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Správa identít je oblasť, ktorá sa zaoberá získavaním a spravovaním informácií 

o používateľoch v informačných systémoch, ich právach a prístupových účtoch. Práve 

informácie o prístupových účtoch a právach používateľov sú mnohokrát umiestnené 

v rôznych databázach a úložiskách údajov ktoré sú často heterogénne. V súčasnosti existujú 

systémy na správu identít, ktoré integrujú informácie z desiatok až stoviek podsystémov. 

Tieto podsystémy môžu v podnikovej sfére a v reálnom nasadení obsahovať tisícky záznamov 

o používateľských identitách. Čím viac podsystémov je integrovaných, tým je väčšia šanca 

vznikaní nekonzistentnosti.  

Hlavným problémom integrácie je nedostatočná korelácia medzi záznamami 

o identitách. Existuje niekoľko prístupov ku tomuto problému, avšak ani jeden nie je 

dostatočne efektívny. Niektoré z týchto prístupov zahŕňajú korelačné výrazy a potvrdzovacie 

pravidlá, ktoré sú príliš jednoduché pre zložitejšie prípady nasadenia. Rovnako existuje 

mnoho prác o prepájaní záznamov a algoritmov pre hľadanie podobnosti znakov slov, avšak 

žiadny z prístupov neposkytuje verejne dostupné riešenie. Nedostatok automatických riešení 

má za následok manuálnu koreláciu identít, ktorá je síce najpresnejšia, avšak pre veľké 

organizácie časovo náročná. 

V našej práci analyzujeme existujúce prístupy v oblasi správy identít, podobnosti 

záznamov o používateľoch a korelácie používateľov s využitím algoritmov strojového učenia. 

Predstavujeme návrh metódy na automatickú koreláciu údajov o identitách z rôznych 

systémov. Hlavný prínos našej metódy spočíva v automatizovaní procesu korelácie s využitím 

čo najmenej manuálnej práce. Naša metóda pomocou algoritmov na podobnosť reťazcov 

a algoritmov strojového učenia poskytuje možnosť spájať záznami o identitách z viacerých 

zdrojov. Implementáciu navrhnutej metódy realizujeme pomocou webovej aplikácie 

a overujeme pomocou experimentou s údajmi o zamestnancoch Slovenskej techniskej 

univerzity v Bratislave. 
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Identity management systems manage various identity sources, integrate them and provide 

identities access to various heterogeneous systems. These identity sources often consist of 

records with various inconsistent attributes and thus integration can be difficult. Nowadays 

there are identity management solutions which integrate information from various stores, 

from tenths to hundreds of subsystems. Subsystems used in corporate sphere can include 

thousands of records with identity information. The more subsystems are integrated the more 

likely occurrence of inconsistent identity data is. 

 Main problem with integration is the proper correlation of identity records from 

various heterogeneous identity sources. Some correlating mechanisms were proposed, but 

neither of them is sufficient. For example correlation expressions and confirmation 

expressions are too simplistic to handle complicated scenarios. There are also many literature 

sources describing record linkage processes and string matching algorithms. However there is 

lack of open solutions for this problem. The lack of available automated solutions result in 

manual correlation, which is probably the safest way to correlate identities. But it is too time-

consuming for larger identity management deployments. 

 In our work we analyze existing approaches in field of identity management systems, 

record matching, data deduplication and correlation of user records with using string 

similarity algorithms and machine learning approaches. We propose method for automatic 

correlation of identity records from various sources. Main asset of our work is automation of 

correlation process and saving manual work. Our method uses string similarity algorithms and 

machine learning algorithms for correlating identity records. Implementation is realized as 

web application and verification is done by experimenting with dataset from Slovak 

university of technology in Bratislava.  
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1 Introduction 

Identity management systems manage various identity sources, integrate them and provide 

identities access to various heterogeneous systems. These identity sources often consist of 

records with various inconsistent attributes and thus integration can be difficult. Nowadays 

there are identity management solutions which integrate information from various stores, 

from tenths to hundreds of subsystems. Subsystems used in corporate sphere can include 

thousands of records with identity information. The more subsystems are integrated the 

more likely occurrence of inconsistent identity data is. 

 Main problem with integration is the proper correlation of identity records from 

various heterogeneous identity sources. Some correlating mechanisms were proposed, but 

neither of them is sufficient. For example correlation expressions and confirmation 

expressions are too simplistic to handle complicated scenarios. There are also many 

literature sources describing record linkage processes and string matching algorithms. 

However there is lack of open solutions for this problem. The lack of available automated 

solutions result in manual correlation, which is probably the safest way to correlate 

identities. But it is too time-consuming for larger identity management deployments. Our 

aim is to design and develop effective method for user correlation with emphasis on the 

automation of matching process.  This thesis is divided into sections. Section 2 

describes principles in identity management especially identity stores, access management, 

provisioning, reconciliation. Section 3 describes identity correlation mechanisms like 

record linkage, string similarity algorithms etc. Section 4 presents analyzes of existing 

identity management solutions with focus on identity correlation. Section 5 presents 

correlation method proposal with data preparation process, normalization and detection 

methods. In section 6 we describe implementation of our correlation framework and 

dataset. In section 7 we describe experiments and results of our method.  

We conclude with evaluation of our project and possibilities for further 

development. 
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2 Identity Management 

Identity management manages identities in cyberspace. [5] It is also defined as 

combination of technologies and practices for representing and recognizing entities as 

digital entities in cyberspace. Identity management systems are not same for every 

organization, because of specific requirements of each organization. Main purpose of 

identity management system is integration of identity data, process and handle their life 

cycle including creation of new identities, modification and deletion. 

 [4] Person in digital world can be described as set of attributes which can be 

managed by technical means which is called digital identity (Figure 1). Digital identity 

uses personal data which can be stored and automatically processed by computer 

application. Term virtual identity is used as synonym to digital identity.  

Identity in general is exclusive reception of life integrated into social group, which 

is bound to body and is constantly shaped by society around this identity. Identity is also 

any subset of attributes which identifies individual within set of individuals. “I” represents 

individual self as instance of liberty and initiative. “Me” represents social attributes which 

define human identity.  

[21] Role is a set of connected actions taken by identity in specific social situations 

which is basically expected behavior. Technical description of identity is digital identity, 

which consists of attribute identifiers of individuality. 

Partial identity is subset of person attributes both in real and digital world which 

represents person in specific situation or context. Usually person uses more than one partial 

identity e.g. for work, school or other activities. Partial identities contain information on 

person, which can be static (birthplace) or dynamic (phone number). Person may use 

different names – nicknames or pseudonyms.  

User account stores all information about person in cyberspace. It can be also called 

user record, user identity or simply account. User account stores information about real 

world person for example surname or age. It also stores technical information in context of 

system, in which account was created for example account permissions or system resource 

settings. 
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Figure 1. Person in cyberspace 

Growth of Internet and distributed systems forced field of identity management to change 

from manual processes to fully automated processes.  [6] There are three main 

environments with their specific problems within identity management: enterprise, internet 

and government. There are three areas of identity management technologies dealing with 

each environment: 

 Enterprise identity management which takes place in enterprise environment and 

automate user management, authentication and authorization 

 User-centric digital identity management take care about  user’s data in Internet 

environment 

 Government digital identity management focus on data managed by government 

and has serious legal aspects of person’s lives 

Identity management is important for organizations which need to provide access to 

different subsystems for their employees or contractors. It is also need to manage life cycle 

of hiring new people by creating new accounts, modify them, or disabling accounts for 

fired employees. Every employee in organization has his own role, which need to be 

represented by technical means by providing access rights to resources. These roles and 

rights can change in time, so there is need to capture changes in system. Large 

organizations need to integrate numerous systems and subsystems and identity 

management systems reduce complexity and difficulty of integration process.  

Identity management contains various technologies and we can define three main 

technology groups: 

 Identity stores 

 Access management 

 Provisioning 

2.0.1 Basic Principles in Identity Management 

Anonymity and pseudonymity are core concepts preserved in identity management 

systems. [1] Anonymity is state of being unidentifiable or not uniquely characterized 

within anonymity set – set of subjects. Subject is acting entity i.e. human or computer. 

Subject anonymity can be enabled only if there is an appropriate set of subjects with same 

attributes. Anonymity ensures that user can use service without exposing his identity.  

Pseudonymity uses pseudonyms as identifiers. Being pseudonymous is state of using a 

pseudonym. Pseudonyms are identifiers of subjects and he holder of pseudonym is subject 

which the pseudonym refers to. Pseudonyms are another kind of attributes widely used in 

IT systems because pseudonymity ensures that user can use resource or service without 

exposing his identity, but still can be able to use it.  Digital pseudonyms are strings, which 
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has to be meaningful in certain context. It also must be unique as an identifier and must be 

able to authenticate the holder’s actions. 

2.1  Identity Stores 

Identity stores hold information about user’s accounts and are often shared with other 

application within organization trough network.  Identity stores use various technologies, 

especially Directory Services which provide storing user and accounts in tree structure for 

example LDAP (Lightweight Directory Access Protocol). Active directory is directory 

service which provides authentication and authorization users and computers within 

Windows domain type networks.  

Directory services often use [27] LDAP protocol, which is application protocol for 

accessing distributed directory information services over network.  Directory information 

services can provide structured records such as organizational email directory. LDAP 

protocol is very popular because of his scalability.  

Identity store can be part of one application, or it can be shared with more than one 

application (Figure 2).  

 

Figure 2. Shared identity store 

2.2  Access Management 

Access management manages user authentication and authorization and unifies security 

processes. In many systems the importance of resource security is paramount, especially in 

identity management which deals with sensitive personal data.  

Authentication is part of access management which provides verification of users. It 

is the process of establishing who a person is and creating trust relationship between 

system and consumer of services. There are many options for authentication for example 

using matching process between public identifier (user name) and private identifier 

(password) or digital certificates.  
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Authorization takes place when user is successfully authenticated and need access 

to system resources. Authenticated identity has certain set of permissions and authorization 

deals with determining which permissions will be granted to identity. 

[8] Single sign-on (SSO) is concept that provides user to authenticate once and gain 

access to all systems without logging again. Single sign-on concept is part of access 

management. User has to remember only one password to get access to many different 

systems and resources. [7] There are four types of SSO: 

 Enterprise SSO connects systems within same enterprise 

 Multi domain SSO connect multiple systems across multiple enterprises 

 Web SSO connects applications and services across the web 

 Federated SSO connect systems based on federated identities by combining 

identity attributes from multiple IDM systems 

There is a variety of architectures which can be used for SSO implementation: 

 Broker-based SSO 

 Agent-based SSO 

 Token-based SSO 

[10] In Broker-based SSO solution there is one server for central authentication and broker 

gives electronic identity that can be used for requesting access to various systems. [28] 

Kerberos is an authentication protocol for TCP/IP networks and it is basic model for a 

broker-based Single Sign-on architecture. It uses trusted Kerberos server which is actually 

broker. Kerberos server centrally authenticates users and give them electronic identity 

based on the credentials given. After the user was authenticated on server, he gets ticket for 

different services and applications. 

 Agent-based SSO solution is based on agent program placed on server side acting 

as interpreter between authentication system and authentication method used by client. The 

SSH is an example of agent-based solution.  

[9] Token-based SSO uses physical token that generates time dependent one-time 

passwords for user authentication. When user logs on system, a centralized authentication 

server will authenticate user and generates user token including session key and time 

stamp. User can use token to access various application servers. These servers send users 

request to centralized authentication server for token validation. SecurID is one of 

implementations of this token and is based on synchronized clock on hardware token and 

network server. Generated password is accepted only within certain time window.   
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Figure 3. Single sign-on schema 

2.3  Provisioning  

Provisioning part of identity management systems take care of managing and integrating 

many identity stores. Provisioning systems synchronizes various data and models from 

many sources by replicating changes to the different resources. Provisioning includes 

complex rules and expressions mechanisms to match models of connected systems and 

stores.  

For example hiring new employee starts with creating record about person in 

human resource system. Provisioning system then automatically detects new record and 

assign role to user. Based on role provisioning system creates accounts in the external 

systems.  

Another example can be when work position of an employee changes and new role 

must be activated. Provisioning system detects change made in the human resource system 

, changes the role and creates new accounts.  

[14] Identity management systems provide alternatives to provision resources to 

authorized users on request-based, role-based and hybrid approach. In request-based 

approach, users request access to special applications and resources with certain privilege 

levels within system. Requests are validated by workflow driven approvals. Administrators 

are alerted to new or unused accounts and have an option to activate, modify or delete such 

accounts.  

Role-based provisioning approach automates process of granting access to 

resources. Users are assigned to roles and get specific set of accounts and access rights 

based on their role. User can be removed from role and entire set of corresponding 

accounts and rights are removed. 

Hybrid approach combines request and role-based approach. Automated role-based 

assignment access rights and accounts can be enriched by providing options to manage 

accounts manually.  
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Figure 4. Identity management system 

2.4  Role-Based Access Control 

Large organizations has to deal with unauthorized access to organizational resources, 

applications or external systems. Role-based access control (RBAC) is one of the most 

known access control standards. It simplifies access control policies by grouping users in 

roles, which are ordered in a role hierarchy. [12] There are overlapping responsibilities and 

privileges that users can have within organization and users with different roles may need 

to do common operations. A role hierarchy defines roles that can contain other roles which 

mean that one role can use operations from another role. Role is abstraction that contains 

set of responsibilities with corresponding allowed operations. Privileges are assigned to 

role which means that certain role has predefined set of operations within system. As 

shown on figure 5, user cardiologist has role Cardiologist which contains privileges of 

doctor role and intern role. 

[11] RBAC abstraction provides security administration at business enterprise level 

rather than at the user identity level. Functional roles in organizations are captured as role 

with defined permissions and role, or set of roles are assigned to user. 
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Figure 5. Role hierarchy 

2.5  Reconciliation 

Reconciliation is process of synchronization user account from various resources and 

purpose is to create user-centric identity system that holds single profile with links to 

accounts in other systems. For determination of an ownership reconciliation compares 

account information between information from user accounts. [22] There are multiple 

options for reconciliation for example automatic matching accounts with consistent unique 

identifiers, matching other attributes or using mapping tables if they are available in 

organizations.  Reconciliation process is based on following steps: 

 Reading relevant information from the source system 

 Match the information from the source system to existing information in the 

identity store using a correlation function (correlation rule) 

 Read relevant information from identity store 

 Compare the information retrieved from the source system with the information in 

the identity store and calculate differences 

 Perform defined actions based on calculated differences 

Information represents user attributes and permissions or roles. Actions to be performed 

are for example modification of user when account is linked, delete or unlink account, 

resolve collision etc.  
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3 Identity Correlation 

Identity can operate under various accounts in different systems with different names 

(Jhsmith, James_smith, JS54), addresses etc. as shown on figure 6. Identity management 

systems need to keep user accounts linked, so that multiple user accounts from various 

systems can be easily changed. For example if the surname of employee changes after 

marriage, identity management system changes this name in all subsystem accounts. Or in 

case of firing employee, all accounts must be disabled or destroyed which is called de-

provisioning.  Identity correlation is process of reconciliation and validation of multiple 

user accounts which are linked by individual ownership. Identity matching is usually done 

by comparing user attributes using expression languages. Identity correlation is part of 

account linking process. Links are usually created automatically, but there is need to 

manually verify results of linking. Manual linking does not scale and is not efficient. 

Identity management systems provide integration of various identity stores 

containing heterogeneous data. Usually there is no single authoritative source, so 

integration can be very difficult. Main goal of integration is to map identities or user 

accounts from various sources using for example rule engines, or expression languages.  

Integration is used by synchronization mechanisms which checks correctness of user 

account state - consistency.  

 

 

Figure 6. Identity correlation 

Existing provisioning systems usually use simple correlation expressions to match the 

identities as shown on figure 7. These expressions get information from the account and 

build search query for finding owner of an account. Correlation expression is usually 

parametric search query, i.e. a search query with some parts determined by a dynamic 

expression. When correlation expressions match two or more accounts, confirmation 

expressions take place. Confirmation expression provides comparison of potential users 

accounts.  
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Figure 7. Correlation and confirmation expression schema 

3.1  Record Linkage 

Organizations often need to identify and match records within large databases. Especially 

in systems which are dealing with personal data integration. 

User account records in databases consist of attributes for example name, address, 

date of birth etc. These attributes often contain typographical errors (misspelling, missing 

letters, incomplete words, incorrect or missing punctuation, abbreviations and fused or split 

words), data representation across sources may differ or change in time, which make 

duplicate identification very difficult.  

[15] Record linkage is methodology of matching corresponding records from two 

or more sources or finding duplicates in files. Identity management deals with situations 

where several account records from various identity sources may refer to the same real 

world entity while not being syntactically equivalent. Set of records which refer to the 

same real world entity can be in general interpreted in two ways. First is to take one of the 

records as correct and the other records as duplicates containing errors. There is need to 

clean error duplicates. Other way is to merge matching records as partial sources of 

information to create one complete record. This is common with identity management 

systems, where is need to map records but not necessarily change them. 

Record linkage involves bringing potential matches together for comparison 

including duplicate detection. It also involves comparison of potential record pairs whether 

they belong to the same real world entity. There are two approaches: 

 Probabilistic linkage 

 Deterministic linkage 

Deterministic linkage is also called exact due to exact one to one matching character within 

linkage variables with one high quality identifier. Probabilistic linkage uses combination of 

the partial identifiers for example first name, email or address to compute weights for each 

potential match based on probabilities.   

[17] Duplicate detection in record linkage is straightforward method for revealing 

exactly same records – real world entities. Records are sorted in a table and then 
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neighboring tuples are checked. This approach could be also used to detect approximate 

duplicates. Sorting is based on application-specific key for example first name and last 

name so that likely records appear near each other. There are duplicate detection 

algorithms using sliding window of fixed size for sorted records. The size of window is W 

and i is record, i is compared with record i-W+1trough i-1 if  i > W, and otherwise with 

records 1 trough i-1. Repetitions and combining results of sliding window matching with 

small window size lead to better results as one repetition with large size of window. 

[16] Traditional approaches to duplicate detection are on approximate string 

matching criteria. It can be enriched with domain specific rules. Recently there have been 

new adaptive approaches which use attributes and labeled data. Persons similarity is 

enriched with additional attributes for instance if two accounts refers to same location, or 

same workgroup, it is highly probable that these accounts belongs to same person.  

 Record linkage matching results are dependent on attribute value having errors and 

inconsistencies. Different attributes need different metrics when comparing values.  

[20] Record linkage process consists of five steps (figure 8): 

 Cleaning and standardization deals with data errors and inconsistencies by 

converting attributes to same format, adding derived variables 

 Indexing / blocking generates candidate record pairs 

 Comparison results are weight vectors that contain numerical similarity values 

 Classification is based on weight vectors and results are of type matches, non 

matches, possible matches 

 Evaluation of quality of generated matches and non matches. Often manual review 

is needed to decide final linkage 

 

Figure 8. Record linkage process overview 
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3.2  Typical Errors in Matching Variables 

[23] Sources of errors in matching personal records are for example misspellings, using 

phonetic name, use of synonyms or nicknames, lack of initials, compound names etc. Most 

common errors are: 

 Present surname can change due to marriage or divorce. There are also compound 

surnames where birth surname and marriage surname are mixed.  

 First forename brings errors with variations of forenames due to transcription or 

modifying forenames caused by fashion trends (popular persons). People often use 

nicknames instead of forename. 

 Address can change during person’s life quite often. There are also problems with 

using mailing addresses and physical addresses.  

 Date of birth is variable used to verify age of person, but there are also problems 

in format of date (European, US).  

 Swapping names and surnames is frequent error caused by transcriptions. 

 Titles in name variable are for example marital status, academic title, academic 

degree, church, family order, concatenated names etc. Titles cause problems with 

name matching due to difficulties with parsing name to forename and surname.  

3.3  String Normalization 

Preprocessing of record information or attributes is most suitable before using string 

comparison methods. Normalization can make string comparison easier, sometimes even 

basic string matching is enough. Normalization can be considered at cleaning and 

standardization level if it does not spoil information value in attribute. Basic normalization 

methods are: 

 Transformation of all characters to lowercase 

 Removing whitespaces before and after string 

 Removing punctuation characters or replacing them 

Special normalization techniques can be applied in addition to type of information or 

attributes in identity records. For example if attribute is name of person, then we can 

extract academic or other titles into new attribute and then we can user or process these 

information later. Another example is address attribute, which can contain compound 

address information (part of the town) and this can be extracted to new attribute and used 

later. 
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3.4  String Comparison Methods 

There are several methods for record linkage i.e. entity name clustering and matching, edit 

distance, vector space cosine similarity. Some recent works combine multiple standard 

methods and metrics.  

 Similarity estimation can vary depending on the domain.  For string similarity 

improvement there is need for adapting string similarity metrics for each field 

corresponding to the particular domain.  

[3] Methods for string similarity can be divided into two groups: 

 Character based techniques 

 Vector space based techniques 

Character based techniques rely on character edit operations such as deletions, 

substitutions, insertions, comparison of subsequences. Such technique is Levenshtein 

distance which is defined as minimum number of insertions, deletions or substitutions 

necessary to transform one string into another string. Character based techniques work well 

for estimating distance between strings with typographical errors or abbreviations, but 

these metrics are computationally expensive and also less accurate for larger strings.  

Vector space techniques deals with this problem better, because such techniques are  

based on viewing strings as bags of tokens.  The order of tokens is unimportant. Strings in 

tokens are represented as sparse n-dimensional vectors of real numbers where every 

component corresponds to a token present in string. TF-IDF is probably most known 

method and useful for larger strings and text documents.  

Records can be composed of multiple attributes and distance between these records 

must combine similarity estimates for each attribute. Each attribute can have different 

informative value and thus is necessary to weight attributes properly.  

In [2] the authors propose object identification system based on domain independent string 

transformations to compare objects shared attributes. They use candidate generator which 

use set of domain independent transformation to judge similarity between objects. 

Candidate generator produces an initial set of candidates. The authors propose unary 

transformations which are used to determine candidates: 

 Equality for testing if a token contains same character in the same order 

 Stemming converts a token into its stem or root 

 Soundex converts token into a soundex code. Tokens that sounds similar have same 

code 

 Abbreviation looks up token and replaces with abbreviation 

N-ary transformations: 

 Initial computes if one token is equal to the first character of other token 

 Prefix determines if one token is equal to a continuous subset of the other starting 

at first character 
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 Suffix determines if one token is equal to a continuous subset of the other starting at 

last character 

 Substring computes if one token is equal to a continuous subset of the other but not 

include first or last character 

 Acronym computes if all characters of one token are initial letters of all tokens from 

other objects 

 Drop determines if a token does not match any other token   

Tokenization is process of lowercasing all characters in text and removing punctuation 

characters. Transformations are used after tokenization. 

Matching variables in records contain string values. There are several solutions for 

string comparison for example:  

Levenshtein distance (edit distance), [29] which is defined as smallest number of 

insertions, deletions or substitutions of characters needed to change one string to another. 

Levenshtein distance can be modified to provide different edit costs – weights for edit 

operations in special situations depending on domain in which Levenshtein method is used. 

It can be effectively used in some situations i.e. “I” and “L” can be mechanically scanned 

as same letter and we need to give lower edit cost to operations witch these characters.  

Damerau-Levenshtein distance [30] is variation of Levenshtein distance. 

Transposition is new operation and it costs just one edit instead of deletion and insertion. It 

is often used when error rate in string is low (misspellings).  

Brute force string comparison is simplest algorithm to use. Algorithm try to 

match all possible pattern positions in string and verifies that pattern at exactly same 

position. If one string contains x characters and second string contains y characters, then in 

worst case there are x.y comparisons.  

Knuth-Morris-Pratt (KMP) [31] algorithm is faster than brute force algorithm 

because of using sliding window over the strings in text. It does not try all positions as 

brute force, but it reuses information from previous check.  

Boyer-Moore algorithm works similar to KMP, but check inside the window can 

proceed backwards and forwards. 

Bag distance is cheap approximation to edit distance. A bag is defined as a multiset 

of the characters in a string (for example, multiset ms(‘peter’) = {‘e’, ‘e’, ‘p’, ‘r’, ‘t’}, 

and the bag distance between two strings is calculated as  

distbag(s1, s2) = max(|x − y|,|y − x|), with x = ms(s1), y = ms(s2) and |·| denoting the 

number of elements in a multiset. 

Smith-Waterman is algorithm suitable for names with initials and compound 

names. It is based on a dynamic programming approach similar to edit distance, but allows 

gaps 

as well as character specific match scores. 
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 Longest common sub-string (LCS) repeatedly finds and removes the longest 

common sub-string in the two strings compared, up to a minimum lengths. This algorithm 

is recommended for compound names and names where first name and surname are 

swapped. 

Q-grams are sometimes called n-grams are substrings of length (q,n). If q = 2, then 

name “Thomas” is split to bigrams “Th”, “om”, “as”. Similarity is calculated between 

splited n-grams so that similarity counts grams which are common.  

Positional q-grams is extension to q-grams and add positional information and 

match only grams within certain distance.  

The Jaro distance algorithm is used for name matching in data linkage systems. It 

counts for insertions, deletions and transpositions. The number of common characters and 

number of transpositions are used in this algorithm. 

Results in [18] shows that for names parsed into separate fields, Jaro algorithm 

performs well with given and surnames. They also recommend knowing data, types of 

names and separators before choosing matching algorithm.  

 In paper [19] the authors present novel person name matching model. They 

formalize name variations in English language, introduce name transformation paths. 

Subsequently supervised techniques are used to learn a similarity function and decision 

rules. Transformation paths are weighted to give reasonable results and similarity function 

counts with these weights to improve estimations. They use support vector machine to 

(SVM) to learn a decision rule.  

3.5  Machine Learning Data Correlation 

Machine learning provides algorithms that automatically improve their performance based 

on gaining experience. Generating predictions is core functionality of machine learning 

algorithms. Algorithm can learn - improve predictions based on example data inputs. 

Recent research shows that there is no generic learning approach for all cases and in fact, 

different algorithms can produce similar results. The nature of data used to characterize 

task influence success of a learning algorithm. Data must be statistically regular and that is 

condition for learning algorithm to provide reasonable results.  

 Machine learning discovers regularities and classifies data, which must be 

preprocessed (removing redundant or irrelevant data) in order to provide less time 

consuming computations. Classification task in machine learning is based on 

generalization from the training objects to provide new object to be identified as belonging 

to one of predefined classes. [24] Predefined classes with specific example objects 

(training objects) are labeled and this is called supervised learning. In unsupervised 

learning, there are no predefined objects labeled with appropriate classes. Supervised 

learning is dependent on quality of data provided for training. Authors used Levenshtein 

distance with affine gaps, where affine gaps are sequence of non-matching characters. This 

method provides better results with abbreviations and can be modified using parameters for 
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penalization certain affine gaps in special cases. For example various characters has 

different meanings within attributes – numbers in address are more important than number 

in person’s name. Authors use support vector machine (SVM) for classification.  

 Case-based learning algorithms (CBL) is presented in [25], where authors present 

CBL algorithms as good choice for supervised learning tasks and are describing framework 

for CBL algorithms. They focus on learning issues and do not perform case adaption and 

smart indexing schemes. There are various CBL algorithms, for example Protos and 

MBRtalk, which were applied to a large range of tasks with considerable success. Overall 

experience shows that algorithm which work with one application, does not ensure that it 

will work for other.  

3.6 K nearest neighbor 

[32] K nearest neighbor algorithm is one of the simplest decision procedure. It classifies 

samples in addition to the category of nearest neighbors. K nearest neighbour algorithm 

assigns to a test pattern the class label of its k-closest neighbour(s) by using majority vote. 

The value of k is the most important, beacause the right value can improve accuracy. There 

are modifications of this algorithm for example modified k nearest neighbor algorithm, 

where nearest neighbors are weighted according to their distance from test node. Instead of 

using majority vote for classification, a weighted majority rule is applied. As seen on 

figure 9, testing point (green) will be classified as red triangle if k = 1, 2, 3. If k = 5, class 

is blue square. 

 

Figure 9. K nearest neighbor example 

3.7 Support vector machines SVM 

The support vector machine is binary classifier. It creates a decision boundary in multi-

dimensional space by using sub-set of training set vectors. [32] The elements of sub set are 

support vectors. Support vectors are geometrically those training patterns, that are closest 
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to the decision boundary. For determination of classes, the linear discriminant functions 

can be used. In general decision boundary is obtained as hyper-plane for separation of 

testing nodes. An SVM model is representation of the example nodes as points in space 

which are mapped so that the examples of different categories are divided by a clear gap 

which is as wide as possible. New examples will be mapped into the same space and 

predicted to belong to a category in order to position in gaps. SVM can maximize the 

margin around the separating hyper-plane. 

 

Figure 10. SVM hyper-plane example 

Support vector machine classifier is used in text categorization, images recognition, 

medical science and hand written characters recognition.  

3.8 Neural networks 

[32] Artificial neural network was based on observing how human brain works. The output 

of neural network depends on inputs and weights in the network. The training of neural 

network consists of making the network give the correct output for every training input. 

Every link in the network gets random weight and if the output is correct, weights are not 

changed. Otherwise new random weights are created. This procedure is repeating until all 

inputs have correct output. Neural network consist of artificial neurons that are modeled as 

neurons in human brain. The input in the neuron is weighted and summed up. If 

aggregation exceeds a threshold, neuron outputs signal. Neural network models are 
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mathematical models that define functions. Network functions are made of other 

predefined functions such as hyperbolic tangent. Neural networks are used in robotics, data 

processing, clustering etc.  

3.9 Decision trees 

[32] Decision trees are commonly used data structures in pattern classification because of 

high transparency. A decision tree is a tree where non-leaf nodes are associated with a 

decision and the leaf nodes are associated with class label. Each internal node test one or 

more attribute values and links to another node. Decision trees are good for choosing 

between several courses of action.  

 

Figure 11. Simple decision tree example 

For patterns classification using decision trees, the nodes represents status of the problem 

after making decision. The leaf nodes are labels of the classification rule based on the path 

from the root node to leaf node. In decision trees both numerical and categorical features 

can be used. The tree can be binary or non-binary, so that we can decide between many 

options. The rules are simple and easy to understand. Cons of decision trees are time 

difficulty for construction of the tree. There are many construction algorithms for example 

ID3, C4.5 etc.  
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4 Account Correlation in Identity Management 

Systems 

There are existing solutions in field of account correlation in identity management systems. 

There are open-source projects such as OpenIAM or OpenIDM and commercial solutions 

like Oracle Identity Manager. We present short overview on these systems with focus on 

provisioning and reconciliation part of these systems which partly deals with account 

correlation. 

4.1  Oracle Identity Manager 

Oracle Identity Manager is an enterprise identity management system that automatically 

manages user’s access privileges within enterprise resources. System provides secure 

access management for applications, data, web services and cloud-based services. It also 

provides single sign-on, authorization, mobile and social sign-on etc. Oracle Identity 

manager provides identity governance user self service, which simplifies account 

administration. Identity governance provides user registration, access requesting, role 

lifecycle management, provisioning, access certification etc.  Oracle Identity Manager uses 

correlation and confirmation rules for finding user account owners and mapping accounts. 

Correlation rules consist of object attributes – account representation used for attribute 

based search and list of attribute conditions which determine list of potentially matching 

users.   

 After deploying Oracle Identity Manager infrastructure definitions of security 

polices take place which determine what data users or applications can access. These 

polices are stored in access control lists in Oracle Internet Directory. User identities are 

provisioned in Oracle Internet Directory. Identities come from multiple sources for 

example human resources applications or user administration tools. These identities, 

groups and roles are synchronized with other directories. User identities, groups and roles 

are associated trough provisioning process which can be performed manually or 

automatically trough provisioning integration.  

4.2 Open IAM 

Open IAM is open source identity management system based on Service Oriented 

Architecture. It is one of the oldest open source provisioning systems. Services like 

identity service or audit service are exposed to users and administrators by Enterprise 

Service Bus (ESB). Open IAM provides identity management functionality like identity 

life cycle managing, provisioning, synchronization etc. Provisioning manages accounts 

based on rules or roles. Audit logging and reports are part of provisioning module. 

Synchronization functionality allows to synchronize information from several authoritative 

sources. OpenIAM synchronization is based on: 
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 Events which allows real time synchronization by sending message to Identity 

Manager Bus and then synchronization starts 

 Scheduled intervals are precisely configured time intervals in which 

synchronization can be done.  

Reconciliation detects changes in managed systems for example if Active Directory make 

change, reconciliation mechanism based on rules take place and synchronize this change 

with OpenIAM directory. 

 

Figure 12. OpenIAM architecture overview 

Figure 12 shows OpenIAM architecture overview where Enterprise Service BUS (ESB) is 

a central component acting as transit system for carrying data between applications. The 

heart of system is message bus which routes messages between endpoints. Services 

provide identity management functionalities such as authentication, authorization, 

password management, provisioning etc. Services are scalable and extensible for example 

by ability to plug new methods of authentication.  

4.3 OpenIDM 

OpenIDM is an open source identity management system written in Java programming 

language. OpenIDM is flexible, modular and provides RESTful interfaces to satisfy 

business needs and requirements. System provides password management for defining 

password policies and also synchronization of passwords from Microsoft Active Directory 
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(AD) and ForgeRock OpenDJ. OpenIDM offers scalable method for discovering new, 

changed or deleted accounts.  

Architecture is focused on modularity by providing components that can be 

composed together according to special needs. Component architecture allows to easily 

add new components or remove existing components. Following figure 13 shows 

architecture overview on system. 

 

Figure 13. OpenIDM architecture 

Core services are for example scheduler that takes care about regular synchronization and 

reconciliation by using Quartz library. Script engine provides triggers and plugin points for 

OpenIDM. Audit logging logs all relevant system activity to log stores. It also stores data 

from reconciliation for reporting. Managed objects represent identity related data managed 

by OpenIDM. These objects can be configured as user, group or role. System objects are 

representation of object in external systems. External object for example user entry in 

external LDAP directory is represented as system object. Mappings define policies 

between target objects and source objects. Mapping can define triggers for validation, 

filtering and transformation of source and target objects. Synchronization provides 

creating, updating and deleting resources from a source to a target system. Reconciliation 

provides resource comparisons between OpenIDM managed objects and source objects 

from external systems. Comparisons can result with proper actions depending on defined 

mapping between systems.  

 Access layer consist of RESTful interfaces for CRUD operations. User interfaces 

provide password management, registration and workflow services. 

 Provisioning system in OpenIDM manages accounts, groups and roles. 

Provisioning subsystem is connected to other resources systems for example human 



24 
 

resource servers, directory servers, provide communication between these systems and take 

care about managing changes. Changes are propagated by synchronization process that 

propagates changes from OpenIDM to other external resources or vice versa. There is a 

chance that inconsistencies arise due to maintenance one of external systems and 

reconciliation is needed. Reconciliation manages changes by comparing information from 

external resources and OpenIDM information.   

4.4  midPoint 

midPoint is an open-source provisioning system providing user provisioning, de-

provisioning, synchronization of identities and automated identity management processes. 

It also supports security and reporting. [26] midPoint solution focuses on efficiency and 

practical usage. For example provisioning scenarios are easy to setup and use because there 

is no need to code, instead configuration and simple expressions are needed. midPoint is 

designed to be modular and extensible by providing open iterfaces and plugins. System 

core consist of repository component, provisioning and model components (figure 14). 

Repository is storing authoritative identity data and links to identity objects in other 

systems, roles and access rights. Provisioning component deal with other systems, read 

data from them and modifies them if needed. Core components are configurable, but also 

customizable in special cases (adding new attribute expression or redefinition of a role). 

Highly customizable component is for example user interface. 

midPoint uses hybrid Role-based Access Control model which use rules to extend 

role definitions so that less roles can handle more situations. midPoint also unifies identity 

data models from integrated systems providing unified model to reduce integration 

overhead, but also provides customatizations and exceptions if needed.  

 Synchronization mechanism of midPoint uses account linking based on correlation 

and confirmation expressions.  



25 
 

 

Figure 14. midPoint component overview  
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5 Correlation method proposal 

In this section we would like to present our method proposal for automatic correlation of 

user records. Our method is based on string similarity metrics detecting similarity of user 

records and machine learning algorithms for automatic correlation. Method includes these 

steps (as shown on figure 15) 

 Data preparation, normalization of attributes and attribute extraction 

 Partitioning records, setting default attribute weights 

 Applying appropriate string metrics for similarity estimation 

 Applying machine learning algorithms to train model and classification 

 Manual checking – verification  

 

Figure 15. Correlation method overview  

5.1  Data preparation and normalization 

Data preparation phase is first step to user correlation detection. Input data must be stored 

uniformly in the database so it is easy to work with them. The problem is that data are 

stored in heterogeneous structures and so we need to define common structures to work 

with many data sources. Data preparation deals with parsing input data, transforming and 

standardize (normalize) them.  

 Parsing of input data depends on input format for example (xml, csv, database 

schema, plain text). We designed parser for structure of coma-separated format where 

records looks like “id: first_attribute_value; second_attribute_value”. Transformation of 

attribute data type is important because we often need to transform for example numbers 

(integers) to string data type for later processing.  

Input data with user account information contain various attributes. For proper 

matching and correlation detection we must estimate similarities based on attribute values 

from many sources so there is need to have normalized and standardized attributes. Some 

of the normalized attributes are suitable for simple string comparison without any other 

techniques because normalized form is adequate. In most cases, there is need to more 



28 
 

sophisticated matching algorithms. The quality of normalized data do not differ from 

original data so we normalize before insertion into database.  There are various methods 

for data normalization. We apply these basic methods: 

 Changing all characters to lower case 

 Removing punctuation 

 Replacing multiple white space characters with one space character 

 Removing white spaces at the beginning of string and in the end of string 

For numerical attributes like phone number we remove non numerical characters. For 

example telephone number “+420 987 343 (2)” is modified to “4209873432”. 

5.2 Attribute extraction 

Attributes may be too general and represent mixed user attributes for example attribute 

“name = “Ivan Torna” reflects given name and last name of person. We want to split this 

attribute and create more specific attributes – given name, last name for more precise string 

(attribute) matching. For this purpose we propose detection methods which process and 

detect attributes for Slovak language.   

5.2.1 Given name extractor 

Given name/first name detector is based on list of given names for specific country or 

domain (Slovak in our case). It can be modified in order to detect special subset of users 

(organization has external employees in different country). There is also separate list of 

male names and female names because of need to detect gender of user. For Slovak users 

there is another option to detect potential female by finding last name suffix “ová, ova”. 

The problem with first name is, that when there is misspelling error, we can not find 

appropriate name from list, so we need to apply string similarity algorithms for 

approximate estimating of first name.  

5.2.2 Last name extractor 

Last name detector takes name attribute, remove already detected given name and result is 

set of potential last names. In most cases, there is only one last name detected, but there is 

a chance to have woman user with two last names – born last name and marriage last 

name. 

5.2.3 Title extractor 

Titles usually take place at the beginning and in the end of full name. As far as we 

determine given name and last name, we can assume, which strings in name can contain 

titles. For title detection we use list of honorific titles. 



29 
 

5.2.4 Email address extractor 

Email address attribute can be divided into prefix part which usually contains given name, 

surname or abbreviations of name. Suffix part mostly reflects webmail service (google 

mail, yahoo mail etc.) or organization domain name (@organization_name.com). 

5.3 Partitioning 

Finding correlation on large datasets may be too ineffective due to comparing and 

matching large number of user record objects. In worst scenario, comparing includes 

Cartesian product.  Thus we propose partitioning mechanism, which can make this task 

more effective (Figure 16). We have user objects with attribute frequencies stored in 

database sorted by combination of last name attribute frequency and given name attribute 

frequency. Same approach is applied to source input data, so that we have two sorted list of 

user objects. Then we choose partitioning strategy of choosing N partitions – 

experimentally determined 

In partitioning we choose sorting attribute with most distinguishing ability. 

Estimating most distinguishing attribute is based on counting number of attribute values 

for certain attribute. The more unique attribute values are present within attribute, the more 

distinguishing ability attribute has. Partitioning algorithm sort two data sources and create 

data partitions for example data source containing 6000 user records is divided into three 

partitions of 2000 records. These partitions are used in correlation process where only 

certain partitions are processed which saves time. Partitioning can be optional when time 

of correlation process is not critical and then results can be improved.  
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Figure 16. Partitioning of user records  

Our method use string metrics and similarity between records to estimate user correlation. 

The core of the user correlation problem is that we have one user object, which is 

compared to other user objects in order to find correlation. We assume set of user objects 

which are compared to new user objects from other data sources – which are actually 

duplicates. Then we can use multiplicity of attribute value in set of users to improve 

similarity metrics and estimations. For example we have 100 users but only one of them 

has attribute last name set to “Astaloš” and given name to “Jan”. This user has unique last 

name within user set and when estimating new correlation, this attribute have higher 

distinguishing ability than given name “Jan” which is more often occurring in given set of 

users. For this purpose we estimate attribute importance for all attributes and choose 

attribute with highest distinguishing ability to set default weights for string similarity 

algorithms.  

In real life deployment correlations must be verified and so we propose verification 

tool which summarizes results of correlation and give ability to manually correlate users, 

or change bad user correlations. Besides overall verification, we want to apply 

recommendation of potential user matches for manual check in order to improve 

correlation framework. For example in organization, human resources employee wants to 

correlate two sources and our system propose him potential correlation during process and 

he manually approves or rejects our recommendations. We keep this information to 

improve our correlation model. If there is certain amount of approves without rejects, there 

will be less correlation proposals. On the other hand, if there are too many rejects, our 

correlation framework need to apply these facts and change attribute weights, partitioning 

strategy or string similarity metrics.   

5.4 Similarity algorithms 

User correlation is based on attribute similarity. We propose basic similarity function 

sima(attr1, attr2), where each similarity is computed within attribute and between two user 

objects (UserX, UserY). All similarities are stored in similarity vector [sima, simb, simc …] 

and these vectors are used for match estimation. 1 represents match and 0 dissimilarity of 

compared attributes.  

                                (7.1) 

In general for name attributes we use these distance metrics: 

 Jaro distance 

 Jaro-Winkler distance 

 Hamming distance 

 N-gram similarity 
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We have analyzed multiple string similarity metrics for attributes in our method. Figure 17 

shows metrics results for experimental records containing full name attribute, where 

similarity was estimated between manually modified records (“Marcel Abbas”, “Marcel 

Abas”). Jaro-Winkler distance, Jaro distance and Soundex were most accurate.  

 

Figure 17. Full name similarity results 

We have also analyzed all other attributes (given name, last name, email, organization unit 

etc.) from our dataset for most efficient and accurate string similarity metric.   

For given name attribute we use Jaro-Winkler distance, where first characters of 

string are more important which makes given name comparison more effective because of 

low number of misspellings at the beginning of given name. More misspellings occur in 

the middle of strings.   

For last name attribute we use Jaro distance, which is suitable for short strings. Jaro 

distance count with length of string so that misspelling in longer word is less important 

than in shorter word. Jaro distance and Jaro-Winkler distance are quite similar, so we want 

to experiment combinations of attributes and different distance metrics. Misspellings in 

names occur in the middle of string and so we can use Hamming distance in case of same 

length of compared strings. Distance counts number of different characters which is 

suitable for strings of same length. N-gram similarity split string into n-grams for example 

N=3 (“tomas” = “tom”, “oma”, “mas”).  Jaccard coefficient is applied to results of n-gram 

similarity. There is problem with estimating suitable value of N, so that the substrings are 

not too short or too long.  

Honorific titles and titles are compared by using Hamming distance and Damerau-

Levenshtein distance which is similar to Levenshtein distance but there is extra operation – 

transposition (swapping characters). This distance is good for short strings and strings with 

misspellings, which can easily occur in titles and honorific titles. 

E-mail attributes are compared by Hamming distance for e-mail suffixes and Jaro 

and Jaro-Winkler distance for email e-mail prefixes. 
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Organization unit attributes are usually longer strings or abbreviations. Therefore 

we need to combine Levenshtein distance, N-gram distance and Damerau-Levenshtein 

distance. 

Numeric similarity metrics are usually based on simple string conversion and 

primitive comparison. We propose cosine similarity for numerical attributes like age etc. 

5.5 Machine learning algorithms 

Our method prepares source data for supervised machine learning phase, which can 

automatically classify records. The training data consists of training examples vectors 

containing similarities between each record attributes and label (if records are duplicates or 

not). Machine learning algorithms analyzes these training data and creates inferred 

function – model for mapping new examples (Figure 18). The main advantage of 

supervised machine learning is that once the model is trained, we can apply it to various 

datasets. Our method:   

1. Partition source data 

2. Creates similarity vectors between records 

3. Creates training set  

4. Apply learned model to example set  

 

Figure 18. Machine learning process overview  

We analyzed and applied these machine learning algorithms: 

1. Support vector machine (SVM) 

2. K-nearest neighbour (KNN) 

3. Logistic regression (LR) 

4. Neural network (NN) 

5. Decision trees 

For each algorithm there are parameters to be set which were tuned in our experiments.  
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6 Correlation framework 

We propose complex framework for correlation process of user identities from many 

heterogeneous sources. Our goal is to make process as automatic as possible in order to 

save time with manual correlation. We deal with data preparation, normalization and we 

are proposing detection methods for attribute enrichment. Our correlation method is based 

on similarity metrics and machine learning algorithms. The scenario of usage correlation 

framework (Figure 19): 

 User choose data source 

 User imports data source in CSV format (comma separated values) and choose 

either automatic attribute weights or manually set attribute weights 

 User records are automatically sorted and split into partitions 

 User starts automatic correlation process  

 User see results of correlation process and verify matches 

 Model is adjusted if results are incorrect 

 

Figure 19. Correlation framework schema 

Input data are pre-processed and normalized. Then creating user objects takes place. For 

every record in database there is user metadata object with default weights and attribute 

frequencies stored in user metadata object. User metadata object may also contain multiple 

attribute values for certain attributes from preceding source correlation detection. User 

objects are partitioned and for each user in partition, matching vectors are created: 

Attribute vector = [attr1, attr2…attrn] 

Default weights vector (DW) = [dw1, dw2…dwn] 

Similarity between same attribute i of two user objects is defined as: 

             
         

 
    (6.2) 
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Di  represent distance between attributei values computed by using similarity algorithms 

between two user objects. DWi  is experimentally predefined value (Formula 6.2). Overall 

similarity between two user objects a,b is: 

          
          

 
 

 
    (6.3) 

Where N represents number of attributes in user object (Formula 6.3). Result of similarity 

estimation is classified by using K-nearest neighbor algorithm, logistic regression, decision 

tree and Support Vector Machine (SVM) classifiers.  

Result data are split into training set and testing set. Training set contains manually 

pre-labeled tuples which are used to train classifier. Testing set is used to validate learned 

classifier.  

Trained classifiers can be applied on real datasets and user sources. Adding single 

source of data and integration with existing database need to implement updating 

mechanism for database records and user metadata objects. When new record is inserted, 

frequencies must be re-calculated. If user match was detected, we need to store attribute 

values in metadata object, so that some of the attributes may differ, or can be enriched by 

new record. For example when user A has e-mail “jan@gmail.com” and is correlated to 

user A’ which has e-mail “jan.sukenik@gmail.com”, we want to keep this information for 

future matching. Here is overall schema of our framework (also shown on figure 20): 

 Create source object and import data (comma separated format) 

 Pre-processing transforms and normalize input data by using detection methods for 

attributes 

 User objects are created (When database is empty, attribute frequencies must be 

computed) 

 Order data by attribute (most distinguishing) 

 Partitioning data (Only same partitions are compared with their estimated 

similarities ) 

 Similarities between records are computed  

 Creation of training and testing set 

 Classifier is trained 

 Model is applied to example set 

 User verifies results 
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Figure 20. Correlation framework prototype schema 

We propose enriched user schema model with ability to store multiple attribute values for 

one user. If we detect correlating user objects, some of their attribute values can vary and 

so we want to keep this information for future matching. For example we have two 

correlated user objects – U1, U2 where U1(email)=”martin.svec@gmail.com”, 

U2(email)=”m.svec@gmail.com”. We keep both email addresses in database for 

improvement matching other future data sources.  

6.1 Dataset 

Suitable dataset with appropriate organizational and personal data with Slovak people was 

not easy to find, but we found dataset containing employees of Slovak University of 

Technology. This dataset contains 6625 users with personal and organizational attributes: 

 Full name 

 Organizational unit 

 Office number 

 Telephone 

 E-mail 

User record example: “Ing. Marta Ambrová, PhD.;OAT ÚATM FCHPT;SB 

172;+421 (2) 59 325 783;marta.ambrova [at] stuba.sk” 

We created smaller subsets of original dataset which contains (50, 100, 150, 200, 500) 

randomly selected users. These subsets are manually modified and misspellings to attribute 

values are created, abbreviations and character swaps are applied.  The reason why we need 

to create subsets manually is fact, that there are no sufficient sources of public available 

data on users or employees with Slovak people. String similarity algorithms were tuned on 

subsets of these data for example tuning of given name for Jaro-Winkler algorithm was 

applied on list of given names from STU dataset. 
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6.2 Implementation 

Our correlation framework is implemented in ruby language and web framework Ruby on 

Rails. We use 

 PostgreSQL database system 

 Libsvm library (Library for support vector machines) 

 Ai4r (Collection of ruby algorithms for classification and clustering) 

 Liblinear (Logistic regression) 

 RubyFann (Library for neural network classifier) 

 Decision tree library for ruby 

 Amatch, Fuzzy string match, Hotwater (Libraries for string similarity algorithms) 

Correlation framework is designed as web application. We have chosen Ruby language 

due to its easy and clear syntax, strong community support, availability of various libraries. 

Ruby on rails is web based framework which makes web development as easy as possible 

so we can focus on functionality. Our correlation framework was designed as web 

application because nowadays trend is to provide software as a service. User trough web 

interface access functionality so user do not need to install and maintain system locally. 

Input of our system is CSV format because it is common and simple form. It is also easy to 

process input data. Moreover another formats like XML or JSON can be easily 

transformed to CSV format. We store all data in PostgreSQL relational database because it 

is free, reliable, scalable and stable with strong support. Relational database was chosen 

because of need for ad-hoc queries based on filtering various columns, easy to use SQL 

syntax and it’s maturity (stability, bug free, well tested over years).   
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7 Experiments 

For evaluating results of classifiers, precision, recall and F1 measure are used. Precision is 

the ratio of number of relevant records retrieved to the total number of irrelevant plus 

relevant records (Formula 7.1). Recall (Formula 7.2) is the ratio of the number of relevant 

records to the total number of relevant records. Both precision and recall are expressed as 

percentage. Metric that combines the precision and recall of the metric in the harmonic 

mean is called F-measure (Formula 7.3), also known as the F1 metric. F1 take values from 

interval <0,1> and the higher value is, more successful system is. Since the F-metric is a 

combination of precision and recall, it corresponds to a compromise between accuracy and 

coverage. Results can be divided into four classes: 

 True positives correct matches 

 True negatives correct non-matches 

 False positives incorrect matches 

 False negatives incorrect non-matches 

              
              

                              
   (7.1) 

           
              

                              
    (7.2) 

      
   

   
                                                                                               (7.3) 
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7.1  String similarity metrics and attribute weights 

Correlation based on string similarity metrics without machine learning is first step, where 

we tuned our detection methods and similarity algorithms for attributes. We have also set 

up default weight estimation and partitioning strategy.   

 Default weights are dependent on distinguishing ability of attribute so that default 

weight for more distinguishing attribute is higher. We used example set of 150, 200, 6000 

randomly chosen user records from our dataset to estimate which attributes should have 

higher default weights for string similarity estimation and results are averaged.   

 

Figure 21. Attribute distinguishing ability overview 

As shown on figure 21 the most distinguishing ability has attributes: 

 Full name original 

 Email (in lowercase) 

 Full name without titles 

 Potential surnames 

 Office number 

Default weights are computed as sum of unique attribute values divided by number of 

records.  

Default weights for all attributes are used as default weight vector in similarity estimation 

between two user records. 

To verify the impact of using weights of attributes in similarity matching, we have 

made experiment with comparisons of small sample data with and without weights. We 

have randomly chosen 150 user records from dataset and then we have modified their 

attributes randomly. For every record there is one or more manually created errors 

(misspellings, omitting parts of honorific titles, abbreviations etc.). The process consisted 

of these steps: 

0,006 0,013 0,0266 0,0733 

0,546 0,553 0,6 
0,733 

0,913 
0,99 0,991 0,996 

Distinguishing ability of attribute 
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 Import sample user data 

 Estimate default attribute weights 

 Compare records and create similarity vectors 

 Adjust boundary for classification 

 Manually check results of classification and repeat process without default 

attribute weights 

As shown on figure 22, overall results are slightly better with using default attribute 

weights. Precision is improved by 8% and F1 measure is improved by 4%. String similarity 

method with manually adjusted boundary for classification is good for experimenting and 

improving correlation method, but can not be used in automatic classification.  

 

 

Figure 22. String similarity with and without attribute weights 

String similarity algorithms were individually tested on STU users dataset and distance 

metrics with higher score for each attribute are: 

 Full name original – Jaro-Winkler distance 

 Given name – Jaro-Winkler distance 

 Full name without titles – Jaro-Winkler distance 

 Honorific prefixes – Levenshtein distance 

 Honorific suffixes – Levenshtein distance 

 Potential surnames – Jaro 

 Generat TEXT attribute – Ngram (N = 2) 

0,86 

0,88 

0,9 

0,92 

0,94 

0,96 

0,98 

1 

with weights without weights 

String similarity results  

P 

Recall 

F1 
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 Number – Jaro 

 Domain suffix – Jaro-Winkler distance 

 Email lowercase – Levenshtein distance 

 Email prefix – Jaro-Winkler distance 

7.2  Machine learning algorithms comparison 

We have experimented with multiple machine learning algorithms and various parameter 

settings. First we applied KNN (k nearest neighbour) algorithm and SVM (Support vector 

machine) with using default weights and without data partitioning. We have experimented 

on dataset consisting of 1000 user records in which 150 records contained one or more 

misspellings or errors. For KNN algorithm we experimented with parameters: 

 Number of neighbours (K=5, K=10, K=30) 

 Distance metric (Euclidean distance, Cosine similarity) 

Parameters for SVM algorithms are: 

 Type of kernel function (Radial, DOT, Polynomial) 

 Epsilon 

 C (Soft margin) 

SVM achieved better results. SVM has F1 score about 3% higher than KNN. Number of 

user vecetor comparisons is 1000 000, so that SVM classification took approximately 2 

times longer than KNN classification (7 minutes). Despite simple KNN implementation 

and need for tune only two parameters, we choose SVM classifier for future experiments 

because results quality matters more than time in our case.       

 Our second experiment compared SVM, Neural Networks and Logistic regression. 

We used dataset containing 150 user original user records and 150 misspelled records. We 

have tested results with partitioning and without partitioning. For SVM classifier we used 

tuned parameters from first experiment and for Logistic regression the parameters are: 

 C 

 Epsilon 

 Solver type 

 Bias 

For Neural Network classifier we were not able to tune classifier parameters and results 

were inadequate (0.4 F1 score). The problem was proper setup of neurons in hidden layer. 

Input data – vectors are Cartesian product and so that most of the vectors are not matches 

so that network function was not able recognize patterns. Results for SVM and logistic 

regression are above 0.9 F1 score (Figure 23). Results show that logistic regression has 

higher F1 score than SVM. The score is even higher with partitioning strategy (In our 

experiment 150 user records were partitioned in group of 50 records – 3 partitions) as 
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shown on figure 24. Time of classification was approximately same with SVM and logistic 

regression.  

 

Figure 23. SVM vs. Logistic regression comparison 

 

Figure 24. SVM vs. Logistic regression comparison with partitioning 

Learning curve for linear regression (Figure 25) and SVM classifier (Figure 26) trained on 

dataset consisting of 500 user records in which 30 records were modified and order of 

records was shuffled shows that the bigger training set is, lower error rate is. Error rate in 

this experiment is ratio of misclassified (FP, FN) records to all records.  

SVM Logistic Regression 

0,92 

0,93 

0,94 

0,95 

0,96 

0,97 

0,98 

0,99 

1 

Machine learning algorithms comparison 
without partitioning 

P 

Recall 

F1 

SVM Logistic Regression 

0,96 

0,965 

0,97 

0,975 

0,98 

0,985 

0,99 

0,995 

1 

Machine learning algorithms comparison 
with partitioning (3 parts) 

P 

Recall 
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Figure 25. Learning curve for logistic regression 

 

Figure 26. SVM vs. Learning curve for SVM classifier 

The partitioning of input data is important for classification larger datasets, because 

learning and applying model for 6000 records (36 000 000 vectors) may take ~ 2,5 hour. 

We have tested partitioning size for SVM classifier where we split user records to groups 

of 10%, 20%, 30%, 40%, 50% and above 50% there are only two groups. With 150 user 

records, 10% split is 15 user records. Initial 150*150 (22500 comparisons) is reduced to 

the 2250 comparisons. The smaller the group is, the quicker the classification is, but error 

rate is higher. In small group there is high chance of missing records. On figure 27 there is 

error rate for SVM classifier with partitioning that shows low error rate at 40-50%. It 

means that when we have 2 or 3 groups the error rate is low.  
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Figure 27. SVM classifier error rate with partitioning 

Another factor in correlation detection is time of creating model (training and applying) in 

order to partition size. On figure 28 there are four classifiers and three partition sizes. 

Classification process takes up to 100 seconds for dataset (150 user records) for SVM, 

Logistic Regression and Neural network. For decision tree the time grows much more 

faster than for others. 60% partition size equals 11700 vectors in training set and Decision 

tree classification took 900 seconds. 

 

Figure 28. Time of classification and partitioning size dependency 
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In our last experiment (Figure 29) we created dataset consisting of 150 user records and 

classify them using: 

 Logistic regression 

 SVM 

 Decision tree 

 

Figure 29. Classification score 

Decision tree has higher F1 score in all partition cases, but from the previous experiment 

the time of classification is much higher than others. In large datasets it could cause 

problems. SVM classifier has better score when partitioning size is between 40 – 60 %.  

7.3. Experiment summary 

We did experiments with string similarity metrics where metrics with best score were 

selected and implemented in framework as part of creation of similarity vector between 

two records. We have implemented machine learning algorithms – SVM, neural network, 

logistic regression and decision tree. SVM and logistic regression gained highest score and 

are suitable for experimental dataset.  
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8 Conclusion 

In our work we analyzed field of identity management systems with focus on provisioning 

and identity stores which manages identity lifecycle and identity storage within 

organization trough identity management system.We have analyzed possibilities of 

correlation detection as a part of record linkage field within identity management systems. 

Particular focuse was on automatic identity correlation process, which includes cleaning 

and standardization of input data sources, finding similarities between records and 

classification in order to make correlation proces as automatic as possible.  

 We have discovered that existing open identity management systems deal with 

correlation of users mainly manually, but there are solutions like correlation expressions, 

where some rules are applied to make this process more automatic thus these are not 

sufficient. String similarity metrics are widely used in deduplication problems, but they 

need to be properly setup when dealing with identity correlation detection. Even more 

important in automatic correlation process are machine learning algorithms which discover 

regularities and classifies data.  

 The main goal of our work is to design effective and automatic correlation method 

for identity correlation detection. The method is part of our correlation framework 

implemented as web application.  

 Our method deals with data preparation, normalization of input identiy data. We 

designed attribute extraction methods which process normalized input data in order to 

improve similarity detection between two records and creates specific sub-attributes for 

example full name attribute is divided into given name, surname, honorific prefixes etc. 

When working with large amount of identity data, we need to create partitions which are 

mutually compared in order to improve time difficulty. Our correlation method is based on 

similarity estimation between two records, where each attribute is compared and similarity 

vector is computed. We propose mechanism for estimating default attribute weights based 

on attribute distinguishing ability so that similarity vector can be computed with these 

weights. User can adjust these weights if needed. Our method uses experimentally selected 

string metrics for each attribute type. Final correlation is proceed by using machine 

learning algorithms such as SVM and Logistic regression and final results are verified 

manually by user. User can use predefined classification models, or can create own model.  

 The method was verified by using our correlation framework, where experimental 

dataset was imported, processed, classifiers were trained and applied to testing set. Results 

were manually verified. We have made various subset from original dataset and adjusted 

parameters for classifiers in order to impruve score.  

 We have realized experiments with string algorithms, partitioning strategies and 

machine learning algorithms.  

 Our method is part of correlation framework which can process various input data. 

Supported format is CSV „comma separated values“, but can be easily extended to other 
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formats i.e. XML, JSON etc. User can create own classification model and apply to testing 

set, but there is need to create training set himself. User can adjust classification 

parameters in order to improve score and use this model to new data sources.   
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A Use case diagram 
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UC1 Manage source 

 Interface for managing source 

UC2 Show attribute weights 

 List of attributes 

 Each attribute has own attribute weight 

 User can change attribute weight 

UC3 Show correlations 

 List all matches from correlation process for source 

 Remove match from database 

UC4 Correlate source 

 Interface for correlation process 

UC5 Choose source to correlate 

 User selects source to correlate with actual source 

UC6 Create partitions 

 Source can be partitioned 

 User inputs group size 

UC7 Select model 

 User can see list of predefined models 

 User can choose appropriate model from database 

 Apply selected model 

UC8 Set default weights 

 Default weights are computed for all records 

UC9 Import source 

 User select CSV file to import 

 User choose attribute types for each column 
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UC10 Remove source 

 Source is removed from system 

 All records and metadata objects are removed 

UC12 Create machine learning model 

 Select machine learning algorithm 

 Choose partitioning size for group 

 Set parameters for machine learning algorithm 
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B Class diagram 

Models 

 

Class diagram of models in correlation framework shows relations between 

UserSource and UserObjects. UserObjectRaw has attributes, and definition of these 

attributes is stored in UserObjectMetadata. When the classifier is saved, the object 

ModelSerialized is created and model is stored into filesystem. Every UserSource object 

has SourceAttributeWeights which are used in creating similarity vector. 
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Class model 

 

In this model, two main parts are correlation controller, which handles all machine 

learning algorithms and string similarity algorithms. Source controller handles importing, 

editing and removing sources. Parsing input is also part of source controller. In our 

application there are several software design patterns for example singleton pattern – 

concept of current user. Everytime the user is signed in, one current user object is created. 

Dependency injection pattern is also used as instances are passed to methods as arguments 

i.e. in create source method.   
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C Component diagram 

On the component diagram below there are main components – Crrelator service, which 

aggregates data import, attribute extraction and correlation core component. Correlation 

core component handles string similarity algorithms and classifiers. Infrastructure 

component handles model and access to database. It also provides MVC in web based 

application, libraries for connection to database, logging infrastructure etc.  
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D User manual 

Installation 

Correlation framework is right now available as web application. For local installation you 

need: 

 Ruby on Rails version 4 

 Ruby 2 

Installation steps: 

 Bundle install (Installation of libraries) 

 Rake db:setup (Creation of database) 

 Rails s (Start local server on localhost) 

Import source 

First step is to import data trough import source screen (Screen 1). User choose file in CSV 

format, choose number of attributes and choose type for each attribute. Type can be: 

fullname, text, number, email, given name, surname. 

 

Screen 1. Import source 
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Source detail 

Afrer importing source data, user can see list of records with all attributes. He can set 

default attribute weights manually or automatically. He can correlate this data source with 

another source already inported. 

 

 

Screen 2. Source detail 

 

  



63 
 

Attribute weights edit screen 

User can edit attribute weights for each attribute.  

 

Screen 3. Edit attribute weights 

Correlate source with another source 

After user choose source to correlate with, he inputs partition size and choose appropriate 

model from list. 

 

Screen 4. Correlate source 
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Result of correlation process 

User see list of records and can manually verify records. 

Screen 5. Results of correlation process 
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Correlator machine learning model setup screen 

User can train own model for each data source. He can choose partition size, parameters 

for each classifier and he can save model.  

 

Screen 6. Source detail 
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E Experiment examples 

Results of comparing 150 original records with 150 error records. 

Partition size 

(%) 

Neural Network Logistic 

Regression 

SVM Decision Tree 

20 0,14 0,89 0,9 0,96 

40 0,21 0,911 0,96 0,98 

60 0,19 0,9 0,97 0,97 

 Results are F1 score 

 

Results of comparing 500 original records with 500 records containing 150 error records. 

Partition size 

(%) 

Neural Network Logistic 

Regression 

SVM Decision Tree 

20 0,12 0,84 0,92 0,93 

40 0,2 0,85 0,9 0,92 

60 0,21 0,86 0,91 0,92 

 Results are F1 score 

 

Time complexity of algorithms in addition to partitioning size (comparing 150 records vs. 

150 records): 

Partition size 

(%) 

Neural Network Logistic 

Regression 

SVM Decision Tree 

20 30 6 13 130 

40 45 35 28 490 

60 68 42 50 930 

 Results are shown in seconds 
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Decision tree model trained rule-set example 

Decision Tree – Trained rule set with F1 score 0.962 (150 user records) 

FULL_NAME_ORIGINAL >= 0.9787452210343168 

=> 1 () 

 

FULL_NAME_ORIGINAL < 0.9787452210343168 

EMAIL_LOWERCASE >= 0.8201058201058201 

TEXT >= 0.22334299516908213 

=> 0 () 

 

FULL_NAME_ORIGINAL < 0.9787452210343168 

EMAIL_LOWERCASE >= 0.8201058201058201 

TEXT < 0.22334299516908213 

=> 1 () 

 

FULL_NAME_ORIGINAL < 0.9787452210343168 

EMAIL_LOWERCASE >= 0.8201058201058201 

TEXT < 0.22334299516908213 

IS_POTENTIAL_FEMALE >= 0.4150877192982456 

=> 1 () 

 

FULL_NAME_ORIGINAL < 0.9787452210343168 

EMAIL_LOWERCASE >= 0.8201058201058201 

TEXT < 0.22334299516908213 

IS_POTENTIAL_FEMALE < 0.4150877192982456 

=> 0 () 

 

FULL_NAME_ORIGINAL < 0.9787452210343168 

EMAIL_LOWERCASE < 0.8201058201058201 

=> 0 () 
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F Content of electronic medium 

 

Electronic medium has this structure: 

 

 

 

/ Guide 

/ Prototype – implemented prototype 

/ Thesis – electronic version of diploma thesis  
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G  Resume 

Úvod 

Systémy na správu digitálnych identít riadia dátové úložiská identít, integrujú ich a 

poskytujú prístup k rôznym systémom. Dátové úložiská identít obsahujú záznamy s údajmi 

o digitálnych identitách, ktoré môžu obsahovať nekonzistentné dáta. V súčasnosti existujú 

rôzne systémy na správu identít ktoré pracujú s niekoľkými desiatkami až stovkami 

dátových úložísk. Čím viac systémov je integrovaných, tým náročnejší je proces 

mapovania a korelácie údajov o identitách. Hlavným problémom je nutnosť manuálneho 

mapovania, ktoré je v mnohých prípadoch príliš náročné na čas. Existujúce riešenia v 

oblasti automatickej korelácie údajov o identitách ako napríklad korelačné pravidlá nie sú 

dostačujúce. Našim cieľom je preto navrhnúť a implementovať efektívnu metódu na 

automatickú koreláciu údajov o digitálnych identitách. 

Manažment identít 

Manažment identít riadi identity v digitálnom priestore. Je to kombinácia technológií a 

postupov na reprezentovanie a rozpoznávanie entít ako digitálnych entít v digitálnom 

priestore. Každá organizácia má iné nároky na manažment identít, a tak je nutné 

individuálne prispôsobovanie a nastavovanie procesov v rámci manažmentu identít. 

Hlavnou úlohou systémov na správu a riadenie identít je integrácia údajov o identitách, 

spracovanie a riadenia životného cyklu digitálnych identít – vytvorenie, úprava, zrušenie 

digitálnej identity. Digitálna identita obsahuje údaje o osobe, reprezentované pomocou 

technických prostriedkov ako množinu atribútov popisujúcich danú osobu. Používateľský 

účet je entita obsahujúca informácie o osobe a kontexte v ktorom bol účet vytvorený. Môže 

obsahovať napríklad osobné údaje, prístupové práva a systémové nastavenia.  

V súčasnej dobe je oblasť manažmentu identít automatizovaný proces vzhľadom na 

objemy dát s ktorými musí pracovať. Manažment identít je dôležitý pre akúkoľvek 

organizáciu, ktorá chce poskytovať práva a prístupy do podsystémov pre svojich 

zamestnancov a zákazníkov. Systémy na manažment identít pozostáva z troch hlavných 

technologických častí: 

 Úložiská identít 

 Riadenie prístupov 

 Správa účtov (angl. „provisioning“) 

Úložiská identít obsahujú informácie o používateľských účtoch a sú často zdieľané 

rôznymi aplikáciami v rámci organizácie, ale aj mimo nej. Úložiská identít používajú rôzne 

technológie na správu údajov napríklad LDAP (Lightweight Directory Access Protocol ). 

Riadenie prístupu je oblasť, ktorá sa zaoberá autentifikáciou a autorizáciou v rámci 

systému. Bezpečnosť aplikácií je väčšinou hlavnou požiadavkou a tak je nutné chrániť 

citlivé dáta o identitách. Autentifikácia je proces verifikácie používateľa – overenie či je 
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osoba naozaj tá za ktorú sa vydáva. Využívajú sa na to overovanie verejných kľúčov, 

prihlasovacích mien a hesiel. Autorizácia je proces, ktorý nasleduje po autentifikácii a má 

zaručiť prístup k systémovým (aplikačným) zdrojom. Tieto zdroje môžu byť služby, 

funkcionalita systému, prístup k údajom a iné.  

V rámci riadenia prístupov v systémoch na správu identít sa využíva koncept 

„Single sign-on angl.“ jednotné prihlásenie, ktorý zabezpečuje prístup k viacerým 

systémom bez nutnosti opätovného prihlasovania.  

Provisioning je časť manažmentu identít, ktorý sa zaoberá riadením a integrovaním 

úložísk identít. Zabezpečuje synchronizáciu dát z viacerých zdrojov. Rovnako riadi 

mechanizmus vytvárania, modifikovania a rušenia používateľských účtov a prístupov k 

systémovým zdrojom. Napríklad v prípade vytvorenia používateľského účtu v jednom 

systéme je nutné vytvoriť účty vo všetkých ostatných systémoch. 

Zlučovanie v rámci manažmentu identít je proces synchronizácie viacerých úložísk 

identít a dátových zdrojov s cieľom poskytnúť centrálny mechanizmus správy identít na 

jednom mieste. V rámci zlučovania sa určuje zhodnosť záznamov o identitách z rôznych 

systémov.  

Korelácia identít 

Používateľ môže v rámci organizácie pristupovať k rôznym systémom s rôznymi 

používateľskými účtami. Tieto účty môžu obsahovať rôzne atribúty ako napríklad 

prihlasovacie meno („tjendek, tomas.jendek, t.jendek“) a iné. Systém na správu identít 

musí pracovať s rôznymi používateľskými účtami pre jednu identitu a tak udržovať 

spojenia medzi účtami. V prípade, ak si používateľ v jednom systéme zmení heslo, musí sa 

táto zmena prešíriť aj do iných systémov. Korelácia identít je proces spájania a validácie 

záznamov používateľských účtov, ktoré spája vlastníctvo jednej identity. Samotné spájanie 

je realizované pomocou porovnávania hodnôt atribútov používateľského účtu. Na to sa 

využívajú zväčša korelačné pravidlá, ktoré spájajú záznamy na základe zhody určeného 

atribútu. Takáto korelácia nie je dostačujúca a je nutné manuálne spájanie záznamov v 

komplexnejších prípadoch.  

Spájanie záznamov je proces pri ktorom sa na základe porovnávania hodnôt atribútov 

určí podobnosť záznamov a následne sú určené potenciálne zhody. Existujú dva prístupy 

spájania záznamov: 

 pravdepodobnostné 

 deterministické 

Deterministické spájanie sa inak nazýva „presné“ kvôli spájaniu záznamov ktorých 

hodnoty atribútov sa úplne zhodujú. Pravdepodobnostné spájanie je založené na 

porovnávaní rôznych hodnôt atribútov a ich váh. Podobnosť záznamov je pomocou 

spájacích kritérií vyhodnotená ako zhoda, alebo nezhoda. Spájanie záznamov je 

komplexný proces ktorý sa skladá z: 

 čistenia a štandardizácie dát 
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 porovnávania 

 klasifikácie 

 vyhodnotenia 

V prvom kroku je zjednotený formát dát, sú odstránené nadbytočné medzery. Následne sú 

záznamy porovnávané pomocou algoritmov na určovanie podobnosti reťazcov. Po určení 

podobnosti nastáva klasifikácia porovnávaných záznamov a vyhodnotenie – overenie 

výsledkov.  

Algoritmy na hľadanie podobnosti reťazcov sú: 

 znakové 

 vektorové 

Znakové algoritmy a techniky sú založené na modifikačné operácie ako napríklad 

odstránenie znaku, výmena znaku a ich rátanie. Znakové algoritmy sú vhodné na určovanie 

podobnosti reťazcov v prípadoch, keď obsahujú preklepy, alebo skratky. Pre dlhšie reťazce 

sú znakové algoritmy neefektívne. Príkladom znakových algoritmov sú: 

 Levenshteinova vzdialenosť 

 Damerau-Levenshteinova vzdialenosť 

 Bag vzdialenosť 

 Smith-Watermant 

 Jaro vzdialenosť 

 N-gramy 

Vektorové techniky sú určené na dlhšie reťazce, pretože reťazce reprezentujú ako tokeny 

ktorých poradie nie je dôležité. Reťazce sú reprezentované ako riedke n-dimenzionálne 

vektory reálnych čísel, kde každá hodnota patrí tokenu v rámci reťazca. Príkladom je 

napríklad TF-IDF metóda.  

Strojové učenie 

Strojové učenie je oblasť umelej inteligencie ktorá umožňuje počítačovému systému „učiť 

sa“ - zlepšovať výsledky na základe predchádzajúcich výsledkov. Strojové učenie objavuje 

pravidelnosti a klasifikuje dáta. Klasifikácia je založená na trénovacej množine s 

označenými triedami a testovacej, na ktorú sa uplatňuje naučený model. Algoritmy 

strojového učenia sú napríklad:  

 K najbližších susedov 

 Podporné vektory (SVM)  

 Neurónové siete 

 Rozhodovacie stromy 

 Logistická regresia 

Návrh metódy 
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Nami navrhovaný metóda je založená na algoritmoch podobnosti reťazcov, ktoré určujú 

podobnosť medzi hodnotami atribútov porovnávaných záznamov a algoritmoch strojového 

učenia pre automatickú koreláciu. Metóda sa skladá zo základných krokov: 

 Príprava dát, normalizácia atribútov a extrakcia atribútov 

 Rozdeľovanie záznamov, nastavenie základných váh pre atribúty 

 Aplikácia vhodných algoritmov na určovanie podobnosti reťazcov 

 Aplikácia klasifikátorov – trénovanie modelu a klasifikácia 

 Verifikácia výsledkov 

Príprava dát je prvý krok, pri ktorom sa vstupné dáta ukladajú v jednotnom formáte do 

databázy. Okrem toho sa jednotlivé atribúty transformujú a štandardizujú. V našej práci 

navrhujeme import CSV formátu („comma separated value“ ang.) kde záznamy vyzerajú 

napr.“id: first_attribute_value; second_attribute_value”. Normalizácia vstupných dát 

spočíva v zmene všetkých znakov na malé písmená, odstránenie interpunkčných 

znamienok, nahradenie viacero medzier jednou medzerou a odstránenie medzier pred a za 

reťazcom.  

Vstupné dáta obsahujú rôzne atribúty , niektoré z nich môžu byť rozdelené na pod-

atribúty, ako napríklad atribút meno môže byť rozdelený na krstné meno, tituly a 

priezvisko. Navrhujeme metódy na extrakciu pre atribúty krstné meno, priezvisko, tituly a 

emailovú adresu.  

Určovanie korelácie pri veľkom množstve záznamov v úložiskách identít môže byť 

neefektívne vzhľadom na to, že pri porovnávaní záznamov (karteziánsky súčin) dochádza 

k porovnávaniu každého záznamu s každým. V našej metóde navrhujeme rozdeľovací 

mechanizmus vďaka ktorému sa na základe frekvencie výskytu atribútu zoradia záznamy a 

rozdelia sa na rovnaké skupiny. Tieto skupiny sú navzájom porovnávané. Napríklad 6000 

záznamov zoradíme podľa atribútu „krstné meno“ a určíme veľkosť skupiny na 100. 

Vznikne tak 60 skupín, ktoré sú porovnávané tak, že 1. skupina z prvého zdroja identít je 

porovnávaná s 1. skupinou z druhého zdroja.  

Korelácia záznamov je založená na podobnosti hodnôt atribútov. V práci využívame 

funkciu sima(attr1, attr2), ktorá pre každú dvojicu atribútov z dvoch záznamov určí 

podobnosť. Všetky hodnoty podobnosti atribútov sú uložené vo forme vektora [sima, simb, 

simc … ]. Každý vektor obsahuje hodnoty od 0 po 1, kde 1 je zhoda a 0 je nezhoda. 

Analyzovali sme rôzne algoritmy na určovanie podobnosti a pre jednotlivé atribúty sme 

určili jeden algoritmus, ktorý dosahoval najlepšie výsledky. Pre krstné meno je to Jaro-

Winkler algoritmus, pre priezvisko je to Jaro vzdialenosť atď. Po vytvorení vektora s 

podobnosťami záznamov prichádza strojové učenie, pomocou ktorého algoritmov sa 

natrénuje model, ktorý bude aplikovateľný na nové dáta a klasifikuje porovnávané 

záznamy ako zhodu, alebo nezhodu. Proces klasifikácie pozostáva z: 

 Rozdelenie záznamov do skupín 

 Vytvorenie vektora podobností 

 Vytvorenia trénovacej množiny 
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 Aplikovanie modelu na testovaciu množinu 

Implementácia metódy 

V našej práci sme navrhli a implementovali korelačný rámec na koreláciu identít z rôznych 

zdrojov. Cieľom rámca je spraviť tento proces čo najviac automatický. Scenár pre použitie: 

 Výber vstupných dát (zdroje údajov o identitách) 

 Import dát vo formáte CSV, nastavenie váh atribútov (manuálne/automatické) 

 Záznamy sú automaticky zoradené a rozdelené do skupín 

 Výpočet podobnostných vektorov  

 Trénovanie/aplikácia modelu  

 Verifikácia výsledkov 

Vstupné dáta sú spracované a normalizované. Vytvoria sa objekty pre reprezentáciu 

identity. Pre každý objekt sú vypočítané váhy pre jednotlivé atribúty. Objekty sú rozdelené 

do skupín pre následné určovanie podobnosti. Vo fáze vytvárania modelu sú vektory 

obohatené o ručne určenú triedu (či vektor označuje zhodné záznamy, alebo nie). 

Používateľ vyberie klasifikátor, nastaví parametre a spustí trénovanie modelu. Vytvorený 

model následne aplikuje na testovaciu množinu a verifikuje výsledky. V prípade, že je 

model už vytvorený, aplikuje ho na dáta.  

V práci sme využili dáta o zamestnancoch Slovenskej technickej univerzity v 

Bratislave zo zdrojov AIS (Akademický informačný systém). Rovnaké dáta sme získali aj 

z webu www.portalvs.sk (portál vysokých škôl). Dáta obsahovali údaje o zamestnancoch 

fo formáte: kompletné meno, organizačná jednotka, číslo kancelárie, telefón, email (“Ing. 

Marta Ambrová, PhD.;OAT ÚATM FCHPT;SB172;+421 (2) 59 325 783;marta.ambrova [at] 

stuba.sk” ).  

Dáta obsahovali 6625 záznamov a pri experimentoch sme vytvorili rôzne 

podmnožiny (50, 100, 150, 200, 500) záznamov, pre ktoré sme vytvorili umelé chyby – 

preklepy, vynechania slov, vynechania znakov, zmenu pozície slov atď. Implementácia 

korelačného rámca je realizovaná ako webová služba s využitím Ruby on Rails webového 

programového rámca a databázy PostgreSQL. 

Experimenty 

Na vyhodnotenie výsledkov klasifikácie využívame metriky presnosť, pokrytie a F1. V 

prvom experimente sme sa zamerali na určenie preddefinovaných váh atribútov. Zisťovali 

sme rozlišovaciu schopnosť daného atribútu a podľa toho sme nastavili preddefinované 

váhy atribútov. Tie sú vypočítané ako súčet unikátnych výskytov hodnoty atribútu 

vydelený počtom záznamov. Na overenie vplyvu automaticky preddefinovaných váh 

atribútov sme vyskúšali určovať podobnosť na podmnožine 150 záznamov. Z výsledkov je 

vidno, že pri použití preddefinovaných atribútov sa zlepšilo F1 skóre o 4%.  

http://www.portalvs.sk/
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Algoritmy na určovanie podobnosti záznamov boli jednotlivo vyskúšané na každý atribút a 

najlepšie výsledky zaznamenali: 

 plné meno – Jaro-Winkler vzdialenosť 

 krstné meno – Jaro-Winkler vzdialenosť 

 plné meno s titulmi – Jaro-Winkler vzdialenosť 

 tituly pred menom – Levenshtein vzdialenosť 

 tituly za menom – Levenshtein vzdialenosť 

 potenciálne priezviská – Jaro 

 TEXT – Ngram (N = 2) 

 Čísla – Jaro 

 doménová prípona – Jaro-Winkler vzdialenosť 

 email malým písmom – Levenshtein vzdialenosť 

 emailový prefix – Jaro-Winkler vzdialenosť  

Vykonali sme experimenty s rôznymi algoritmami strojového učenia a rôznym 

nastavenám parametrov pre tieto algoritmy. V prvom experimente sme porovnávali 

algoritmus K najbližších susedov s algoritmom podporných vektorov s využitím 

preddefinovaných váh atribútov a bez rozdeľovania záznamov. Podporné vektory 

zaznamenali o 3% vyššie F1 skóre. Ďalší experiment porovnával algoritmus podporných 

vektorov, neurónových sietí a logistickej regresie. Experiment sme realizovali s využitím 

rozdeľovania a porovnali sme ho aj bez využitia rozdeľovania. Výsledky ukázali, že 

najlepšie klasifikoval algoritmus logistickej regresie s rozdeľovaním. Pre neurónovú sieť 

sa nám nepodarilo nastaviť parametre a neuróny v skrytej vrstve tak, aby sme dosiahli 

porovnateľné výsledky s ostatnými algoritmami.  

Pri práci s veľkým množstvom záznamov (6000) prichádza k porovnaniu 36 000 000-

krát v prípade, že nevyužijeme rozdeľovanie. To má zásadný vplyv na dĺžku a kvalitu 

klasifikačného modelu. V našom experimente sme testovali rôzne veľké skupiny a 

sledovali sme vplyv na výsledok a dĺžku klasifikácie. Výsledky ukázali, že príliš malé 

skupiny sú síce rýchlo klasifikované, avšak presnosť je nízka. Naopak veľké skupiny sú 

časovo náročnejšie, avšak presnosť je dobrá. Najlepšiu presnosť sme zaznamenali pri 

veľkosti skupiny 40-50 %. 

Zhrnutie 

V našej práci sme analyzovali problematiku systémov pre správu identít s dôrazom na 

prístupy, ktoré spravujú životný cyklus identity a riadenie identít v rámci organizácie. 

Zamerali sme sa na oblasť automatickej korelácie záznamov. Zistili sme, že existujúce 

prístupy v rámci systémov na správu identít neposkytujú automatické korelačné nástroje, a 

tak je nutná manuálna práca. Hlavným cieľom našej práce je navrhnúť a implementovať 

automatickú korelačnú metódu. Naša metóda spracúva vstupné údaje o identitách, 

normalizuje záznamy a vytvára navyše odvodené atribúty z pôvodných pre lepšie 
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určovanie podobnosti medzi záznamami. Naša metóda používa rôzne algoritmy na 

určovanie podobnosti reťazcov a aplikuje ich na konkrétne atribúty. Navrhujeme tiež 

mechanizmus na určovanie preddefinovaných váh atribútov na zlepšenie určovania 

podobnosti atribútov. Pomocou algoritmov strojového učenia – podporné vektory, 

logistická regresia a rozhodovacie stromy vytvárame klasifikačné modely a automaticky 

klasifikujeme záznamy o identitách. Naša metóda je súčasť korelačného rámca ktorý 

spracúva ako vstup CSV formát, poskytuje možnosť vytvorenia modelu pre jednotlivé 

úložiská identít a následne aplikáciu modelu pri klasifikovaní záznamov.  

 


