects.

This functionality gives users great power and it needs to be used very cautiously. There
exists a trade-off between profiling accuracy and efficiency, let’s explain this on simple
example. User has created profiling level, where he wants to monitor CPU and thread activity in
20 milliseconds time intervals, in other words, 50 times a second. Every 20 milliseconds, agent
will gather information about current thread and CPU activity, but 20 milliseconds if enormous
amount of time for computer. Several hundred thousand operations have been executed during
that time, but we only have profiling data from precise time moment, so we can only assume,
that retrieved stack trace or CPU usage has been there for entire time interval. Of course, in
evaluation phase, we can use statistics methods to interpolate values between time intervals, but
exactness of this method is very imprecise. To collect precise data about CPU and Thread
activity, we would need to perform analysis several times every millisecond. Of course,
gathering these information takes time and compute resource. To sum up, it depends on every
developer, how precise profiling data he needs and how big profiling overhead can he tolerate in
order to collect this data.

Memory and CPU usage, thread activity and class state examination are all
implemented using sampling technique. More precise scheme of this process can be seen on

figure 15. On figure 20, we can see profiling level creation in graphical user interface.

44

Add/Edit Profiling Level

Level Name: New Level
Description: this is profiling level. that will
A
Methods: | Method call profiling
CPU: |'® |CPU profiling
Interval[ms]: 100
Memory: [~ Memory profiling
Interval[ms]: 200
Threads: | @ [Thread activity profiling
Interval[ms]: 300

Stack depth: 5

Classes: |"|Class load profiling
Interval[ms]: 400

Figure 20: Creation of profiling level using profilers graphical user interface.
4.5 Method Call Filters Implementation

Method call filters are simple way to define, which calls of examined method are interesting for
us and which are not. To do this, we need to examine parameters and their values for every
single call of profiled method and based on these filters, we will decide, if data collection will,
or will not be performed. In current version, we support only method calls created from basic
data types and their wrapper classes. These filters can be assigned to profiling scenarios and will
be applied (as well as profiling scenarios themselves) only in case, when method call profiling
is selected (while creating profiling level). User can create several method call filters for every
investigated method and define desired values.

In future versions of this tool, more precise method call filtering mechanism will be
implemented containing functionality to pass expression language as method a parameter filter

(both for parameter value and type), but this is not in the scope of this bachelor thesis.

45

46

5 Evaluation

In this section, we will focus on testing and evaluating implemented profiling solution. Testing
is necessary and extremely important phase in software development lifecycle. For testing
purposes, we have chosen several approaches:

¢ manual testing of chosen test scenarios,
o profiling overhead testing with for this purposes designed application,
o profiling overhead and general testing with midPoint

e Automatic testing with unit tests,

5.1 Manual Tests

We have created several test scenarios in several categories that were used to evaluate
functionality of designed product and its responses to user actions. We tested CRUD (create,
read update, delete) operations with all important objects connected to profiling mechanisms,
specifically profiling scenarios, profiling levels, profiling projects and method call filters. Tests
were designed by classic test scheme. First, we wrote down steps needed to take to perform test
scenario. Next we wrote down expected result. A test is considered accomplished when real
response of our application is exactly the same as expected test result. In other case, when real
test results are even slightly different from expected results, the test is considered as failure. We
also added several tests that should lead to negative response from implemented profiling tool.
For example, when creating profiling project, we need to provide name for this project as well
as source code form in .jar/.war file. If these conditions are not met, profiling project should not
be created and user should see comprehensible error message that will tell him, what is wrong.
In figure 21, we can see example of few test scenarios along with their expected and real results.

More manual test scenarios can be seen in appendix C.

Test Scenario description Expected Result Test result
Add profiling level: Profiling level should be
1. In GUI, click Options, then Add | added to repository and
profiling level. should be seen on Profiling
1 2. Fill level name, description and | levels page. V

select arbitrary profiling aspects
and their intervals.
3. Click on Submit button

View all profiling levels: List of all existing profiling
2 1. Click Options, then Profiling | levels should be displayed Vv
levels tab.

Figure 21: Example of test scenarios. More can be seen in appendix C.

47

5.2 Profiling Overhead Testing

In context of dynamic java application profiling, one of the most important profiling tool
attributes is its profiling overhead. Profiling overhead is discussed multiple times in this
document. In this section, we will focus on testing profiling overhead of our implemented
profiling solution. Profiling overhead testing and measurement were made on java application
specifically implemented to server test purposes. This application obtains several methods,
specifically:
e doSomething () method — this method contains large number of numeric
computation,
e memoryTest () method — this method contains large number of memory operations,
specifically work with ArrayList containing one million String objects of length

one hundred. This ArrayList is refilled five hundred times during every method call.

These tests were performed on following HW/SW configuration:
e Operating system — Windows 7 6.1 64 bit,
o JIT compiler — HotSpot 64-Bit Tiered Compilers,
¢ JVM - Java HotSpot 64-Bit Server VM version 20.9-b04,
e Vendor — Sun Microsystems Inc.,
e CPU — Intel Core i5-2500K CPU,
e number of cores - 4
e RAM-8,00GB

To minimize measurement inaccuracies caused by other operation system processes, we
performed these measurements one hundred times and calculated average values, but we still
experienced a lot of fluctuation in test results, thus the accuracy of these tests is not 100%. It
should still give reader very clear information about designed profiling solution overhead.

Example of test results can be seen on figure 22.

Memory | CPU | Thread | Class Overhead | Overhead
| Method #1[s] | #2[s] | #3[s]
[ms] | [ms] | [ms] | [ms] [s] [%]
1 - - - - - 2,735 | 4,770 | 170,10 - -
2 Y 1000 1000 1000 1000 | 2,737 | 4,832 | 171,40 1,3 1,007
3 Y 100 100 100 100 | 2,745 | 4,847 | 171,86 1,76 1,010
4 Y 10 10 10 10 | 2,750 | 4,979 | 174,61 4,51 1,026

Figure 22: Profiling overhead testing and measurement results.

48

In table above, we can see overall measured profiling overhead results. This table needs some
explanation:

e In first row, we can see values for raw execution of tested application, in other words,

without our profiling agent attached,

o values in Memory, CPU, Thread and Class columns means profiling interval,

e value in Method column means, if method run times were monitored,

e #l-doSomething () method average execution time,

e #2 -—memoryTest () method average execution time,

o #3 —tested application average execution time,

e overhead — average overhead, slowdown in comparison of raw execution represented in

seconds and percents.

More detailed table containing test results can be seen in appendix C, specifically C.2

5.3 Tests with MidPoint

Another step in testing phase is testing with midPoint. MidPoint is an open-source identity
management tool. The main purpose of midpoint is synchronization of several identity
repositories, their management and presentation in unified form. Developed profiled tool will be
later integrated with midPoint, specifically in release 2.3. Current stable version of midPoint is
2.1; version 2.2 will be released in June 2013.

We tested our profiling solution with midPoint on the same HW/SW configuration as
stated in previous section. We used Tomcat 7.0 web container and LDAP server OpenDJ for
these tests. During development of this product, we prepared several unit tests using TestNG,
mostly focusing on performance testing, for example:

e Adding large number of users to repository,
e deleting large number of users from repository,
o listing large number of users from repository,

o parallel adding large number of users to repository in several threads, etc.,

During testing with midPoint, we hooked our agent directly into Tomcat web container,
collecting and evaluating data from execution of these tests. We tested use of profiling
scenarios, profiling levels and method call filters and measured profiling overhead generated by
dynamic performance analysis. All test results were positive and we believe that this profiling

tool is ready to be integrated with MidPoint.

49

5.4 Automatic Tests

Another significant approach to testing software products are automatic tests. In java, unit tests
are used for this purpose. We have implemented automatic tests in our solution using maven
project management tool and TestNG framework, which provides similar functionality as
JUnit framework with several new features.

Scenarios in automatic tests are not that different from scenarios used in automatic
testing. Main difference is, that in manual tests, living person needed to use applications GUI to
perform actions defined in test scenarios, while in automatic tests, these test scenarios are
written as standard java methods with corresponding annotations and no interaction with GUI is
needed, we simply call specific methods to complete test scenarios (same methods are called in
manual testing, except they are invoked by user interaction with GUI). For automatic tests, we
also need to prepare set of test data, for example create necessary profiling objects. We can
create them programmatically in code of current test code, or prepare them in form of XML and

parse them during test execution.

50

6 Conclusion

This bachelor thesis focused on profiling and creating specific profiling tool that would provide
functionality to focus on analysed java application in very detailed and specific way. In first
sections, we spoke about profiling domain in general. We introduced existing approaches to
profiling and existing techniques in this field. We also described existing profiling solutions and
tools. We analysed standard Java API profiling tools, open — source solutions and commercial
applications used for purposes of dynamic code analysis. Analysed tools did not meet our
requirements, thus we decided to create own profiling tool.

In next sections, we analysed requirements and specified objectives of this project.
Later, we designed profiling application using event-based and sampling profiling techniques.
We introduced concept of profiling scenarios, an easy way to define, which methods of
examined application were analysed. This feature was not enough for simple reason, we only
wanted to profile specific method calls and thus we created method call filters technique. This
technique combined with profiling scenarios enables us to profile exactly what we want.
Another introduced technigue, yet not new as previous concepts, was usage of profiling levels
that allows us to select, which profiling aspects (method call examination, CPU, memory usage,
thread and class activity) we want to analyse. We enhanced this concept with user defined
profiling intervals.

We also implemented the proposed solution. Application was implemented using client
— server architecture. We discussed implementation in detail in section 4. Implemented solution
was tested properly. Specifically, we performed series of manual tests based on created test
scenarios. Some of these scenarios were also implemented as automatic unit tests. We focused
on testing general profiling overhead. For this purposes, we performed exhaustive number of
performance tests which results showed us small percentage of profiling overhead. Finally, we
tested this solution with MidPoint. All test results satisfied our requirements.

There is still a lot of work on implemented profiling tool and it can be (and will be)

enhanced in many ways, the most important ones being these:

e More dynamic user interface, AJAX integration,

o XML form of repository profiling objects,

e usage of expression language with in method call filters,

e automated creation of profiler home directory (deployment enhancement),
e remote application profiling over TCP/IP,

e implementation of special file format allowing us to dump result of profiling.

The work on this project is far from being over. It will be integrated with open-source identity

management solution midPoint in one of next stable releases (2.3).

51

52

Bibliography

[1] BROWNE, J.: Brewer's CAP Theorem. julianbrowne.com, 2009, [quoted. 8. may 2013;
23.30h]. Available online (world wide web):
http://www.julianbrowne.com/article/viewer/brewers-cap-theorem

[2] DIEHL, S.: A Formal Introduction to the Compilation of Java. New York, NY, USA : John
Wiley & Sons, Inc., 8" January 1998. 297-327 p.

[3] HAGGAR, P.: Practical Java Programming Language Guide. Indianopolis, IN 46290 :
Addison-Wesley, 4th July 2001

[4] J.: IVMs, JDKSs and JREs. http://java-virtual-machine.net/, 2008, [quoted. 8th May 2013;
23.47h]. Available online (world wide web): http://java-virtual-machine.net/other.html

[5] B., P.: The HotSpot Group. http://openjdk.java.net/, 2013, [quoted. 8th May 2013; 23.50h].
Available online (world wide web): http://openjdk.java.net/groups/hotspot/

[6] L. Graham, S. - B. Kessler, P. - K. McKusick, M.: gprof: a Call Graph Execution Profiler.
http://docs.freebsd.org/, [quoted. 8th May 2013; 23.53h]. Available online (world wide
web): http://docs.freebsd.org/44doc/psd/18.gprof/paper.pdf

[7] KNUTH, D.: Structured Programming with go to Statements. University of California, San
Diego : Pearson, ISBN 13:978-0-13-283031-7, December 1974. 268. p.

[8] BURD, B.: for Dummies, 5th edition. Indianopolis, Indiana : Wiley Publishing, Inc., ISBN:
978-1-118-12832-9, 2011. 432 p.

[9] ECKEL, B.: Thinking in Java, 3rd edition. Electronic Book : Prentice-Hall, December 2002

[10] Apache maven project management tool, available online: http://maven.apache.org/guides/

[11] Apache Tomcat web container, available online: http://tomcat.apache.org/

[12] DASHORST, M. - HILLENIUS, E.: Wicket in Action. Dreamtech Press, 9788177228847,
2008. 388 p.

[13]APACHE, T.: Apache Wicket Features. http://wicket.apache.org/, 2013, [quoted. 9th May
2013; 00.08h]. Available online (world wide web):
http://wicket.apache.org/meet/features.html

[14] DREAMS, I.: Free admin skin available. http://www.netdreams.co.uk/, 2013, [quoted. 9th
May 2013; 00.11h]. Available online (world wide web):
http://www.netdreams.co.uk/index.php/blog/2010/02/18/free-admin-skin-available-for-
download/

53

http://www.julianbrowne.com/article/viewer/brewers-cap-theorem
http://java-virtual-machine.net/other.html
http://openjdk.java.net/groups/hotspot/
http://docs.freebsd.org/44doc/psd/18.gprof/paper.pdf
http://maven.apache.org/guides/
http://tomcat.apache.org/
http://wicket.apache.org/meet/features.html
http://www.netdreams.co.uk/index.php/blog/2010/02/18/free-admin-skin-available-for-download/
http://www.netdreams.co.uk/index.php/blog/2010/02/18/free-admin-skin-available-for-download/

[15] Wicket-charts JavaScript Charts with Apache Wicket and JSF. code.google.com, 2013, [
guoted. 9th May 2013; 00.14h]. Awvailable online (world wide web):
https://code.google.com/p/wicked-charts/

[16]E.: midPoint. http://www.evolveum.com/, 2011, [quoted. 9th May 2013; 00.16h].
Available online (world wide web): http://www.evolveum.com/midpoint.php

[17]M., Bielikova.: Ako uspesne vyriesit' projekt. Bratislava : Slovenska technicka univerzita,
ISBN 80-227-1329-5, 2000. 158 p.

54

https://code.google.com/p/wicked-charts/
http://www.evolveum.com/midpoint.php

Appendix A — Technical Documentation

In this chapter, we will provide more detailed explanation of UML diagrams attached to this
document. We will also include many other UML diagrams describing implemented profiling
tool. Not every single detail of provided diagrams is described. More UML diagrams are can be
seen on attached CD medium.

UC08 Show categorized
profiling results

UCO04 Create profiling scenario
(CRUD)

\
\
/ <extends: \
i / \
l <extends>
UC06 Create method call '|
filter. (CRUD)
/
/
/
/
7/
Ve
P

~
<extends> —_——_ = -

Figure 23: Use case diagram of implemented profiling solution. Same as Figure 8.

In Figure 23, which can be also seen in section 2.3, we provide use case diagram. It represents
an output from use case analysis based on products specification and requirements analysis.
This diagram shows several use cases. Every use case represents some action between user and
implemented profiling solution. Use cases labelled with CRUD label are complex use cases that
could be divided into four smaller use cases, specifically create, read, update and delete use
case. When creating profiling project, user is able to perform several actions leading to its deep
specification, for example adding profiling scenario (UC04 Create profiling scenario CRUD) or
adding profiling level (UC05 Create profiling level CRUD). The creation of profiling scenario
can be modified by creating several method call filters (UC06 Create method call filter CRUD).
User is also able to select running JVM while creating profiling project (UC07 Attach to
running JVM).

55

profiling Server

Communication interface Target |VM (Profiling Client)
- -~ TCP/IP
-
-~ —_—]
web browser GU b~ ' e 4 Profiling Agent
, =

profiling engine

/ seralization

Vi
7

Hard Drive /

/

/
V Data handler

Figure 24: Component diagram representing architecture of implemented profiling tool.

On Figure 24, we can see component diagram. This diagram is a representation of implemented
profiling tool. Profiling server, the main component, is composed from three smaller
components, specifically Communication interface, GUI (Graphical User Interface) and
Profiling engine. Communication interface periodically communicates with profiling agent,
which is a component attached to target JVM during performance of profiling. Communication
protocol TCP/IP is used. Profiling engine communicates with Data handler component. This
component is a representation of data layer of our solution. GUI component also communicates

with Web browser component.

56

gui
util
=
brofiling) _ - I\\
-
-
~ \
|~
\
start l_‘
profiling|
~ / * 1 1 - - - - — — — — >
7/
lscenarios /
/
I~ - /
~ /
~ b
~ util
3

Figure 25: Package diagram containing main packages of implemented profiling solution.

On Figure 25, we can see package diagram representing package composition of implemented
profiling tool. Types package contains classes representing objects used in our solution.
Profiling package contains profiling engine functionality. Package util contains utilization
functionality of our application. GUI package contains seven smaller packages. Every one of
these packages contains several class and html files. This package represents code structure of
created GUI. We can see, that packages home, options, project, scenarios, start
and profiling extends util package. We can also see other relations between packages.
Filled arrows represent inheritance and not-filled arrows represent dependencies between
components.

On Figure 26, we can see detailed class diagram containing representation of package
Types. Classes in this diagram are representation of objects that are used in our profiling
solution. We can see that every object extends ObjectType class. This type is a
superclass containing functionality that is used by every object in Type package. Very
detailed description of class and object attributes, constructors and provided methods can be

seen on Figure 25.

57

(C) ObjectType

3}\,- serializeObject(Object Type, String, String) vaid

() deserializeObject(String, String)
i) deleteObject(String, String)
3}‘; getAllobjects(String)

ObjectType
void

List <ObjectType =

() ProfilingLevel

<>f | profilingLevelList List <ProfilingLevel=

'd':“»' retrieveProfilingLevelNamesList() Lisk<String=
(m, constructLevelInstruction() String
-d}!,- saveObject(ProfilingLevel) wvoid
(m, deletelevel(ProfiingLevel) void

(o) retrieveProfiingLevels() List <ProfilingLevel =

4B) name String
gé) description String
4B classProfiling boolean
4B levellnstruction String
'35_’) threadProfiling boolean
48) methodProfiling boolean
'Sé) classInterval ink
'Sé) memaryProfiling boolean
4B threadnterval int
4B) traceDepth int
gé) cpuProfiling boolean
'35_’) memaryInterval int
48 cpulnterval int

(C) ProfilingScenario
() saveObject({ProfilingScenaria) void
(m) deleteScenario(ProfiingScenario) void
() retrieveProfiingScenarios()
(m) printMethodList() void
'35-’_) projectType
'35) methodList
'35) name

4B) description

List<ProfilingScenario>

ProjectType

Map<5tring, ArrayList<String>>
Skring

Skring

() JavavirtualMachineType

<>f) virtualMachines

Map<Integer, LocalvirtualMachine =

<>f ! jumList List<JavaVirtualMachineType >
-d}!,- scanRunningJWMList() wvoid
4B id Integer
4B attachable Boclzan
4B agentld String
4B) manageable Boolean
4B) connectorAddress String
'39 displayName Skring

3 ot

() MethodcallFilter

1 $ 1 1‘1' |

(C) ProjectType
(1) methodMulkiMap Map<String, ArrayList<String =

(f profilingScenarioList List<ProfilingScenario>

3}!,- saveObject(ProjectType) woid
(m, deleteProject{Project Type) woid
'd':“»' retrieveProfilingProjects() List<ProjectType>
55) selectedProfilinglevelMame String
4B) name String
5;) selectedProfilingScenarioName String
'35_3_) pid int
'Sé) description Skring
'35) methodMultiMap Map<Skring, Arraylist<String>=>
'35) selectedProfilinglevel ProfilingLevel
55) classNames ArrayList<String>
4B jarPath String

5;) profilingScenariosMames ArrayList<String>
'35_3_) selectedProfiingScenario

4B attachOnstart

ProfilingScenario
boolean

'35) programiame String

Figure 26: Detailed class diagram of package Types.

58

ccietes credies scregtes «c?eatez\
* \“"‘A
@ MemoryMeasurement @ ThreadMeasurement (C) ClassMeasurement (C) CPUmeasurement C1, TimeMeasurement
7 acregtes
+
(E) MethodRun
C CommunicationClient ————zereates———— | C | ProfilingPacketType
:
acredtes apreates

)

\ - i
7 (C) AgentMain

(E) CommunicationClient Thread

Figure 27: Basic class diagram of profiling agent.

On Figure 27, we can see basic class diagram of implemented profiling agent that is used to
perform analysis of target java applications. AgentMain is a main class, in which basic
profiling functionality is implemented as well as dynamic bytecode instrumentation.
ProfilingThread and CommunicationClientThread classes represent classes of
threads used during profiling. MemoryMeasurement, ThreadMeasurement,
ClassMeasurement, CPUmeasurement and TimeMeasurement are classes
implementing functionality necessary to perform dynamic performance information gathering.
Instances of these classes are used in Instrumentation class. ProfilingPacketType is a
representation of network packet. Instances of this class are periodically sent to profiling server.

They contain collected profiling data.

59

user wicketGUL profilingServer profilingClient

L: createProfilingProject

2: launchProfiling

2.1 attachAgentTolVM

2.2t modifyClasses

(0.7

2: transferProfilingData 1 collectProfilingData

4 showProfilingData 3t evaluateProfilingData

2.3: detachAgentFrom)Vi

3: finishPrefiling

Figure 28: Abstract profiling concept described using sequence diagram. Same as Figure 10.

On Figure 28, we can see sequence diagram representing abstract profiling concept. This
diagram can be also seen in section 3.1. After user created ProfilingProject, profiling is
launched. The first step of profiling is agent attachment to target JVM. Next, compiled source
code is dynamically modified by dynamic bytecode injection. Afterwards, the cycle of
performance data collection is launched. During this cycle, profiling data are periodically
collected, transferred to ProdilingServer. On ProfilingServer they are evaluated
and shown user in appropriate form. After profiling is finished, agent is detached from analysed

java application.

60

User wicketGLI profilingServer
1: createProfilingProject

L1 importSourceFile

1.2: analyseSourceFile

[0,7] L extractClass

1.1 extractMethodLlist

1.3: showExtractedData

L4 selectMethods

1.5 saveProfilingProject

Figure 29: Profiling scenario concept.

On Figure 29, which can be also seen in section 3.2, we describe the concept of profiling
scenarios. During the process of creation of ProfilingProject, user imports the source
files (.jar/.war) containing source codes of analysed application. These source codes are then
analysed. Analysis of provided source codes is composed of class and method extraction. After
analysis is completed, results are shown to user in GUI and user is able to select methods and
classes that are going to be analysed. After user has completed creation of
ProfilingProject, this project is saved in repository. We would also like to introduce
small part of profiling source code here. Next code is responsible for profiling thread activity. In
this code example, we use ThreadMxXBean object generated by ManagementFactory,
ThreadMxXBean is one of built-in performance beans in JMX APl (Java Management
eXtension, java.lang.management). Using this object, we are able to fetch information
about current used threads, their identifiers, names and other usefull information, e.g. stack

traces for each thread with user defined depth.

61

[* Attributes */

int threadCount;

long[] threadIds;
ThreadInfo[] threadsInfo;
String[] threadNames;

/**

* Constructor

**/

public ThreadMeasurement () {

ThreadMXBean threadBean = ManagementFactory.getThreadMXBean () ;
threadIds = threadBean.getAllThreadIds()

threadsInfo = threadBean.getThreadInfo (threadlds,

THREAD TRACE DEPTH) ;

threadCount threadIds.length;

threadNames = new String[threadCount];
for(int i = 0; 1 < threadCount; i++) {
if (threadsInfo[i] != null)
threadNames[i] = threadsInfo[i].getThreadName () ;
}
} //Constructor end

62

Appendix B — User Guide

In this appendix, we will provide simple user guide to implemented profiling solution. The

purpose of this appendix is not to describe every single possibility and functionality of our tool

but to provide extended image about profiling tools usage.

B.1 Site Map

GUI of implemented solution is composed from these web pages:

e Home
= My Last Actions
e Actual Profiling

= Qverview

= Methods
= Memory
= CPU

= Threads
= Classes

= VM Summary
e Start Profiling

= Attach to JVM

= New Project

e Projects

= Actual profiling project
= All profiling projects

e Scenarios

= Actual profiling scenario
= Create profiling scenario

= List profiling scenarios

e Options
= Overall
= Method Filters
= Add method filter

= Profiling levels

= Add profiling level

63

B.2 Guides

In this section, you can see basic guidelines to usage of implemented profiling tool.

e To create profiling scenario, follow these steps:

1.

2
3.
4

On Start Profiling tab, click on New Project label.

Fill Project Name attribute, this attributes is required.

Fill description field to help you identify the purpose of creating project.

Upload projects source file by clicking Upload button next to Inset JAR/WAR field.
This is required field.

Select attach option, if you want to attach to running JVM. If you want to start
analysed application yourself, do not select this option. Start script will be
generated.

Pid field is required as well (if you selected attach option). Press select button
located next to this field. You will be redirect to Attach to JVM page, where you
can select target JVM.

If needed, specify profiling level and profiling scenario. You can also create one of
these objects by clicking Create button below them. This will redirect you to Create
profiling scenario/ Add profiling level pages

If everything is filled, press Submit button to start actual profiling and you will be

redirected to profiling overview page.

e To create profiling scenario, select Create profiling scenario label in Scenarios tab or

you can invoke this page by clicking Create button during profiling projects creation.

Then follow these steps:

1.
2.
3.

Fill the name of a profiling scenario. This field is required

Fill description to identify the purpose of created scenario.

Select method from generated menu. If you want to hide methods extended from
Object class, uncheck ‘Include methods from class Object’.

If you are done, press Submit button. You will be redirected to scenarios project

page. Created profiling scenario is now selected as active.

e To create profiling level, follow these steps:

1.

2
3.
4

On Options tab, select Add profiling level label.
Fill level name. This field is required.
Fill description to identify the purpose of created profiling level.

Choose profiling aspects checking multiple generated checkboxes.

64

5. If you want to specify profiling intervals of selected aspects, fill their values into
prepared fields. Values are in milliseconds. If values are not inserted, default values
will be used.

6. If you are done, press Submit button.

To create method call filter, follow these steps:

1. Select label Add method filter on options tab. You can invoke this page from create
profiling scenario page by clicking add filter button next to each selected method.

2. Fill filter name. This field is required.

3. Fill method call description. This field is not required but it may help you to
identify created filter in the future.

4. Select parameter attribute from prepared drop down choice.

5. Insert value of method parameter.

6. If you are done, press Submit button.

To list existing profiling projects, select All profiling projects label in Projects tab. On
this page, you can delete, view/edit or launch any of shown profiling projects.

To list existing profiling scenarios, select List profiling scenarios label in Scenarios tab.
On this page, you can view/edit or delete any of shown profiling scenarios.

To list existing profiling levels, select Profiling levels label in Options tab. On this
page, you can view/edit or delete any of shown profiling levels

To list existing method call filters, select Method filters label in Options tab. On this
page, you can edit/view any of shown method call filters.

To edit basic profiling options, select Overall label in Options tab.

While profiling is running, you can perform these actions:

You can view actual profiling project by selecting Actual profiling project label on
Projects tab.

You can view actual profiling scenario (is it is used) by selecting Actual profiling
scenario label on Scenarios tab.

Overview general profiling results by selecting Overview label on Actual profiling tab.
See method call statistics by selecting Methods label on Actual profiling tab.

See CPU, Memory, Threads, Classes profiling results by clicking on CPU, Memory,
Threads and Classes labels on Actual profiling tab.

See general information about target JVM by selecting VM Summary label on Actual

profiling tab.

65

66

Appendix C — Test Results

In this appendix, we will show manual test results as well as detailed results of profiling

overhead testing and measurement.

C.1 Manual Test Results

Test Scenario description Expected Result Result
Tests with profiling projects
Create profiling project: 1. Profiling scenario should
1. Select Start Profiling, then New be created in repository
Project, 2. Profiling with this
2. Fill project name and choose source scenario should be
1 .war/ jar file and select JVM pid by launched. V
choosing from attach to JVM
dialog,
3. Click submit button
List profiling projects: List containing all existing
2 | 1. Click projects, then all profiling | profiling projects should be V
projects displayed.
Delete profiling project: Selected profiling project
1. Click projects, then all profiling | should be deleted and
3 scenarios. actualised list of profiling V
2. Click ‘X’ (delete) icon in Actions | scenarios without this project
row should be displayed.
View/Edit profiling project: Selected profiling project
4 | 1. From All profiling projects page, | should be displayed on new V
click on View/Edit icon. page with View/Edit
functionality.
Error project creation: Error message should be
5 | 1. On New Project page, fill project | displayed. V
name and insert invalid source file
(not .jar/.war file)
Tests with profiling scenarios
Create profiling scenario: 1. User should be redirected
1. On New Project page, click on to Create New Profiling
Create button above Profiling Scenario Page
6 Scenario drop down choice. 2. Profiling scenario should v/
2. Fill scenario name and select be created and user
arbitrary displayed methods. should be redirected back
3. Press submit button to New Project Page.
List profiling scenarios: List of existing scenarios
7 | 1. Click Scenarios, then List profiling | should be displayed. V
scenarios
Delete profiling scenario: Selected scenario should be
8 | 1. On List profiling scenarios page, | deleted and actualised list

click ‘X’ (delete) icon.

should be displayed.

67

View/Edit profiling scenario:

User should be redirected to

9 | 1. On List profiling scenarios page, | Actual profiling scenario Vv
click View/Edit icon page.
Profiling mechanisms tests
(profiling project with selected scenario and all profiling aspects in profiling level)
Profiling Overview: Overall profiling information
10 | 1. Click Actual profiling, then | should be displayed. Vv
Overview.
Method profiling: Information about selected
11 | 1. Click Actual profiling, then | method profiling should be Vv
methods tab displayed.
Memory profiling: Information about current
12 | 1. Click Actual profiling, then | memory usage should be V
memory tab. displayed.
CPU profiling: Information about current
13 | 1. Click Actual profiling, then CPU | CPU usage should be Vv
tab. displayed.
Thread profiling: Information about current
14 | 1. Click Actual profiling, then Thread | Thread activity should be Vv
tab. displayed.
Class profiling: Information about current
15 | 1. Click Actual profiling, then Class | Class load statistics should be Vv
tab. displayed.
JVM overview: Information about target
16 | 1. Click Actual profiling, then VM | applications HW and SW v

summary tab.

configuration ~ should be

displayed.

Many more similar test scenarios were tested, but we believe, that reader already has clear

image about manual testing of our profiling solution.

C.2 Profiling Overhead Measurement

Memory | CPU | Thread | Class Overhead | Overhead

| Method #1[s] | #2[s] | #3[s]

[ms] | [ms] | [ms] | [ms] [s] [%]
1 - - - - - 2,735 | 4,770 | 170,10 - -
2 Y 1000 1000 | 1000 1000 | 2,812 | 4,982 | 173,40 3,30 1,941
3 Y 100 100 100 100 | 2,923 | 5,074 | 175,86 5,76 3,386
4 Y 10 10 10 10 3,072 | 5,103 | 179,61 9,51 5,591
5 Y - - - - 2,745 | 4,898 | 172,89 2,79 1,650
6 - 1000 - - - 2,736 | 4,841 | 171,57 1,47 0,864
7 - 100 - - - 2,737 | 4,866 | 172,09 1,99 1,169
8 - 10 - - - 2,739 | 4,916 | 173,12 3,02 1,775

68

9 - - 1000 - - 2,746 | 4,867 | 172,28 2,18 1,281
10 - - 100 - - 2,744 | 4,870 | 172,30 2,20 1,293
11 - - 10 - - 2,776 | 5,041 | 176,36 6,26 3,681
12 - - - 1000 - 2,746 | 4907 | 173,09 2,99 1,757
13 - - - 100 - 2,742 | 4932 | 173,49 3,39 1,992
14 - - - 10 - 2,757 | 5,079 | 176,75 6,65 3,909
15 - - - - 1000 | 2,736 | 4,784 | 170,32 0,22 0,129
16 - - - - 100 | 2,746 | 4,907 | 173,09 2,99 1,757
17 - - - - 10 2,757 | 5.079 | 176,57 6,47 3,803
Explanation:

In first row, we can see values for raw execution of tested application, in other words,

without our profiling agent attached,

values in Memory, CPU, Thread and Class columns means profiling interval,

value in Method column means, if method run times were monitored,

#1 — doSomething() method average execution time,

#2 — memoryTest() method average execution time,

#3 — tested application average execution time,

overhead — average overhead, slowdown in comparison of raw execution represented in

seconds and percents.

Results of profiling overhead measurement overcome even our optimistic assumptions. High

profiling overhead is crucial problem when using many open-source profiling tools, but we have

managed to implement solution with nearly negligible average profiling overhead.

69

70

Appendix D — Glossary

API
CLI
GUI
HW
JDK
JIT
JMX
JRE
JVM
JVM DI
JVM PI
JVM TI
SDK
SW
UML
Bytecode
C

C++
GB
HotSpot
MySQL
OpenDJ

MidPoint

Application Programming Interface
Command Line Interface

Graphical User Interface

Hardware

Java Development Kit

Just in Time compilation

Java Management Extensions

Java Runtime Environment

Java Virtual Machine

Java Virtual Machine Debugging Interface
Java Virtual Machine Profiling Interface
Java Virtual Machine Tool Interface
Software Development Kit
Software

Unified Modelling Language

Java symbolic instruction language
programming language
programming language

Garbage Collector

JVM developed by Oracle

Database

Directory Service

A specific open-source identity management solution

71

72

Appendix E - Figure List

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8, 23:
Figure 9:
Figure 10, 28:
Figure 11, 29:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 24:
Figure 25:
Figure 26:
Figure 27:

write once, run everywhere

JVM work scheme

Example of java source code analysed by HPROF tool

Example used to demonstrate memory usage analysis using HPROF
Example of modified source code used during memory...

CPU usage profiling using YourKit profiler

Memory profiling using YourKit java profiler

Use case diagram of implemented profiling solution

Basic profiling architecture scheme

Abstract profiling concept described using sequence diagram
Profiling scenario concept

Wicket Model — View — Controller implementation

Class loading transformation technique

Profiling agent < profiling server communication scheme
Profiling agent thread activity scheme during application profiling
Wicket GUI functionality explained

GUI appearance of our profiling tool

Chart representation of gathered profiling data

User defined profiling scenario creation example

Creation of profiling level using profilers graphical user interface
Example of test scenarios

Profiling overhead testing and measurement results

Component diagram representing architecture of ...

Package diagram containing main packages

Detailed class diagram of package Types

class diagram of profiling agent

10
11
12
15
16
22,57
26
29, 62
30, 63
35
38
39
4
42
43
44
45
47
49
50
58
59
60
61

73

74

Appendix F — Source Code (CD medium)

Attached CD medium contains:

xsuta_bachelor_thesis.pdf
xsuta_bachelor_thesis.docx
Annotations — directory containing all version of annotations
project — directory containing source files
= src—source files
= pom.xml — project build configuration
uml — uml diagrams and pictures
pics — pictures from gui

various — other relevant attachments

75

76

Appendix G — Resume

Profilovanie je oblast’ softvérového inZinierstva zaoberajica sa dynamickou analyzou
softvérovych produktov pocas ich vykonavania. Jeho cielom je monitorovanie vykonnostnych
atributov tychto aplikacii. Tato ¢innost’ ma za ciel’ zvySovanie vykonu a efektivity a znizovanie
spotreby cennych systémovych prostriedkov. V dnesnej dobe pracuji vel'ké softvérové aplikacie
simultinne so statisicmi pouzivatelov, priCom kazdy jeden ocakdva okamzité reakcie na
interakciu so softvérovym systémam. Cas su peniaze a neefektivita pouzivanych softvérovych
systémov moze v pripade velkych softvérovych spolo¢nosti znamenat’ vyrazné straty.

Za ucelom implementacie profilovacieho nastroja pre java aplikacie bolo najprv
potrebné nastudovat’ problematiku a architektiru platformi java. Na rozdiel od klasickych
kompilovanych programovacich jazykov, kde je programatorom napisany zdrojovy kod priamo
prekladany do jazyka symbolickych instrukcii assembler a nasledne vykonavany na hardvérovej
vrstve pocitaca, v pripade platformi java vstupuje do hry d’al§i medzikrok. Tym medzikrokom je
Java Virtual Machine (d’alej JVM). V jednoduchosti povedané ide o klasicky program, ktory
pracuje Vv opera¢nej pamiti pocitata. Na rozdiel od beznych programov vsak JVM simuluje
pracu pocitaa pomocou implementovanej funkcionality zasobnikov, registrov a dokonca
vlastnej instruk¢nej sady. Ide teda o virtualny pocitac. Zdrojové kody napisané v jazyku java sa
prekladané do jazyka bytecode, ktory je nasledne vykonavany na beziacej JVM. Tymto

pristupom je mozné dosiahnut’ princip multiplatformovosti.

public class HelloWorld{
public static void main(String[] args) {
System.out.println("Hello World!") ;

}

Obr. 1: ,,write once, run everywhere*

77

Nisledna hibkova analyza problematiky profilovania java aplikacii ukazala, Ze existuje viacero

moznych pristupov, konkrétne mozno rozdelit’ profilovacie nastroje do niekol’kych kategorii:

e Profilovacie nastroje zalozené na udalostiach,
o Statistické profilovacie nastroje,

e profilovacie nastroje vyuzivajuce inStrumentaciu zdrojového kodu.

V pripade profilovacich nastrojoch zalozenych na udalostiach dochadza k skimaniu
vykonavania programu prave pomocou implementovanych udalosti beziacej JVM. Medzi tieto
udalosti patri napriklad vstup a vystup z metody, nacitanie a uvolnenie triedy ¢i spustenie cyklu
garbage collectora. Statistické profilovacie nastroje pouzivaju uplne odlisny pristup. Chod
analyzovaného programu je pravidelne prerusovany S$pecidlnymi systémovymi instrukciami,
pricom je nasledne spusteny cyklus zberu vykonnostnych parametrov analyzovanej aplikacie.
Treti druh nastrojov vyuziva dynamicki in§trumentaciu zdrojovych stiborov. Tato technika este
pred samotnym spustenim vykonavania programu vlozi profilovaci kod na urcené miesta v
programe. Vlozeny kod pocas vykonavania programu vykonava zber informacii o vykonnosti
programu.

Prebehla detailna analyza existujucich profilovacich rieseni. Konkrétne sme analyzovali
podporu profilovania zabudovani priamo do Standardného java API, ¢o sme demonstrovali na
priklade prace s nastrojom HPROF. Nasledne sme analyzovali rieSenia s otvorenym zdrojovym
kédom, konkrétne ide o nastroje HAT (Heap Analysis Tool), JProbe, JConsole ¢i Visual VM.
Analyzovali sme aj platformu Eclipse TPTP ¢i Netbeans profiler. Z komer¢nych profilovacich
rieSeni sme preverili program YourKit java profiler.

Nasledne prebehla $pecifikacia a analyza poziadaviek. Zistili sme, ze Ziaden existujuci
profilovaci nastroj presne nevyhovuje potrebdm kladenym zadanim tejto prace, pretoze
neposkytuju dostatocné moznosti Specifikacie profilovania. Boli ur€ené nasledovné funkcné

poziadavky:

e Aktivny zber informdcii vykonnostnych parametrov pouzitim vhodnych technik,
e vykonavanie zberu informacii o ¢innosti procesora, operacnej paméte, volania metdd a

aktivity vlakien pocas prevadzky softvérového systému,
Taktiez sme identifikovali niektoré nefunkcionalne poziadavky:

e Implementécia profilovacieho néstroje vo forme webaplikacie,

e intuitivne grafické pouZzivatel'ské rozhranie,

e Co najmensi negativny dopad profilovania na vykonnost’ analyzovanej aplikacie,
e jednoducha rozsiritelnost’,

e integracia s va¢§im systémom s otvorenym zdrojovym kdédom.

78

Architektura typu klient-server nie je Casto vidana v kontexte profilovania softvérovych
systémov, avsak lepsie vyhovuje stanovenym poziadavkam.

Nasledne bol vykonany navrh aplikacie. V prvom rade sme navrhli mechanizmus
profilovania. Samotny zber vykonnostnych tidajov je vykonavany samostatnou jednotkou, tzv.
agentom, ktory je pred zacatim vykonavania skimanej aplikacie vlozeny do cielovej JVM.
Agent pomocou vstavaného rozhrania vykonava dopyty ohl'adom stavu a vykonnosti JVM, tieto
informacie nasledne posiela profilovaciemu serveru prostrednictvom komunika¢ného rozhrania.
Na strane profilovacieho servera st data spracované a zobrazené pouZzivatel'ovi V zrozumitelnej

forme. Tento proces mozno detailnejsie vidiet’ na nasledujucom obréazku.

/ N\ | profiler guI

control .
M T Agent \ cumﬁlf:iztatiun / {WEb C“ent}

events

Profiler Process

Application Server Process

Obr. 10: Zakladna schema profilovania. JVM TI je skratka z Java Virtual Machine Tool Interface.

Mechanizmus profilovania sme doplnili navrhom troch novych technik. Prvou z nich je technika
definovanych pouzivatel'skych scenarov. V grafickom pouzivatel'skom rozhrani si pouzivatel
mozZe zvolit' metddy, ktorych vykonnost’ ho zaujima. Tieto informacie st nasledne poslané
agentovi, ktory ignoruje volania ostatnych ako pouZivatefom zvolenych metod. Dalsou
technikou st tzv. urovne profilovania. Nie vzdy vyvojara java aplikacii zaujimaju vsetky
aspekty vykonnosti. Niekedy chceme skiimat’ len pracu s opera¢nou pamit'ou, popripade zat'az
procesora. Pouzivatel' teda ma moznost’ zvolit’ aspekty, ktorych skimanie je relevantné. Tuto
techniku mozno rozsirit’ o tzv. profilovacie intervaly. Ide o ¢asové useky medzi jednotlivymi
cyklami zberu vykonnostnych dat. Niekedy, hlavne pri rozsiahlych softvérovych systémoch,
ktorych architektura je navrhnuta za G¢elom jednoduchej rozsiritel'nosti, sa stava, ze je Siroka
paleta operacii vykonavana jedinou metddou, priCom smerovanie funkcionality tejto metody je
uréené vstupnymi parametrami. Vyvojara vykonavajiceho profilovanie mdzu zaujimat len
$pecifické behy skumanej metddy, preto sme navrhli techniku filtrov volania metod, ktora
umoziuje pouzivatel'om Specifikovat,, ktoré behy vykondvania metdd ich zaujimaji prave na

zaklade hodnot a typov vstupnych parametrov.

79

Implementacia profilovacieho nastroja prebehla na zaklade stanovenych poziadaviek
a vypracovanom navrhu rieSenia. Pouzili sme techniku dynamickej inStrumentacie zdrojovych
stiborov pouzitim technologie Javassist a Standardnych vstavanych kniznic v java API
(Java.lang.instrument). Zber dat tykajacich sa cinnosti operanej pamite, zataze
procesora ¢i aktivity vlakien bol implementovany pouZzitim techniky vzorkovania a technologie
JMX (Java Management eXtensions). Aplikacia bola implementovand pouzitim klient-server
architektiry s vyuzitim tenkého klienta. Grafické pouzivatel'ské rozhranie sme implementovali
pomocou webovej Sablony s otvorenym zdrojovym kdédom. Tato Sablona bola prepojena
s profilovacou funkcionalitou pouzitim webového frameworku Apache Wicket, ktory je
zalozeny na principoch navrhového vzoru MVC (Model-View-Controller). Na implementaciu
grafického zobrazovania zozbieranych vykonnostnych parametrov sme pouzili kniZznicu

Wicket-Charts. Vzhl'ad aplikacie mozno vidiet’ na nasledujucom obrazku.

Profiler Soarch B seach

Home Actual Profiing Start Profiling Profiling levels Profiling Scenarios

Attach to JVM Quick profiing New Project My profilings

New Project
Project Name:
Description:
P
CPU Settings: Classic E
Memory Settings: Classic =

Profiling Scenario: none E

Insert JAR: Insert jarfile to be profiled

(@ Save whole jar file (only jar path is saved, when this aption is not
—'selected

)

File option:

VM Options:

Attach option: [JAttach on start (f not selected, agent will attach after program start)

Obr. 17: Vzhl'ad grafického pouzivatel'ského rozhrania implementovanej aplikacie.

Boli taktiez implementované techniky spomenuté v navrhu rieSenia, konkrétne sme
implementovali pouzivatelom definované profilovacie scenare, irovne profilovanie ale aj filtre
volania metod.

Implementované rieSenie sme nasledne overili sériou testov. Vytvorili sme mnozstvo
manualnych testovacich scenarov, ktorych vysledky mozno vidiet' v prilohe C. Pre testovacie

ucely sme taktiez vytvorili aj sériu automatickych testov pomocou frameworku TestNG, ktory

80

ponuka funkcionalitu podobnu ako framework JUnit. Doraz sme kladli na testovanie a meranie
vieobecnej zataze vykondvania profilovania na skimant aplikaciu. Cast vysledkov mozno
vidiet' v nasledujticej tabulke. Vysvetlenie spolocne s detailnejSimi vysledkami testovania

mozno vidiet v prilohe C.

Memory | CPU | Thread | Class Overhead | Overhead
| Method #1[s] | #2[s] | #3][s]
[ms] | [ms] | [ms] | [ms] [s] [%]
1 - - - - - 2,735 | 4,770 | 170,10 - -
2 Y 1000 1000 | 1000 1000 | 2,737 | 4,832 | 171,40 1,3 1,007
3 Y 100 100 100 100 | 2,745 | 4,847 | 171,86 1,76 1,010
4 Y 10 10 10 10 2,750 | 4,979 | 174,61 451 1,026

Obr. 22: Vysledky merania negativneho vykonnostného dopadu profilovacieho nastroja na analyzovana

aplikaciu.

Implementované rieSenie sme taktieZz testovali v spolupraci s midPointom. MidPoint je
softvérovy produkt posobiaci v oblasti manazmentu identit a taktiez ide o produkt, do ktorého sa
bude implementované rieSenie integrovat’.

V tejto bakalarskej praci sme sa zamerali na oblast’ profilovania java aplikécii. Postupne
sme vykonali vSetky fazy Standardného cyklu vyvoja softvéru. Konkrétne §lo o analyzu
problémovej oblasti, Specifikaciu poziadaviek a stanovenie cielov, navrh aplikacie a jej
mechanizmov a samotna implementacia nasledovana vyéerpavajiicim testovanim. Do oblasti
profilovania sme uviedli niekol'’ko novych, respektive upravenych mechanizmov, konkrétne ide
0 pouzivatel'mi definované profilovacie scenare, irovne profilovania a filtre volani metod. Praca
na tejto aplikacii nie je ani zd’aleka dokoncend, ked’Ze existuje mnozstvo vylepseni, ktorym sa

budeme d’alej venovat’, konkrétne:

e Vicsia dynamickost’ pouzivatel'ského rozhrania a integracia technologie AJAX,
e XML forma pre objekty repozitara,
e rozSirenie filtrov volani metdéd o moznost' definovania filtrov pomocou vyrazového

jazyka a mnohé iné.

Verime vsak, Ze projektom sme splnili ciel’ bakalarskej prace. Najblizsi osud implementovaného
rieSenia je integracia so softvérovym systémom midPoint, konkrétne bude vykonana v niektorej

z nasledujucich stabilnych verzii (2.3).

81

