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Sprava identit je oblast, ktord sa zaobera =ziskavanim a spravovanim informacii
0 pouzivateloch v informaénych systémoch, ich pravach a pristupovych uctoch. Prave
informdcie o pristupovych Uc¢toch apravach pouzivatelov st mnohokrat umiestnené
v roznych databédzach a uloziskach udajov ktoré su Casto heterogénne. V sucasnosti existuju
systémy na spravu identit, ktoré integruju informacie z desiatok az stoviek podsystémov.
Tieto podsystémy mozu v podnikovej sfére a v redlnom nasadeni obsahovat’ tisicky zaznamov
0 pouzivatel'skych identitich. Cim viac podsystémov je integrovanych, tym je vacsia Sanca
vznikani nekonzistentnosti.

Hlavnym problémom integracie je nedostatocna koreldcia medzi zdznamami
0 identitach. Existuje niekolko pristupov ku tomuto problému, avSak ani jeden nie je
dostato¢ne efektivny. Niektoré z tychto pristupov zahinaju korelaéné vyrazy a potvrdzovacie
pravidla, ktoré su prili§ jednoduché pre zloZitejSie pripady nasadenia. Rovnako existuje
mnoho prac o prepajani zdznamov a algoritmov pre hl'adanie podobnosti znakov slov, avsak
ziadny z pristupov neposkytuje verejne dostupné rieSenie. Nedostatok automatickych rieSeni
ma za ndsledok manudlnu korelaciu identit, ktord je sice najpresnejSia, avSak pre velké
organizacie ¢asovo naro¢na.

V naSej préaci analyzujeme existujuce pristupy v oblasi spravy identit, podobnosti
zaznamov 0 pouZzivatel'och a korelacie pouzivatelov s vyuZitim algoritmov strojového ucenia.
Predstavujeme navrh metddy na automaticki koreldciu Udajov o identitdich z r6znych
systémov. Hlavny prinos nasej metddy spociva v automatizovani procesu korelacie s vyuzitim
¢o najmene] manudlnej prace. Nasa metdoda pomocou algoritmov na podobnost’ retazcov
a algoritmov strojového ucenia poskytuje moznost’ spajat’ zaznami o identitach z viacerych
zdrojov. Implementiciu navrhnutej metody realizujeme pomocou webove] aplikacie
aoverujeme pomocou experimentou sudajmi o zamestnancoch Slovenskej techniskej
univerzity v Bratislave.
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Identity management systems manage various identity sources, integrate them and provide
identities access to various heterogeneous systems. These identity sources often consist of
records with various inconsistent attributes and thus integration can be difficult. Nowadays
there are identity management solutions which integrate information from various stores,
from tenths to hundreds of subsystems. Subsystems used in corporate sphere can include
thousands of records with identity information. The more subsystems are integrated the more
likely occurrence of inconsistent identity data is.

Main problem with integration is the proper correlation of identity records from
various heterogeneous identity sources. Some correlating mechanisms were proposed, but
neither of them is sufficient. For example correlation expressions and confirmation
expressions are too simplistic to handle complicated scenarios. There are also many literature
sources describing record linkage processes and string matching algorithms. However there is
lack of open solutions for this problem. The lack of available automated solutions result in
manual correlation, which is probably the safest way to correlate identities. But it is too time-
consuming for larger identity management deployments.

In our work we analyze existing approaches in field of identity management systems,
record matching, data deduplication and correlation of user records with using string
similarity algorithms and machine learning approaches. We propose method for automatic
correlation of identity records from various sources. Main asset of our work is automation of
correlation process and saving manual work. Our method uses string similarity algorithms and
machine learning algorithms for correlating identity records. Implementation is realized as
web application and verification is done by experimenting with dataset from Slovak
university of technology in Bratislava.
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1 Introduction

Identity management systems manage various identity sources, integrate them and provide
identities access to various heterogeneous systems. These identity sources often consist of
records with various inconsistent attributes and thus integration can be difficult. Nowadays
there are identity management solutions which integrate information from various stores,
from tenths to hundreds of subsystems. Subsystems used in corporate sphere can include
thousands of records with identity information. The more subsystems are integrated the
more likely occurrence of inconsistent identity data is.

Main problem with integration is the proper correlation of identity records from
various heterogeneous identity sources. Some correlating mechanisms were proposed, but
neither of them is sufficient. For example correlation expressions and confirmation
expressions are too simplistic to handle complicated scenarios. There are also many
literature sources describing record linkage processes and string matching algorithms.
However there is lack of open solutions for this problem. The lack of available automated
solutions result in manual correlation, which is probably the safest way to correlate
identities. But it is too time-consuming for larger identity management deployments. Our
aim is to design and develop effective method for user correlation with emphasis on the
automation of matching process.  This thesis is divided into sections. Section 2
describes principles in identity management especially identity stores, access management,
provisioning, reconciliation. Section 3 describes identity correlation mechanisms like
record linkage, string similarity algorithms etc. Section 4 presents analyzes of existing
identity management solutions with focus on identity correlation. Section 5 presents
correlation method proposal with data preparation process, normalization and detection
methods. In section 6 we describe implementation of our correlation framework and
dataset. In section 7 we describe experiments and results of our method.

We conclude with evaluation of our project and possibilities for further
development.






2 Identity Management

Identity management manages identities in cyberspace. [5] It is also defined as
combination of technologies and practices for representing and recognizing entities as
digital entities in cyberspace. ldentity management systems are not same for every
organization, because of specific requirements of each organization. Main purpose of
identity management system is integration of identity data, process and handle their life
cycle including creation of new identities, modification and deletion.

[4] Person in digital world can be described as set of attributes which can be
managed by technical means which is called digital identity (Figure 1). Digital identity
uses personal data which can be stored and automatically processed by computer
application. Term virtual identity is used as synonym to digital identity.

Identity in general is exclusive reception of life integrated into social group, which
is bound to body and is constantly shaped by society around this identity. Identity is also
any subset of attributes which identifies individual within set of individuals. “I” represents
individual self as instance of liberty and initiative. “Me” represents social attributes which
define human identity.

[21] Role is a set of connected actions taken by identity in specific social situations
which is basically expected behavior. Technical description of identity is digital identity,
which consists of attribute identifiers of individuality.

Partial identity is subset of person attributes both in real and digital world which
represents person in specific situation or context. Usually person uses more than one partial
identity e.g. for work, school or other activities. Partial identities contain information on
person, which can be static (birthplace) or dynamic (phone number). Person may use
different names — nicknames or pseudonyms.

User account stores all information about person in cyberspace. It can be also called
user record, user identity or simply account. User account stores information about real
world person for example surname or age. It also stores technical information in context of
system, in which account was created for example account permissions or system resource
settings.

Cyberworld

— A XX

Employee Customer Gamer

Real life person

Digital identity



Figure 1. Person in cyberspace
Growth of Internet and distributed systems forced field of identity management to change
from manual processes to fully automated processes. [6] There are three main
environments with their specific problems within identity management: enterprise, internet
and government. There are three areas of identity management technologies dealing with
each environment:
e Enterprise identity management which takes place in enterprise environment and

automate user management, authentication and authorization

e User-centric digital identity management take care about user’s data in Internet
environment

e Government digital identity management focus on data managed by government
and has serious legal aspects of person’s lives

Identity management is important for organizations which need to provide access to
different subsystems for their employees or contractors. It is also need to manage life cycle
of hiring new people by creating new accounts, modify them, or disabling accounts for
fired employees. Every employee in organization has his own role, which need to be
represented by technical means by providing access rights to resources. These roles and
rights can change in time, so there is need to capture changes in system. Large
organizations need to integrate numerous systems and subsystems and identity
management systems reduce complexity and difficulty of integration process.

Identity management contains various technologies and we can define three main
technology groups:

e ldentity stores

e Access management

e Provisioning

2.0.1 Basic Principles in Identity Management

Anonymity and pseudonymity are core concepts preserved in identity management
systems. [1] Anonymity is state of being unidentifiable or not uniquely characterized
within anonymity set — set of subjects. Subject is acting entity i.e. human or computer.
Subject anonymity can be enabled only if there is an appropriate set of subjects with same
attributes. Anonymity ensures that user can use service without exposing his identity.
Pseudonymity uses pseudonyms as identifiers. Being pseudonymous is state of using a
pseudonym. Pseudonyms are identifiers of subjects and he holder of pseudonym is subject
which the pseudonym refers to. Pseudonyms are another kind of attributes widely used in
IT systems because pseudonymity ensures that user can use resource or service without
exposing his identity, but still can be able to use it. Digital pseudonyms are strings, which



has to be meaningful in certain context. It also must be unique as an identifier and must be
able to authenticate the holder’s actions.

2.1 Identity Stores

Identity stores hold information about user’s accounts and are often shared with other
application within organization trough network. Identity stores use various technologies,
especially Directory Services which provide storing user and accounts in tree structure for
example LDAP (Lightweight Directory Access Protocol). Active directory is directory
service which provides authentication and authorization users and computers within
Windows domain type networks.

Directory services often use [27] LDAP protocol, which is application protocol for
accessing distributed directory information services over network. Directory information
services can provide structured records such as organizational email directory. LDAP
protocol is very popular because of his scalability.

Identity store can be part of one application, or it can be shared with more than one
application (Figure 2).

N Application 1

User
Shared identity
Application 2 e store
; * \ Application 3
User

Figure 2. Shared identity store

2.2 Access Management

Access management manages user authentication and authorization and unifies security
processes. In many systems the importance of resource security is paramount, especially in
identity management which deals with sensitive personal data.

Authentication is part of access management which provides verification of users. It
is the process of establishing who a person is and creating trust relationship between
system and consumer of services. There are many options for authentication for example
using matching process between public identifier (user name) and private identifier
(password) or digital certificates.



Authorization takes place when user is successfully authenticated and need access
to system resources. Authenticated identity has certain set of permissions and authorization
deals with determining which permissions will be granted to identity.

[8] Single sign-on (SSO) is concept that provides user to authenticate once and gain
access to all systems without logging again. Single sign-on concept is part of access
management. User has to remember only one password to get access to many different
systems and resources. [7] There are four types of SSO:

e Enterprise SSO connects systems within same enterprise

e Multi domain SSO connect multiple systems across multiple enterprises

e Web SSO connects applications and services across the web

e Federated SSO connect systems based on federated identities by combining
identity attributes from multiple IDM systems

There is a variety of architectures which can be used for SSO implementation:
e Broker-based SSO

e Agent-based SSO
e Token-based SSO

[10] In Broker-based SSO solution there is one server for central authentication and broker
gives electronic identity that can be used for requesting access to various systems. [28]
Kerberos is an authentication protocol for TCP/IP networks and it is basic model for a
broker-based Single Sign-on architecture. It uses trusted Kerberos server which is actually
broker. Kerberos server centrally authenticates users and give them electronic identity
based on the credentials given. After the user was authenticated on server, he gets ticket for
different services and applications.

Agent-based SSO solution is based on agent program placed on server side acting
as interpreter between authentication system and authentication method used by client. The
SSH is an example of agent-based solution.

[9] Token-based SSO uses physical token that generates time dependent one-time
passwords for user authentication. When user logs on system, a centralized authentication
server will authenticate user and generates user token including session key and time
stamp. User can use token to access various application servers. These servers send users
request to centralized authentication server for token validation. SecurlD is one of
implementations of this token and is based on synchronized clock on hardware token and
network server. Generated password is accepted only within certain time window.
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Figure 3. Single sign-on schema

2.3  Provisioning

Provisioning part of identity management systems take care of managing and integrating
many identity stores. Provisioning systems synchronizes various data and models from
many sources by replicating changes to the different resources. Provisioning includes
complex rules and expressions mechanisms to match models of connected systems and
stores.

For example hiring new employee starts with creating record about person in
human resource system. Provisioning system then automatically detects new record and
assign role to user. Based on role provisioning system creates accounts in the external
systems.

Another example can be when work position of an employee changes and new role
must be activated. Provisioning system detects change made in the human resource system
, changes the role and creates new accounts.

[14] Identity management systems provide alternatives to provision resources to
authorized users on request-based, role-based and hybrid approach. In request-based
approach, users request access to special applications and resources with certain privilege
levels within system. Requests are validated by workflow driven approvals. Administrators
are alerted to new or unused accounts and have an option to activate, modify or delete such
accounts.

Role-based provisioning approach automates process of granting access to
resources. Users are assigned to roles and get specific set of accounts and access rights
based on their role. User can be removed from role and entire set of corresponding
accounts and rights are removed.

Hybrid approach combines request and role-based approach. Automated role-based
assignment access rights and accounts can be enriched by providing options to manage
accounts manually.
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Figure 4. lIdentity management system

2.4 Role-Based Access Control

Large organizations has to deal with unauthorized access to organizational resources,
applications or external systems. Role-based access control (RBAC) is one of the most
known access control standards. It simplifies access control policies by grouping users in
roles, which are ordered in a role hierarchy. [12] There are overlapping responsibilities and
privileges that users can have within organization and users with different roles may need
to do common operations. A role hierarchy defines roles that can contain other roles which
mean that one role can use operations from another role. Role is abstraction that contains
set of responsibilities with corresponding allowed operations. Privileges are assigned to
role which means that certain role has predefined set of operations within system. As
shown on figure 5, user cardiologist has role Cardiologist which contains privileges of
doctor role and intern role.

[11] RBAC abstraction provides security administration at business enterprise level
rather than at the user identity level. Functional roles in organizations are captured as role
with defined permissions and role, or set of roles are assigned to user.



Role within role hierarchy

Cardiologist

Users  p-----o Operations

Figure 5. Role hierarchy

2.5 Reconciliation

Reconciliation is process of synchronization user account from various resources and
purpose is to create user-centric identity system that holds single profile with links to
accounts in other systems. For determination of an ownership reconciliation compares
account information between information from user accounts. [22] There are multiple
options for reconciliation for example automatic matching accounts with consistent unique
identifiers, matching other attributes or using mapping tables if they are available in
organizations. Reconciliation process is based on following steps:
e Reading relevant information from the source system

e Match the information from the source system to existing information in the
identity store using a correlation function (correlation rule)

e Read relevant information from identity store

e Compare the information retrieved from the source system with the information in
the identity store and calculate differences

e Perform defined actions based on calculated differences

Information represents user attributes and permissions or roles. Actions to be performed
are for example modification of user when account is linked, delete or unlink account,
resolve collision etc.
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3  Identity Correlation

Identity can operate under various accounts in different systems with different names
(Jhsmith, James_smith, JS54), addresses etc. as shown on figure 6. ldentity management
systems need to keep user accounts linked, so that multiple user accounts from various
systems can be easily changed. For example if the surname of employee changes after
marriage, identity management system changes this name in all subsystem accounts. Or in
case of firing employee, all accounts must be disabled or destroyed which is called de-
provisioning. ldentity correlation is process of reconciliation and validation of multiple
user accounts which are linked by individual ownership. Identity matching is usually done
by comparing user attributes using expression languages. Identity correlation is part of
account linking process. Links are usually created automatically, but there is need to
manually verify results of linking. Manual linking does not scale and is not efficient.

Identity management systems provide integration of various identity stores
containing heterogeneous data. Usually there is no single authoritative source, so
integration can be very difficult. Main goal of integration is to map identities or user
accounts from various sources using for example rule engines, or expression languages.
Integration is used by synchronization mechanisms which checks correctness of user
account state - consistency.

User account ldentity management system

/ Delivery system i ------- name: JHsmith
——————— User account

John Smith

ceRMm e .
name: James_smith
JHsmith account
John Smith
James_smith account
JS54 account
User account
Accounting system |- -
name: JS54
—

Figure 6. Identity correlation

Existing provisioning systems usually use simple correlation expressions to match the
identities as shown on figure 7. These expressions get information from the account and
build search query for finding owner of an account. Correlation expression is usually
parametric search query, i.e. a search query with some parts determined by a dynamic
expression. When correlation expressions match two or more accounts, confirmation
expressions take place. Confirmation expression provides comparison of potential users
accounts.

11
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Figure 7. Correlation and confirmation expression schema

3.1 Record Linkage

Organizations often need to identify and match records within large databases. Especially
in systems which are dealing with personal data integration.

User account records in databases consist of attributes for example name, address,
date of birth etc. These attributes often contain typographical errors (misspelling, missing
letters, incomplete words, incorrect or missing punctuation, abbreviations and fused or split
words), data representation across sources may differ or change in time, which make
duplicate identification very difficult.

[15] Record linkage is methodology of matching corresponding records from two
or more sources or finding duplicates in files. Identity management deals with situations
where several account records from various identity sources may refer to the same real
world entity while not being syntactically equivalent. Set of records which refer to the
same real world entity can be in general interpreted in two ways. First is to take one of the
records as correct and the other records as duplicates containing errors. There is need to
clean error duplicates. Other way is to merge matching records as partial sources of
information to create one complete record. This is common with identity management
systems, where is need to map records but not necessarily change them.

Record linkage involves bringing potential matches together for comparison
including duplicate detection. It also involves comparison of potential record pairs whether
they belong to the same real world entity. There are two approaches:

e Probabilistic linkage

e Deterministic linkage

Deterministic linkage is also called exact due to exact one to one matching character within
linkage variables with one high quality identifier. Probabilistic linkage uses combination of
the partial identifiers for example first name, email or address to compute weights for each
potential match based on probabilities.

[17] Duplicate detection in record linkage is straightforward method for revealing
exactly same records — real world entities. Records are sorted in a table and then

12



neighboring tuples are checked. This approach could be also used to detect approximate
duplicates. Sorting is based on application-specific key for example first name and last
name so that likely records appear near each other. There are duplicate detection
algorithms using sliding window of fixed size for sorted records. The size of window is W
and i is record, i is compared with record i-W+1trough i-1 if i > W, and otherwise with
records 1 trough i-1. Repetitions and combining results of sliding window matching with
small window size lead to better results as one repetition with large size of window.

[16] Traditional approaches to duplicate detection are on approximate string
matching criteria. It can be enriched with domain specific rules. Recently there have been
new adaptive approaches which use attributes and labeled data. Persons similarity is
enriched with additional attributes for instance if two accounts refers to same location, or
same workgroup, it is highly probable that these accounts belongs to same person.

Record linkage matching results are dependent on attribute value having errors and
inconsistencies. Different attributes need different metrics when comparing values.

[20] Record linkage process consists of five steps (figure 8):
e Cleaning and standardization deals with data errors and inconsistencies by

converting attributes to same format, adding derived variables

¢ Indexing / blocking generates candidate record pairs

e Comparison results are weight vectors that contain numerical similarity values

e Classification is based on weight vectors and results are of type matches, non
matches, possible matches

e Evaluation of quality of generated matches and non matches. Often manual review

is needed to decide final linkage

Database 1

Cleaning +
Standardization

Y

Blocking findexing

Y

Record comparison

Y

Database 2

Y

Decision model

{Classification) [ Review
{ Mon - matches {F‘ossible matches

| Evaluation

Figure 8. Record linkage process overview
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3.2  Typical Errors in Matching Variables

[23] Sources of errors in matching personal records are for example misspellings, using
phonetic name, use of synonyms or nicknames, lack of initials, compound names etc. Most
common errors are:

e Present surname can change due to marriage or divorce. There are also compound
surnames where birth surname and marriage surname are mixed.

e First forename brings errors with variations of forenames due to transcription or
modifying forenames caused by fashion trends (popular persons). People often use
nicknames instead of forename.

e Address can change during person’s life quite often. There are also problems with
using mailing addresses and physical addresses.

e Date of birth is variable used to verify age of person, but there are also problems
in format of date (European, US).

e Swapping names and surnames is frequent error caused by transcriptions.

e Titles in name variable are for example marital status, academic title, academic
degree, church, family order, concatenated names etc. Titles cause problems with

name matching due to difficulties with parsing name to forename and surname.

3.3 String Normalization

Preprocessing of record information or attributes is most suitable before using string
comparison methods. Normalization can make string comparison easier, sometimes even
basic string matching is enough. Normalization can be considered at cleaning and
standardization level if it does not spoil information value in attribute. Basic normalization
methods are:

e Transformation of all characters to lowercase

e Removing whitespaces before and after string
e Removing punctuation characters or replacing them

Special normalization techniques can be applied in addition to type of information or
attributes in identity records. For example if attribute is name of person, then we can
extract academic or other titles into new attribute and then we can user or process these
information later. Another example is address attribute, which can contain compound
address information (part of the town) and this can be extracted to new attribute and used
later.

14



3.4 String Comparison Methods

There are several methods for record linkage i.e. entity name clustering and matching, edit
distance, vector space cosine similarity. Some recent works combine multiple standard
methods and metrics.

Similarity estimation can vary depending on the domain. For string similarity
improvement there is need for adapting string similarity metrics for each field
corresponding to the particular domain.

[3] Methods for string similarity can be divided into two groups:
e Character based techniques

e Vector space based techniques

Character based techniques rely on character edit operations such as deletions,
substitutions, insertions, comparison of subsequences. Such technique is Levenshtein
distance which is defined as minimum number of insertions, deletions or substitutions
necessary to transform one string into another string. Character based techniques work well
for estimating distance between strings with typographical errors or abbreviations, but
these metrics are computationally expensive and also less accurate for larger strings.

Vector space techniques deals with this problem better, because such techniques are
based on viewing strings as bags of tokens. The order of tokens is unimportant. Strings in
tokens are represented as sparse n-dimensional vectors of real numbers where every
component corresponds to a token present in string. TF-IDF is probably most known
method and useful for larger strings and text documents.

Records can be composed of multiple attributes and distance between these records
must combine similarity estimates for each attribute. Each attribute can have different
informative value and thus is necessary to weight attributes properly.

In [2] the authors propose object identification system based on domain independent string
transformations to compare objects shared attributes. They use candidate generator which
use set of domain independent transformation to judge similarity between objects.
Candidate generator produces an initial set of candidates. The authors propose unary
transformations which are used to determine candidates:

e Equality for testing if a token contains same character in the same order

e Stemming converts a token into its stem or root

e Soundex converts token into a soundex code. Tokens that sounds similar have same
code

e Abbreviation looks up token and replaces with abbreviation

N-ary transformations:
¢ Initial computes if one token is equal to the first character of other token

o Prefix determines if one token is equal to a continuous subset of the other starting

at first character
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o Suffix determines if one token is equal to a continuous subset of the other starting at
last character

e Substring computes if one token is equal to a continuous subset of the other but not
include first or last character

e Acronym computes if all characters of one token are initial letters of all tokens from
other objects

e Drop determines if a token does not match any other token

Tokenization is process of lowercasing all characters in text and removing punctuation
characters. Transformations are used after tokenization.

Matching variables in records contain string values. There are several solutions for
string comparison for example:

Levenshtein distance (edit distance), [29] which is defined as smallest number of
insertions, deletions or substitutions of characters needed to change one string to another.
Levenshtein distance can be modified to provide different edit costs — weights for edit
operations in special situations depending on domain in which Levenshtein method is used.
It can be effectively used in some situations i.e. “I” and “L” can be mechanically scanned
as same letter and we need to give lower edit cost to operations witch these characters.

Damerau-Levenshtein distance [30] is variation of Levenshtein distance.
Transposition is new operation and it costs just one edit instead of deletion and insertion. It
is often used when error rate in string is low (misspellings).

Brute force string comparison is simplest algorithm to use. Algorithm try to
match all possible pattern positions in string and verifies that pattern at exactly same
position. If one string contains x characters and second string contains y characters, then in
worst case there are x.y comparisons.

Knuth-Morris-Pratt (KMP) [31] algorithm is faster than brute force algorithm
because of using sliding window over the strings in text. It does not try all positions as
brute force, but it reuses information from previous check.

Boyer-Moore algorithm works similar to KMP, but check inside the window can
proceed backwards and forwards.

Bag distance is cheap approximation to edit distance. A bag is defined as a multiset
of the characters in a string (for example, multiset ms(‘peter’) = {‘¢’, ‘e’, ‘p’, ‘r’, ‘t’},
and the bag distance between two strings is calculated as
distbag(sl, s2) = max(jx — y|,Jy — x|), with x = ms(sl), y = ms(s2) and |-| denoting the
number of elements in a multiset.

Smith-Waterman is algorithm suitable for names with initials and compound
names. It is based on a dynamic programming approach similar to edit distance, but allows
gaps
as well as character specific match scores.
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Longest common sub-string (LCS) repeatedly finds and removes the longest
common sub-string in the two strings compared, up to a minimum lengths. This algorithm
iIs recommended for compound names and names where first name and surname are
swapped.

Q-grams are sometimes called n-grams are substrings of length (q,n). If q = 2, then
name “Thomas” is split to bigrams “Th”, “om”, “as”. Similarity is calculated between
splited n-grams so that similarity counts grams which are common.

Positional g-grams is extension to g-grams and add positional information and
match only grams within certain distance.

The Jaro distance algorithm is used for name matching in data linkage systems. It
counts for insertions, deletions and transpositions. The number of common characters and
number of transpositions are used in this algorithm.

Results in [18] shows that for names parsed into separate fields, Jaro algorithm
performs well with given and surnames. They also recommend knowing data, types of
names and separators before choosing matching algorithm.

In paper [19] the authors present novel person name matching model. They
formalize name variations in English language, introduce name transformation paths.
Subsequently supervised techniques are used to learn a similarity function and decision
rules. Transformation paths are weighted to give reasonable results and similarity function
counts with these weights to improve estimations. They use support vector machine to
(SVM) to learn a decision rule.

3.5 Machine Learning Data Correlation

Machine learning provides algorithms that automatically improve their performance based
on gaining experience. Generating predictions is core functionality of machine learning
algorithms. Algorithm can learn - improve predictions based on example data inputs.
Recent research shows that there is no generic learning approach for all cases and in fact,
different algorithms can produce similar results. The nature of data used to characterize
task influence success of a learning algorithm. Data must be statistically regular and that is
condition for learning algorithm to provide reasonable results.

Machine learning discovers regularities and classifies data, which must be
preprocessed (removing redundant or irrelevant data) in order to provide less time
consuming computations. Classification task in machine learning is based on
generalization from the training objects to provide new object to be identified as belonging
to one of predefined classes. [24] Predefined classes with specific example objects
(training objects) are labeled and this is called supervised learning. In unsupervised
learning, there are no predefined objects labeled with appropriate classes. Supervised
learning is dependent on quality of data provided for training. Authors used Levenshtein
distance with affine gaps, where affine gaps are sequence of non-matching characters. This
method provides better results with abbreviations and can be modified using parameters for
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penalization certain affine gaps in special cases. For example various characters has
different meanings within attributes — numbers in address are more important than number
in person’s name. Authors use support vector machine (SVM) for classification.

Case-based learning algorithms (CBL) is presented in [25], where authors present
CBL algorithms as good choice for supervised learning tasks and are describing framework
for CBL algorithms. They focus on learning issues and do not perform case adaption and
smart indexing schemes. There are various CBL algorithms, for example Protos and
MBRtalk, which were applied to a large range of tasks with considerable success. Overall
experience shows that algorithm which work with one application, does not ensure that it
will work for other.

3.6 K nearest neighbor

[32] K nearest neighbor algorithm is one of the simplest decision procedure. It classifies
samples in addition to the category of nearest neighbors. K nearest neighbour algorithm
assigns to a test pattern the class label of its k-closest neighbour(s) by using majority vote.
The value of k is the most important, beacause the right value can improve accuracy. There
are modifications of this algorithm for example modified k nearest neighbor algorithm,
where nearest neighbors are weighted according to their distance from test node. Instead of
using majority vote for classification, a weighted majority rule is applied. As seen on
figure 9, testing point (green) will be classified as red triangle if k =1, 2, 3. If k = 5, class
is blue square.
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Figure 9. K nearest neighbor example

3.7 Support vector machines SVM

The support vector machine is binary classifier. It creates a decision boundary in multi-
dimensional space by using sub-set of training set vectors. [32] The elements of sub set are
support vectors. Support vectors are geometrically those training patterns, that are closest
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to the decision boundary. For determination of classes, the linear discriminant functions
can be used. In general decision boundary is obtained as hyper-plane for separation of
testing nodes. An SVM model is representation of the example nodes as points in space
which are mapped so that the examples of different categories are divided by a clear gap
which is as wide as possible. New examples will be mapped into the same space and
predicted to belong to a category in order to position in gaps. SVM can maximize the
margin around the separating hyper-plane.

Support Vectors: Input vectors for which

T [ 'I' —-—
wy,x+b,=1 or w,Tx+ b, = -1

Figure 10. SVM hyper-plane example

Support vector machine classifier is used in text categorization, images recognition,
medical science and hand written characters recognition.

3.8 Neural networks

[32] Artificial neural network was based on observing how human brain works. The output
of neural network depends on inputs and weights in the network. The training of neural
network consists of making the network give the correct output for every training input.
Every link in the network gets random weight and if the output is correct, weights are not
changed. Otherwise new random weights are created. This procedure is repeating until all
inputs have correct output. Neural network consist of artificial neurons that are modeled as
neurons in human brain. The input in the neuron is weighted and summed up. If
aggregation exceeds a threshold, neuron outputs signal. Neural network models are
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mathematical models that define functions. Network functions are made of other
predefined functions such as hyperbolic tangent. Neural networks are used in robotics, data
processing, clustering etc.

3.9 Decision trees

[32] Decision trees are commonly used data structures in pattern classification because of
high transparency. A decision tree is a tree where non-leaf nodes are associated with a
decision and the leaf nodes are associated with class label. Each internal node test one or
more attribute values and links to another node. Decision trees are good for choosing
between several courses of action.

Figure 11. Simple decision tree example

For patterns classification using decision trees, the nodes represents status of the problem
after making decision. The leaf nodes are labels of the classification rule based on the path
from the root node to leaf node. In decision trees both numerical and categorical features
can be used. The tree can be binary or non-binary, so that we can decide between many
options. The rules are simple and easy to understand. Cons of decision trees are time
difficulty for construction of the tree. There are many construction algorithms for example
ID3, C4.5 etc.
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4 Account Correlation in Identity Management

Systems

There are existing solutions in field of account correlation in identity management systems.
There are open-source projects such as OpenlAM or OpenIDM and commercial solutions
like Oracle Identity Manager. We present short overview on these systems with focus on
provisioning and reconciliation part of these systems which partly deals with account
correlation.

4.1 Oracle Identity Manager

Oracle Identity Manager is an enterprise identity management system that automatically
manages user’s access privileges within enterprise resources. System provides secure
access management for applications, data, web services and cloud-based services. It also
provides single sign-on, authorization, mobile and social sign-on etc. Oracle Identity
manager provides identity governance user self service, which simplifies account
administration. ldentity governance provides user registration, access requesting, role
lifecycle management, provisioning, access certification etc. Oracle Identity Manager uses
correlation and confirmation rules for finding user account owners and mapping accounts.
Correlation rules consist of object attributes — account representation used for attribute
based search and list of attribute conditions which determine list of potentially matching
users.

After deploying Oracle Identity Manager infrastructure definitions of security
polices take place which determine what data users or applications can access. These
polices are stored in access control lists in Oracle Internet Directory. User identities are
provisioned in Oracle Internet Directory. Identities come from multiple sources for
example human resources applications or user administration tools. These identities,
groups and roles are synchronized with other directories. User identities, groups and roles
are associated trough provisioning process which can be performed manually or
automatically trough provisioning integration.

4.2 OpenIAM

Open 1AM is open source identity management system based on Service Oriented
Architecture. It is one of the oldest open source provisioning systems. Services like
identity service or audit service are exposed to users and administrators by Enterprise
Service Bus (ESB). Open IAM provides identity management functionality like identity
life cycle managing, provisioning, synchronization etc. Provisioning manages accounts
based on rules or roles. Audit logging and reports are part of provisioning module.
Synchronization functionality allows to synchronize information from several authoritative
sources. OpenlAM synchronization is based on:
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e Events which allows real time synchronization by sending message to Identity
Manager Bus and then synchronization starts

e Scheduled intervals are precisely configured time intervals in which
synchronization can be done.

Reconciliation detects changes in managed systems for example if Active Directory make
change, reconciliation mechanism based on rules take place and synchronize this change
with OpenlAM directory.
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Figure 12. OpenlAM architecture overview

Figure 12 shows OpenlAM architecture overview where Enterprise Service BUS (ESB) is
a central component acting as transit system for carrying data between applications. The
heart of system is message bus which routes messages between endpoints. Services
provide identity management functionalities such as authentication, authorization,
password management, provisioning etc. Services are scalable and extensible for example
by ability to plug new methods of authentication.

4.3 OpenIDM

OpenIDM is an open source identity management system written in Java programming
language. OpenIDM is flexible, modular and provides RESTful interfaces to satisfy
business needs and requirements. System provides password management for defining
password policies and also synchronization of passwords from Microsoft Active Directory
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(AD) and ForgeRock OpenDJ. OpenlDM offers scalable method for discovering new,
changed or deleted accounts.

Architecture is focused on modularity by providing components that can be
composed together according to special needs. Component architecture allows to easily
add new components or remove existing components. Following figure 13 shows
architecture overview on system.
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Figure 13. OpenIDM architecture

Core services are for example scheduler that takes care about regular synchronization and
reconciliation by using Quartz library. Script engine provides triggers and plugin points for
OpenIDM. Audit logging logs all relevant system activity to log stores. It also stores data
from reconciliation for reporting. Managed objects represent identity related data managed
by OpenIDM. These objects can be configured as user, group or role. System objects are
representation of object in external systems. External object for example user entry in
external LDAP directory is represented as system object. Mappings define policies
between target objects and source objects. Mapping can define triggers for validation,
filtering and transformation of source and target objects. Synchronization provides
creating, updating and deleting resources from a source to a target system. Reconciliation
provides resource comparisons between OpenlDM managed objects and source objects
from external systems. Comparisons can result with proper actions depending on defined
mapping between systems.

Access layer consist of RESTful interfaces for CRUD operations. User interfaces
provide password management, registration and workflow services.

Provisioning system in OpenIDM manages accounts, groups and roles.
Provisioning subsystem is connected to other resources systems for example human
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resource servers, directory servers, provide communication between these systems and take
care about managing changes. Changes are propagated by synchronization process that
propagates changes from OpenIDM to other external resources or vice versa. There is a
chance that inconsistencies arise due to maintenance one of external systems and
reconciliation is needed. Reconciliation manages changes by comparing information from
external resources and OpenlDM information.

4.4 midPoint

midPoint is an open-source provisioning system providing user provisioning, de-
provisioning, synchronization of identities and automated identity management processes.
It also supports security and reporting. [26] midPoint solution focuses on efficiency and
practical usage. For example provisioning scenarios are easy to setup and use because there
is no need to code, instead configuration and simple expressions are needed. midPoint is
designed to be modular and extensible by providing open iterfaces and plugins. System
core consist of repository component, provisioning and model components (figure 14).
Repository is storing authoritative identity data and links to identity objects in other
systems, roles and access rights. Provisioning component deal with other systems, read
data from them and modifies them if needed. Core components are configurable, but also
customizable in special cases (adding new attribute expression or redefinition of a role).
Highly customizable component is for example user interface.

midPoint uses hybrid Role-based Access Control model which use rules to extend
role definitions so that less roles can handle more situations. midPoint also unifies identity
data models from integrated systems providing unified model to reduce integration
overhead, but also provides customatizations and exceptions if needed.

Synchronization mechanism of midPoint uses account linking based on correlation
and confirmation expressions.
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5 Correlation method proposal

In this section we would like to present our method proposal for automatic correlation of
user records. Our method is based on string similarity metrics detecting similarity of user
records and machine learning algorithms for automatic correlation. Method includes these
steps (as shown on figure 15)

e Data preparation, normalization of attributes and attribute extraction

e Partitioning records, setting default attribute weights
e Applying appropriate string metrics for similarity estimation
e Applying machine learning algorithms to train model and classification

e Manual checking — verification

{Impnn source recnrdsH Data preparation H Partitioning H String algorithms }
Machine learning

Verify and save results
Selection of classifier Create model

Figure 15. Correlation method overview

5.1 Data preparation and normalization

Data preparation phase is first step to user correlation detection. Input data must be stored
uniformly in the database so it is easy to work with them. The problem is that data are
stored in heterogeneous structures and so we need to define common structures to work
with many data sources. Data preparation deals with parsing input data, transforming and
standardize (normalize) them.

Parsing of input data depends on input format for example (xml, csv, database
schema, plain text). We designed parser for structure of coma-separated format where
records looks like “id: first attribute value; second attribute value”. Transformation of
attribute data type is important because we often need to transform for example numbers
(integers) to string data type for later processing.

Input data with user account information contain various attributes. For proper
matching and correlation detection we must estimate similarities based on attribute values
from many sources so there is need to have normalized and standardized attributes. Some
of the normalized attributes are suitable for simple string comparison without any other
techniques because normalized form is adequate. In most cases, there is need to more
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sophisticated matching algorithms. The quality of normalized data do not differ from
original data so we normalize before insertion into database. There are various methods
for data normalization. We apply these basic methods:

e Changing all characters to lower case

e Removing punctuation
e Replacing multiple white space characters with one space character
e Removing white spaces at the beginning of string and in the end of string

For numerical attributes like phone number we remove non numerical characters. For
example telephone number “+420 987 343 (2)” is modified to “4209873432”.

5.2 Attribute extraction

Attributes may be too general and represent mixed user attributes for example attribute
“name = “Ivan Torna” reflects given name and last name of person. We want to split this
attribute and create more specific attributes — given name, last name for more precise string
(attribute) matching. For this purpose we propose detection methods which process and
detect attributes for Slovak language.

5.2.1 Given name extractor

Given name/first name detector is based on list of given names for specific country or
domain (Slovak in our case). It can be modified in order to detect special subset of users
(organization has external employees in different country). There is also separate list of
male names and female names because of need to detect gender of user. For Slovak users
there is another option to detect potential female by finding last name suffix “ova, ova”.
The problem with first name is, that when there is misspelling error, we can not find
appropriate name from list, so we need to apply string similarity algorithms for
approximate estimating of first name.

5.2.2 Last name extractor

Last name detector takes name attribute, remove already detected given name and result is
set of potential last names. In most cases, there is only one last name detected, but there is
a chance to have woman user with two last names — born last name and marriage last
name.

5.2.3 Title extractor

Titles usually take place at the beginning and in the end of full name. As far as we
determine given name and last name, we can assume, which strings in name can contain
titles. For title detection we use list of honorific titles.
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5.2.4 Email address extractor

Email address attribute can be divided into prefix part which usually contains given name,
surname or abbreviations of name. Suffix part mostly reflects webmail service (google
mail, yahoo mail etc.) or organization domain name (@organization_name.com).

5.3 Partitioning

Finding correlation on large datasets may be too ineffective due to comparing and
matching large number of user record objects. In worst scenario, comparing includes
Cartesian product. Thus we propose partitioning mechanism, which can make this task
more effective (Figure 16). We have user objects with attribute frequencies stored in
database sorted by combination of last name attribute frequency and given name attribute
frequency. Same approach is applied to source input data, so that we have two sorted list of
user objects. Then we choose partitioning strategy of choosing N partitions —
experimentally determined

In partitioning we choose sorting attribute with most distinguishing ability.
Estimating most distinguishing attribute is based on counting number of attribute values
for certain attribute. The more unique attribute values are present within attribute, the more
distinguishing ability attribute has. Partitioning algorithm sort two data sources and create
data partitions for example data source containing 6000 user records is divided into three
partitions of 2000 records. These partitions are used in correlation process where only
certain partitions are processed which saves time. Partitioning can be optional when time
of correlation process is not critical and then results can be improved.

Group1 |- Comparison of user object withing Group 1--- - - - Group 1 \
Source 1 |— Group2 .- Comparison of user object withing Group 2---- - - - Group2 | | gaurce?
Groupd | Comparison of user object withing Group 3--- - - - - Group 3
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Figure 16. Partitioning of user records

Our method use string metrics and similarity between records to estimate user correlation.
The core of the user correlation problem is that we have one user object, which is
compared to other user objects in order to find correlation. We assume set of user objects
which are compared to new user objects from other data sources — which are actually
duplicates. Then we can use multiplicity of attribute value in set of users to improve
similarity metrics and estimations. For example we have 100 users but only one of them
has attribute last name set to “Astalos” and given name to “Jan”. This user has unique last
name within user set and when estimating new correlation, this attribute have higher
distinguishing ability than given name “Jan” which is more often occurring in given set of
users. For this purpose we estimate attribute importance for all attributes and choose
attribute with highest distinguishing ability to set default weights for string similarity
algorithms.

In real life deployment correlations must be verified and so we propose verification
tool which summarizes results of correlation and give ability to manually correlate users,
or change bad user correlations. Besides overall verification, we want to apply
recommendation of potential user matches for manual check in order to improve
correlation framework. For example in organization, human resources employee wants to
correlate two sources and our system propose him potential correlation during process and
he manually approves or rejects our recommendations. We keep this information to
improve our correlation model. If there is certain amount of approves without rejects, there
will be less correlation proposals. On the other hand, if there are too many rejects, our
correlation framework need to apply these facts and change attribute weights, partitioning
strategy or string similarity metrics.

5.4 Similarity algorithms

User correlation is based on attribute similarity. We propose basic similarity function
simgy(attrl, attr2), where each similarity is computed within attribute and between two user
objects (UserX, UserY). All similarities are stored in similarity vector [sim, simp, simc...]
and these vectors are used for match estimation. 1 represents match and O dissimilarity of
compared attributes.

simg: (attrl x att2) — [0,1]e R (7.2)
In general for name attributes we use these distance metrics:

e Jaro distance

e Jaro-Winkler distance
e Hamming distance

e N-gram similarity
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We have analyzed multiple string similarity metrics for attributes in our method. Figure 17
shows metrics results for experimental records containing full name attribute, where
similarity was estimated between manually modified records (“Marcel Abbas”, “Marcel
Abas”). Jaro-Winkler distance, Jaro distance and Soundex were most accurate.
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Figure 17. Full name similarity results

We have also analyzed all other attributes (given name, last name, email, organization unit
etc.) from our dataset for most efficient and accurate string similarity metric.

For given name attribute we use Jaro-Winkler distance, where first characters of
string are more important which makes given name comparison more effective because of
low number of misspellings at the beginning of given name. More misspellings occur in
the middle of strings.

For last name attribute we use Jaro distance, which is suitable for short strings. Jaro
distance count with length of string so that misspelling in longer word is less important
than in shorter word. Jaro distance and Jaro-Winkler distance are quite similar, so we want
to experiment combinations of attributes and different distance metrics. Misspellings in
names occur in the middle of string and so we can use Hamming distance in case of same
length of compared strings. Distance counts number of different characters which is
suitable for strings of same length. N-gram similarity split string into n-grams for example
N=3 (“tomas” = “tom”, “oma”, “mas”). Jaccard coefficient is applied to results of n-gram
similarity. There is problem with estimating suitable value of N, so that the substrings are
not too short or too long.

Honorific titles and titles are compared by using Hamming distance and Damerau-
Levenshtein distance which is similar to Levenshtein distance but there is extra operation —
transposition (swapping characters). This distance is good for short strings and strings with
misspellings, which can easily occur in titles and honorific titles.

E-mail attributes are compared by Hamming distance for e-mail suffixes and Jaro
and Jaro-Winkler distance for email e-mail prefixes.
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Organization unit attributes are usually longer strings or abbreviations. Therefore
we need to combine Levenshtein distance, N-gram distance and Damerau-Levenshtein
distance.

Numeric similarity metrics are usually based on simple string conversion and
primitive comparison. We propose cosine similarity for numerical attributes like age etc.

5.5 Machine learning algorithms

Our method prepares source data for supervised machine learning phase, which can
automatically classify records. The training data consists of training examples vectors
containing similarities between each record attributes and label (if records are duplicates or
not). Machine learning algorithms analyzes these training data and creates inferred
function — model for mapping new examples (Figure 18). The main advantage of
supervised machine learning is that once the model is trained, we can apply it to various
datasets. Our method:

1. Partition source data

2. Creates similarity vectors between records

3. Creates training set

4. Apply learned model to example set

i T
\.h__‘______,__,./
DB models
Training data
/ S— ey
Labels Machine learning algorithm Model
potential matches Apply model to new dataset New dataset

Figure 18. Machine learning process overview

We analyzed and applied these machine learning algorithms:
1. Support vector machine (SVM)

2. K-nearest neighbour (KNN)
3. Logistic regression (LR)

4. Neural network (NN)

5. Decision trees

For each algorithm there are parameters to be set which were tuned in our experiments.
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6 Correlation framework

We propose complex framework for correlation process of user identities from many
heterogeneous sources. Our goal is to make process as automatic as possible in order to
save time with manual correlation. We deal with data preparation, normalization and we
are proposing detection methods for attribute enrichment. Our correlation method is based
on similarity metrics and machine learning algorithms. The scenario of usage correlation
framework (Figure 19):

e User choose data source

e User imports data source in CSV format (comma separated values) and choose
either automatic attribute weights or manually set attribute weights

e User records are automatically sorted and split into partitions

e User starts automatic correlation process

e User see results of correlation process and verify matches

e Model is adjusted if results are incorrect

Select source \ Partition data Calculate Apply model

/’ similarity vectors
¥

Correlate user record
Recommend

Correct recommendation?

Modify model

Figure 19. Correlation framework schema

Input data are pre-processed and normalized. Then creating user objects takes place. For
every record in database there is user metadata object with default weights and attribute
frequencies stored in user metadata object. User metadata object may also contain multiple
attribute values for certain attributes from preceding source correlation detection. User
objects are partitioned and for each user in partition, matching vectors are created:
Attribute vector = [attry, attr,...attrm]
Default weights vector (DW) = [dwy, dw,...dwn]
Similarity between same attribute i of two user objects is defined as:

sim(a,b); = Di.w (6.2)
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D; represent distance between attribute; values computed by using similarity algorithms
between two user objects. DW; is experimentally predefined value (Formula 6.2). Overall
similarity between two user objects a,b is:

lev sim(a,b);

Y (6.3)
Where N represents number of attributes in user object (Formula 6.3). Result of similarity
estimation is classified by using K-nearest neighbor algorithm, logistic regression, decision
tree and Support Vector Machine (SVM) classifiers.

Result data are split into training set and testing set. Training set contains manually
pre-labeled tuples which are used to train classifier. Testing set is used to validate learned
classifier.

Trained classifiers can be applied on real datasets and user sources. Adding single
source of data and integration with existing database need to implement updating
mechanism for database records and user metadata objects. When new record is inserted,
frequencies must be re-calculated. If user match was detected, we need to store attribute
values in metadata object, so that some of the attributes may differ, or can be enriched by
new record. For example when user A has e-mail “jan@gmail.com” and is correlated to

sim(a,b) =

user A’ which has e-mail “jan.sukenik(@gmail.com”, we want to keep this information for
future matching. Here is overall schema of our framework (also shown on figure 20):
e Create source object and import data (comma separated format)

e Pre-processing transforms and normalize input data by using detection methods for
attributes

e User objects are created (When database is empty, attribute frequencies must be
computed)

e Order data by attribute (most distinguishing)

e Partitioning data (Only same partitions are compared with their estimated
similarities )

e Similarities between records are computed

e Creation of training and testing set

e Classifier is trained

e Model is applied to example set

e User verifies results

34



' T s N ' T s N
Create source » Import CSV users » Mormalize records » Enrich attributes
A A L A A A L A
¥
' Ty s 4 ' Ty s 4

Estimate vector B
similarities o

h

Verify results ¢ Apply classifiers |« Create partitions

Figure 20. Correlation framework prototype schema

We propose enriched user schema model with ability to store multiple attribute values for
one user. If we detect correlating user objects, some of their attribute values can vary and
so we want to keep this information for future matching. For example we have two
correlated user objects — U;, U; where Ujemai="martin.svec@gmail.com”,
Uoemaiy="m.svec@gmail.com”. We keep both email addresses in database for
improvement matching other future data sources.

6.1 Dataset

Suitable dataset with appropriate organizational and personal data with Slovak people was
not easy to find, but we found dataset containing employees of Slovak University of
Technology. This dataset contains 6625 users with personal and organizational attributes:

e Full name

e Organizational unit

e Office number

e Telephone

e E-mail

User record example: “Ing. Marta Ambrova, PhD.;OAT UATM FCHPT;SB
172;+421 (2) 59 325 783;marta.ambrova [at] stuba.sk”

We created smaller subsets of original dataset which contains (50, 100, 150, 200, 500)
randomly selected users. These subsets are manually modified and misspellings to attribute
values are created, abbreviations and character swaps are applied. The reason why we need
to create subsets manually is fact, that there are no sufficient sources of public available
data on users or employees with Slovak people. String similarity algorithms were tuned on

subsets of these data for example tuning of given name for Jaro-Winkler algorithm was
applied on list of given names from STU dataset.
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6.2 Implementation

Our correlation framework is implemented in ruby language and web framework Ruby on
Rails. We use

e PostgreSQL database system

e Libsvm library (Library for support vector machines)

e Aidr (Collection of ruby algorithms for classification and clustering)

e Liblinear (Logistic regression)

e RubyFann (Library for neural network classifier)

e Decision tree library for ruby

e Amatch, Fuzzy string match, Hotwater (Libraries for string similarity algorithms)
Correlation framework is designed as web application. We have chosen Ruby language
due to its easy and clear syntax, strong community support, availability of various libraries.
Ruby on rails is web based framework which makes web development as easy as possible
so we can focus on functionality. Our correlation framework was designed as web
application because nowadays trend is to provide software as a service. User trough web
interface access functionality so user do not need to install and maintain system locally.
Input of our system is CSV format because it is common and simple form. It is also easy to
process input data. Moreover another formats like XML or JSON can be easily
transformed to CSV format. We store all data in PostgreSQL relational database because it
is free, reliable, scalable and stable with strong support. Relational database was chosen
because of need for ad-hoc queries based on filtering various columns, easy to use SQL
syntax and it’s maturity (stability, bug free, well tested over years).
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7  Experiments

For evaluating results of classifiers, precision, recall and F, measure are used. Precision is
the ratio of number of relevant records retrieved to the total number of irrelevant plus
relevant records (Formula 7.1). Recall (Formula 7.2) is the ratio of the number of relevant
records to the total number of relevant records. Both precision and recall are expressed as
percentage. Metric that combines the precision and recall of the metric in the harmonic
mean is called F-measure (Formula 7.3), also known as the F1 metric. F1 take values from
interval <0,1> and the higher value is, more successful system is. Since the F-metric is a
combination of precision and recall, it corresponds to a compromise between accuracy and
coverage. Results can be divided into four classes:
e True positives correct matches

e True negatives correct non-matches
e False positives incorrect matches

e False negatives incorrect non-matches

true positives

P (precision) = 7.1
(p ) true positives+false positives ( )
true positives
R (recall) = Tnep . (7.2)
true positives+false negatives
P.R
F1 =2— (7.3)
P+R
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7.1 String similarity metrics and attribute weights

Correlation based on string similarity metrics without machine learning is first step, where
we tuned our detection methods and similarity algorithms for attributes. We have also set
up default weight estimation and partitioning strategy.

Default weights are dependent on distinguishing ability of attribute so that default
weight for more distinguishing attribute is higher. We used example set of 150, 200, 6000
randomly chosen user records from our dataset to estimate which attributes should have
higher default weights for string similarity estimation and results are averaged.

Distinguishing ability of attribute
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Figure 21. Attribute distinguishing ability overview

As shown on figure 21 the most distinguishing ability has attributes:

e Full name original

e Email (in lowercase)

e Full name without titles

e Potential surnames

e Office number
Default weights are computed as sum of unique attribute values divided by number of
records.
Default weights for all attributes are used as default weight vector in similarity estimation
between two user records.

To verify the impact of using weights of attributes in similarity matching, we have
made experiment with comparisons of small sample data with and without weights. We
have randomly chosen 150 user records from dataset and then we have modified their
attributes randomly. For every record there is one or more manually created errors
(misspellings, omitting parts of honorific titles, abbreviations etc.). The process consisted
of these steps:
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e Import sample user data

e Estimate default attribute weights

e Compare records and create similarity vectors

e Adjust boundary for classification

e Manually check results of classification and repeat process without default

attribute weights

As shown on figure 22, overall results are slightly better with using default attribute
weights. Precision is improved by 8% and F1 measure is improved by 4%. String similarity
method with manually adjusted boundary for classification is good for experimenting and
improving correlation method, but can not be used in automatic classification.

String similarity results

0,98

0,96

0,94 mP

0,92 M Recall

mF1
0,9

0,88

0,86

with weights without weights

Figure 22. String similarity with and without attribute weights

String similarity algorithms were individually tested on STU users dataset and distance
metrics with higher score for each attribute are:

¢ Full name original — Jaro-Winkler distance

e Given name — Jaro-Winkler distance

e Full name without titles — Jaro-Winkler distance
e Honorific prefixes — Levenshtein distance

e Honorific suffixes — Levenshtein distance

e Potential surnames — Jaro

e Generat TEXT attribute — Ngram (N = 2)
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e Number —Jaro
e Domain suffix — Jaro-Winkler distance
e Email lowercase — Levenshtein distance

e Email prefix — Jaro-Winkler distance

7.2 Machine learning algorithms comparison

We have experimented with multiple machine learning algorithms and various parameter
settings. First we applied KNN (k nearest neighbour) algorithm and SVM (Support vector
machine) with using default weights and without data partitioning. We have experimented
on dataset consisting of 1000 user records in which 150 records contained one or more
misspellings or errors. For KNN algorithm we experimented with parameters:

e Number of neighbours (K=5, K=10, K=30)

e Distance metric (Euclidean distance, Cosine similarity)
Parameters for SVM algorithms are:

e Type of kernel function (Radial, DOT, Polynomial)

e Epsilon

e C (Soft margin)
SVM achieved better results. SVM has F1 score about 3% higher than KNN. Number of
user vecetor comparisons is 1000 000, so that SVM classification took approximately 2
times longer than KNN classification (7 minutes). Despite simple KNN implementation
and need for tune only two parameters, we choose SVM classifier for future experiments
because results quality matters more than time in our case.

Our second experiment compared SVM, Neural Networks and Logistic regression.

We used dataset containing 150 user original user records and 150 misspelled records. We
have tested results with partitioning and without partitioning. For SVM classifier we used
tuned parameters from first experiment and for Logistic regression the parameters are:

e C

e Epsilon
e Solver type
e Bias

For Neural Network classifier we were not able to tune classifier parameters and results
were inadequate (0.4 F1 score). The problem was proper setup of neurons in hidden layer.
Input data — vectors are Cartesian product and so that most of the vectors are not matches
so that network function was not able recognize patterns. Results for SVM and logistic
regression are above 0.9 F1 score (Figure 23). Results show that logistic regression has
higher F1 score than SVM. The score is even higher with partitioning strategy (In our
experiment 150 user records were partitioned in group of 50 records — 3 partitions) as
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shown on figure 24. Time of classification was approximately same with SVM and logistic

regression.

0,99
0,98
0,97
0,96
0,95
0,94
0,93

0,92

Machine learning algorithms comparison
without partitioning

SVM Logistic Regression

mP
M Recall

mF1

Figure 23. SVM vs. Logistic regression comparison

0,995
0,99
0,985
0,98
0,975
0,97
0,965
0,96

Machine learning algorithms comparison
with partitioning (3 parts)

SVM Logistic Regression

mP
M Recall

mF1

Figure 24. SVM vs. Logistic regression comparison with partitioning

Learning curve for linear regression (Figure 25) and SVM classifier (Figure 26) trained on
dataset consisting of 500 user records in which 30 records were modified and order of
records was shuffled shows that the bigger training set is, lower error rate is. Error rate in
this experiment is ratio of misclassified (FP, FN) records to all records.
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Figure 25. Learning curve for logistic regression
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Figure 26. SVM vs. Learning curve for SVM classifier

The partitioning of input data is important for classification larger datasets, because
learning and applying model for 6000 records (36 000 000 vectors) may take ~ 2,5 hour.
We have tested partitioning size for SVM classifier where we split user records to groups
of 10%, 20%, 30%, 40%, 50% and above 50% there are only two groups. With 150 user
records, 10% split is 15 user records. Initial 150*150 (22500 comparisons) is reduced to
the 2250 comparisons. The smaller the group is, the quicker the classification is, but error
rate is higher. In small group there is high chance of missing records. On figure 27 there is
error rate for SVM classifier with partitioning that shows low error rate at 40-50%. It
means that when we have 2 or 3 groups the error rate is low.
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SVM partitioning error rate
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Figure 27. SVM classifier error rate with partitioning

Another factor in correlation detection is time of creating model (training and applying) in
order to partition size. On figure 28 there are four classifiers and three partition sizes.
Classification process takes up to 100 seconds for dataset (150 user records) for SVM,
Logistic Regression and Neural network. For decision tree the time grows much more
faster than for others. 60% partition size equals 11700 vectors in training set and Decision
tree classification took 900 seconds.

1000
900 //
800

A
600

500
/ Logistic Regression
400

/ SVM

300 / == Decision Tree
200

100

== Neural Network

Time (seconds)

20% 40% 60%

Partition size

Figure 28. Time of classification and partitioning size dependency
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In our last experiment (Figure 29) we created dataset consisting of 150 user records and
classify them using:

Logistic regression

e SVM

Decision tree

1

0,98

0,94

g / Logistic Regression
o
$ 0,92
= // — WM
0,9 — Decision Tree

0,88

0,86

0,84

20% 40% 60%

Figure 29. Classification score

Decision tree has higher F1 score in all partition cases, but from the previous experiment
the time of classification is much higher than others. In large datasets it could cause
problems. SVM classifier has better score when partitioning size is between 40 — 60 %.

7.3. Experiment summary

We did experiments with string similarity metrics where metrics with best score were
selected and implemented in framework as part of creation of similarity vector between
two records. We have implemented machine learning algorithms — SVM, neural network,
logistic regression and decision tree. SVM and logistic regression gained highest score and
are suitable for experimental dataset.
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8 Conclusion

In our work we analyzed field of identity management systems with focus on provisioning
and identity stores which manages identity lifecycle and identity storage within
organization trough identity management system.We have analyzed possibilities of
correlation detection as a part of record linkage field within identity management systems.
Particular focuse was on automatic identity correlation process, which includes cleaning
and standardization of input data sources, finding similarities between records and
classification in order to make correlation proces as automatic as possible.

We have discovered that existing open identity management systems deal with
correlation of users mainly manually, but there are solutions like correlation expressions,
where some rules are applied to make this process more automatic thus these are not
sufficient. String similarity metrics are widely used in deduplication problems, but they
need to be properly setup when dealing with identity correlation detection. Even more
important in automatic correlation process are machine learning algorithms which discover
regularities and classifies data.

The main goal of our work is to design effective and automatic correlation method
for identity correlation detection. The method is part of our correlation framework
implemented as web application.

Our method deals with data preparation, normalization of input identiy data. We
designed attribute extraction methods which process normalized input data in order to
improve similarity detection between two records and creates specific sub-attributes for
example full name attribute is divided into given name, surname, honorific prefixes etc.
When working with large amount of identity data, we need to create partitions which are
mutually compared in order to improve time difficulty. Our correlation method is based on
similarity estimation between two records, where each attribute is compared and similarity
vector is computed. We propose mechanism for estimating default attribute weights based
on attribute distinguishing ability so that similarity vector can be computed with these
weights. User can adjust these weights if needed. Our method uses experimentally selected
string metrics for each attribute type. Final correlation is proceed by using machine
learning algorithms such as SVM and Logistic regression and final results are verified
manually by user. User can use predefined classification models, or can create own model.

The method was verified by using our correlation framework, where experimental
dataset was imported, processed, classifiers were trained and applied to testing set. Results
were manually verified. We have made various subset from original dataset and adjusted
parameters for classifiers in order to impruve score.

We have realized experiments with string algorithms, partitioning strategies and
machine learning algorithms.

Our method is part of correlation framework which can process various input data.
Supported format is CSV ,,comma separated values®, but can be easily extended to other
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formats i.e. XML, JSON etc. User can create own classification model and apply to testing
set, but there is need to create training set himself. User can adjust classification
parameters in order to improve score and use this model to new data sources.
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A Use case diagram
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UC1 Manage source

e Interface for managing source

UC2 Show attribute weights

e List of attributes
e Each attribute has own attribute weight

e User can change attribute weight

UC3 Show correlations

e List all matches from correlation process for source

e Remove match from database

UC4 Correlate source

e Interface for correlation process

UC5 Choose source to correlate

e User selects source to correlate with actual source

UC6 Create partitions
e Source can be partitioned

e User inputs group size

UC7 Select model

e User can see list of predefined models
e User can choose appropriate model from database

e Apply selected model

UC8 Set default weights

o Default weights are computed for all records

UC9 Import source

e User select CSV file to import

e User choose attribute types for each column
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UC10 Remove source

e Source is removed from system

e All records and metadata objects are removed

UC12 Create machine learning model
e Select machine learning algorithm
e Choose partitioning size for group

e Set parameters for machine learning algorithm
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B Class diagram

Models
ModelSerialized UserObjectMetadata
+ name: 5iring + atfrs: Siring

+ algorithm: String
+ blob: Binary data

SourceAttributeWeight UserSource UserObjectRaw
+ aftrs: String y .| + soUrce_name: String | + atirs: String
M
UserMatch

+ user_source: UserSource
+ destination: UserSource
+ user! : UserObjectRaw
+user?: UserObjeciBaw

Class diagram of models in correlation framework shows relations between
UserSource and UserObjects. UserObjectRaw has attributes, and definition of these
attributes is stored in UserObjectMetadata. When the classifier is saved, the object
ModelSerialized is created and model is stored into filesystem. Every UserSource object
has SourceAttributeWeights which are used in creating similarity vector.
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Class model

Correlation controller

+ string_similarity_matchi()
+ sfring_similarity_match_without_attr_weights()
+tree()

+ logistic_regression() DecisionTree
+ svmi): Type |
+ neural _network() ( . |
T RubyFann |
II-"—“
|
Learner |
- "
+1iree_run()
+ logistic_regression_runi) = s SVM |
+ svm_runi) - A |—————————————— |
+ neural_network_runi)
< |
Liblinear |
— |
UserComparator | StringSimilarityProbability Object |
S~ |

UserMatch

Source controller

+ importSource()

+ CorrelateSource()

+ CreateMaitchi)

+ RemoveSource()

+ proceedCorrelation()

PR

i. RowParser

In this model, two main parts are correlation controller, which handles all machine
learning algorithms and string similarity algorithms. Source controller handles importing,
editing and removing sources. Parsing input is also part of source controller. In our
application there are several software design patterns for example singleton pattern —
concept of current user. Everytime the user is signed in, one current user object is created.
Dependency injection pattern is also used as instances are passed to methods as arguments

i.e. in create source method.
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C Componentdiagram

On the component diagram below there are main components — Crrelator service, which
aggregates data import, attribute extraction and correlation core component. Correlation
core component handles string similarity algorithms and classifiers. Infrastructure
component handles model and access to database. It also provides MVC in web based
application, libraries for connection to database, logging infrastructure etc.

Correlator admin GUT E

Correlator service {I
Data import E Attribute extract E Correlator core E
sy Siring sim algorithms Classifiers

Responsible for
attribute extraction
methods for atiribute
enrichement

Infrastructure E Database E

model

Responsibility: Maintain data model
Provide access to database
REST services
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D User manual

Installation

Correlation framework is right now available as web application. For local installation you
need:

¢ Ruby on Rails version 4

e Ruby?2
Installation steps:

e Bundle install (Installation of libraries)

e Rake db:setup (Creation of database)

e Rails s (Start local server on localhost)

Import source

First step is to import data trough import source screen (Screen 1). User choose file in CSV
format, choose number of attributes and choose type for each attribute. Type can be:
fullname, text, number, email, given name, surname.

| Choose File | 50_full_name_error.csv
ISTU_150 QOriginal

Please select number of columns for attributes |1 r

Attribute 0 | FULLNAME 7 | Attribute 10 | T
Attribute 1| TEXT T Afttribute 11 | |
Attribute 2 | TEXT T Attribute 12 | ¥
Attribute 3 | NUMBER v Attribute 13 | |
Attribute 4 | EMAIL v Attribute 14 | ¥
Attribute 5 | v Attribute 15 | Eal
Attribute 6 | T Attribute 16 | ¥
Attribute 7 | T Attribute 17 | |
Attribute 8 | v Attribute 18 | ¥
Attribute 9 | T Attribute 18| T

Import data source

Screen 1. Import source
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Source detail

Afrer importing source data, user can see list of records with all attributes. He can set
default attribute weights manually or automatically. He can correlate this data source with
another source already inported.

STU_150_Original

List of Import users:

Set default weights
1 FULL NAME ORIGINAL FULL NAME WITHOUT TITLES GIVEN NAME HONOR PREFIXES HONOR SUFFIXES POTENTIAL SURNAMES 1S POTENTIAL FE

Show attribute weights
Correlate source 1 mdr marcel abas phd ['marcel", "abas’] marcel ] ["phd’] ['abas’] false

Show correlations

2 katarina Abelova ["kataring”, "Abelova"] katarina I} i} ["Abelova’] false

3 manika Abelova ["'monika”, "Abelova’] monika I} i} ["Abelova’] false

4 gabriela Abrahamova ["gabriela”, "Abrahamova™] gabriela I} i} ["Abrahamova™] false

5 ing iyad abrahoim phd [“iyad”, "abrahoim"] [iyad” [fing"] ["phd”] [iyad®, "abrahaim"] false
*abrahaim’]

6 mgr lucia abrhanova ["lucia®, "abrhanova"] lucia ['mgr’] i} ["abrhanova’] false

7 ing marta ambrova phd [‘marta”, "ambrova“] mara [ing”] ["phd”] ["ambrova™] false

Screen 2. Source detail
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Attribute weights edit screen

User can edit attribute weights for each attribute.

STU_150_Original

Remove this source

Set default weights
Show attribute
weights

Correlate source

Show correlations

Correlate source with another source

1
FULL_NAME_ORIGINAL
FULL_NAME_WITHOUT_TITLES
GIVEN_NAME
HONOR_PREFIXES
HONOR_SUFFIXES
POTENTIAL_SURNAMES
IS_POTENTIAL_FEMALE
TEXT

TEXT

NUMBER
DOMAIN_SUFFIX
EMAIL_LOWERCASE
EMAIL_PREFIX

1
2014-05-04 17:57:54 UTC
20140504 17:57:54 UTC

Edit

Screen 3. Edit attribute weights

.0

0.9933333333333333

0.5533333333333333

0.07333333333333333

0.02666666666666667

0.9133333333333333

0.006666666666666667

0.6066666666666667

0.5466666666666666

0.7333333333333333

0.013333333333333334

After user choose source to correlate with, he inputs partition size and choose appropriate

model from list.

STU_150 Original

Remove this source

Set default weights
Show attribute
weights

Correlate source

Show correlations

correlate source STU_150 Original

Select source to correlalei STU_150 ERROR

Split by: |20

Select model: | SWM_0.512014-05-04 11:29:02 -0700

-

i Correlate |

SVM_0.512014-05-04 11:29:02 -0700

SVM_0.532014-05-04 13:39:26 -0700

SVM_c:0.5S5ource_3Source name_ STU 500 Errortime_2014-05-04 13:46:26 -0700
TREE_Source_1Source name_ STU_150_Originaltime_2014-05-05 08:03:32 -0700
TREE_Source_1Source name_ STU_150_Originaltime_2014-05-05 08:05:03 -0700
TREE_Source_1Source name_ STU_150_Originaltime_2014-05-05 08:06:14 -0700
TREE_Source_1Source name_ STU_150 Originaltime_2014-05-05 08:07:21 -0700

TREE_ Source 1Source name  STU 150 Originaltime 2014-05-05 08:09:44 -0700

TREE Source 1Source name STU 150 Originaltime 2014-05-05 08:10:29 -0700

TREE_Source_1Source name_ STU_150 Originaltime_2014-05-05 08:59:36 -0700

Screen 4. Correlate source
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Result of correlation process

User see list of records and can manually verify records.

Mum of positive predictions 136

Approve | 8 ing anton ambrézy ["anton”, "ambrazy"] anton [*ing"] [] ["ambrozy”] false OALCh UACH FCHPT sk anton.ambrozy [at]
Disapprove stuba.sk anton.ambrozy 1 2014-05-04 17:57:55 UTC 2014-05-04 17:57:55 UTC

266 ing anton ambrozy ["anton”, "ambrozy”] anton ["ing”] [] ["ambrozy"] false OALCh UACH FCHPT sk anton.ambrozy [af]

stuba.sk anton.ambrozy 2 2014-05-04 18:03:58 UTC 2014-05-04 18:03:58 UTC

Approve | 17 anna bakoSova ["anna”, "bakoSova"] anna [] [] ["bakoSova"] false TPO Dek FIIT 1.14 +421 (2) 21 022 114 sk bakosovaa
Disapprove [at] is.stuba.sk bakosovaa 1 2014-05-04 17:57:56 UTC 2014-05-04 17:57:56 UTC

275 a bakoSova ['a", "bakoSova'] ['a", "bakoSova"] ] [] ["a", "bako3ova"] false TPO Dek FIIT 1.14 +421 (2) 21 022 114 sk

bakosovaa [at] is.stuba.sk bakosovaa 2 2014-05-04 18:03:59 UTC 2014-05-04 18:03:59 UTC

Approve | 27 ing dana barokova phd ["dana", "barokova"] dana ["ing"] ["phd"] ["barokova"] false KHTE SvF C11 11
Disapprove +421 (2) 59 274 693 sk dana.barokova [at] stuba.sk dana.barokova 1 2014-05-04 17:57:58 UTC 2014-05-04 17:57:58 UTC

162 dana barokova phd ["dana”, "barokova"] dana [] ["phd"] ["barokova"] false KHTE SvF C11 11 +421 (2) 59 274 693 sk

dana.barokova [at] stuba.sk dana.barokova 2 2014-05-04 18:03:42 UTC 2014-05-04 18:03:42 UTC

Approve | 45 anna bereSova ["anna”, "bereSova"] anna [] [] ['bereSova] false RUaE SEC TF Dek FEI A149 +421 (2) 60 291 208 sk
Disapprove anna.beresova [at] stuba.sk anna.beresova 1 2014-05-04 17:58:00 UTC 2014-05-04 17:58:00 UTC

200 anna bere% ova ["anna”, "bere&", "ova"] anna [] [] ["beres", "ova"] false RUaE SEC TF Dek FEI A149

+421 (2) 60 291 208 sk anna.beresova [at] stuba.sk anna.beresova 2 2014-05-04 18:03:48 UTC 2014-05-04 18:03:48 UTC

Approve | 54 boZena cagalincova ["boZena”, "cagalincova"] boZena [] [] ["cagalincova"] false KWVHK SvF C 12/4 +421 (2) 59 274 433
Disapprove sk bozena.cagalincova [at] stuba.sk bozena.cagalincova 1 2014-05-04 17:58:01 UTC 2014-05-04 17:58:01 UTC

209 bozena cagalinncova ['boZena”, "cagalinncova"] bozena [] [] ["cagalinncova"] false KVHK SvF C 12/4
+421 (2) 59 274 498 sk bozena.cagalincova [at] stuba.sk bozena.cagalincova 2 2014-05-04 18:03:50 UTC 2014-05-04

18:03:50 UTC

Screen 5. Results of correlation process
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Correlator machine learning model setup screen

User can train own model for each data source. He can choose partition size, parameters

for each classifier and he can save model.

Neural Network

Select source 1 to correlate | STU 150 Original

String similarity with
weights

¥ | Select source 2 to correlate | STU 150 Original

String similarity match Split by:

without weights Errors:

Mse (mean 0.1
square error):

Epochs: 1000

Run NN
| FOSSSSSS—

String similarity
methods

Decision tree

Select source 1 to correlate | STU_150_Original

¥ | Select source 2 to correlate | STU_150_Original

Split by:

Create model? YES ¥

Run decision tree
et

Logistic Regression

Select source 1 to correlate | STU_150_Original

¥ | Select source 2 to correlate | STU_150_Original

Split by:

Eps: 0.1

Bias: n.2
Run LR

SVM

Select source 1 to correlate | STU_150_Original

¥ | Select source 2 to correlate | STU_150_Original

Split by:

Eps: 0.1

C: 0.5

Kernel type: LINEAR r
Create model? YES v

Run SVM
| NORSSSS——|

Screen 6. Source detail
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E Experiment examples

Results of comparing 150 original records with 150 error records.

Partition  size | Neural Network | Logistic SVM Decision Tree
(%) Regression

20 0,14 0,89 0,9 0,96

40 0,21 0,911 0,96 0,98

60 0,19 0,9 0,97 0,97

e Results are F1 score

Results of comparing 500 original records with 500 records containing 150 error records.

Partition  size | Neural Network | Logistic SVM Decision Tree
(%) Regression

20 0,12 0,84 0,92 0,93

40 0,2 0,85 0,9 0,92

60 0,21 0,86 0,91 0,92

e Results are F1 score

Time complexity of algorithms in addition to partitioning size (comparing 150 records vs.

150 records):

Partition  size | Neural Network | Logistic SVM Decision Tree
(%) Regression

20 30 6 13 130

40 45 35 28 490

60 68 42 50 930

e Results are shown in seconds
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Decision tree model trained rule-set example

Decision Tree — Trained rule set with F1 score 0.962 (150 user records)
FULL_NAME_ORIGINAL >=0.9787452210343168
=1()

FULL_NAME_ORIGINAL < 0.9787452210343168
EMAIL_LOWERCASE >=0.8201058201058201
TEXT >=0.22334299516908213

=>0()

FULL_NAME_ORIGINAL < 0.9787452210343168
EMAIL_LOWERCASE >=0.8201058201058201
TEXT <0.22334299516908213

=>1()

FULL_NAME_ORIGINAL < 0.9787452210343168
EMAIL_LOWERCASE >=0.8201058201058201
TEXT < 0.22334299516908213
IS_POTENTIAL_FEMALE >=0.4150877192982456
=>1()

FULL_NAME_ORIGINAL < 0.9787452210343168
EMAIL_LOWERCASE >=0.8201058201058201
TEXT <0.22334299516908213

IS POTENTIAL_FEMALE < 0.4150877192982456
=>0()

FULL_NAME_ORIGINAL < 0.9787452210343168
EMAIL_LOWERCASE < 0.8201058201058201
=>0()
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F  Content of electronic medium

Electronic medium has this structure:

/ Guide
/ Prototype — implemented prototype
/ Thesis — electronic version of diploma thesis
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G Resume

Uvod

Systémy na spravu digitdlnych identit riadia datové uloziskd identit, integruju ich a
poskytuju pristup k réznym systémom. Datové tiloziska identit obsahuji zaznamy s udajmi
o0 digitalnych identitach, ktoré mozu obsahovat’ nekonzistentné data. V sticasnosti existuju
rozne systémy na spravu identit ktoré pracuju s niekolkymi desiatkami az stovkami
datovych ulozisk. Cim viac systémov je integrovanych, tym naroénej$i je proces
mapovania a koreldcie udajov o identitdich. Hlavnym problémom je nutnost’ manualneho
mapovania, ktoré je v mnohych pripadoch prili§ ndro¢né na Cas. Existujlice rieSenia v
oblasti automatickej korelacie idajov o identitdch ako napriklad korelacné pravidla nie st
dostacujiice. Nasim cielom je preto navrhnut a implementovat efektivhu metdédu na

automaticku korelaciu tdajov o digitalnych identitach.

Manazment identit

ManaZment identit riadi identity v digitdlnom priestore. Je to kombinécia technologii a
postupov na reprezentovanie a rozpoznavanie entit ako digitdlnych entit v digitdlnom
priestore. Kazdd organizicia méd iné naroky na manazment identit, a tak je nutné
individudlne prisposobovanie a nastavovanie procesov Vv ramci manazmentu identit.
Hlavnou tlohou systémov na spravu a riadenie identit je integracia udajov o identitach,
spracovanie a riadenia zivotného cyklu digitdlnych identit — vytvorenie, Uprava, zruSenie
digitalnej identity. Digitalna identita obsahuje udaje o osobe, reprezentované pomocou
technickych prostriedkov ako mnozinu atribitov popisujucich dant osobu. Pouzivatel'sky
ucet je entita obsahujica informécie o osobe a kontexte v ktorom bol t¢et vytvoreny. Moze
obsahovat napriklad osobné tidaje, pristupové prava a systémové nastavenia.

V sucasnej dobe je oblast manaZzmentu identit automatizovany proces vzhl'adom na
objemy dat s ktorymi musi pracovat. ManaZment identit je dolezity pre akukol'vek
organizaciu, ktora chce poskytovat’ prava a pristupy do podsystémov pre svojich
zamestnancov a zakaznikov. Systémy na manazment identit pozostava z troch hlavnych
technologickych casti:

o Uloziska identit

e Riadenie pristupov

e Sprava ucétov (angl. ,,provisioning‘)

Uloziska identit obsahuji informacie o pouZivateI'skych uétoch a s &asto zdielané
roznymi aplikiciami v ramci organizacie, ale aj mimo nej. Uloziska identit pouZivaji rozne
technologie na spravu udajov napriklad LDAP (Lightweight Directory Access Protocol ).

Riadenie pristupu je oblast, ktord sa zaoberd autentifikdciou a autorizdciou v rdmci
systému. Bezpecnost’ aplikacii je viacSinou hlavnou poziadavkou a tak je nutné chranit
citlivé data o identitach. Autentifikacia je proces verifikacie pouzivatel'a — overenie Ci je
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osoba naozaj td za ktort sa vydava. Vyuzivaju sa na to overovanie verejnych klicov,
prihlasovacich mien a hesiel. Autorizacia je proces, ktory nasleduje po autentifikacii a ma
zaruCit' pristup k systémovym (aplikacnym) zdrojom. Tieto zdroje moézu byt sluzby,
funkcionalita systému, pristup k udajom a iné.

V ramci riadenia pristupov v systémoch na spravu identit sa vyuziva koncept
»dingle sign-on angl.“ jednotné prihlasenie, ktory zabezpeCuje pristup k viacerym
systémom bez nutnosti opiatovného prihlasovania.

Provisioning je ¢ast manazmentu identit, ktory sa zaobera riadenim a integrovanim
ulozisk identit. Zabezpecuje synchronizaciu dat z viacerych zdrojov. Rovnako riadi
mechanizmus vytvarania, modifikovania a rusenia pouzivatel'skych uctov a pristupov k
systémovym zdrojom. Napriklad v pripade vytvorenia pouzivatel'ského uétu v jednom
systéme je nutné vytvorit’ ucty vo vsetkych ostatnych systémoch.

Zlucovanie v ramci manazmentu identit je proces synchronizécie viacerych ulozisk
identit a datovych zdrojov s cielom poskytnut’ centrdlny mechanizmus spravy identit na
jednom mieste. V ramci zlu¢ovania sa urcuje zhodnost’ zdznamov o identitdch z réznych

systémov.

Korelacia identit

Pouzivatel modze v rdmci organizicie pristupovat k réznym systémom s roznymi
pouzivatel'skymi ucétami. Tieto ucty mozu obsahovat’ rdzne atribity ako napriklad
prihlasovacie meno (,.tjendek, tomas.jendek, tjendek*) a iné. Systém na spravu identit
musi pracovat s roznymi pouzivatel'skymi uctami pre jednu identitu a tak udrzovat
spojenia medzi G€tami. V pripade, ak si pouZzivatel’ v jednom systéme zmeni heslo, musi sa
tato zmena presirit’ aj do inych systémov. Korel4cia identit je proces spajania a validacie
zdznamov pouzivatel'skych Gctov, ktoré spdja vlastnictvo jednej identity. Samotné spéjanie
je realizované pomocou porovnavania hodndt atributov pouZzivatel'ského uctu. Na to sa
vyuzivaju zvicSa korelacné pravidla, ktoré spdjajii zaznamy na zéklade zhody urc¢eného
atribitu. Takato korelacia nie je dostacujuca a je nutné manudlne spdjanie zaznamov v
komplexnejsich pripadoch.

Spéjanie zdznamov je proces pri ktorom sa na zaklade porovnavania hodn6t atribitov
urci podobnost’ zaznamov a nasledne st ur¢ené potencidlne zhody. Existuja dva pristupy
spajania zaznamov:

e pravdepodobnostné

e deterministické
Deterministické spdjanie sa inak nazyva ,presné” kvoli spajaniu zdznamov ktorych
hodnoty atributov sa uplne zhoduji. Pravdepodobnostné spdjanie je zaloZzené na
porovnavani réznych hodnét atribtov a ich vah. Podobnost zdznamov je pomocou
spajacich kritérii vyhodnotend ako zhoda, alebo nezhoda. Spajanie zdznamov je
komplexny proces ktory sa sklada z:

e (istenia a Standardizacie dat
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e porovnavania

o Kklasifikacie

e vyhodnotenia
V prvom kroku je zjednoteny format dat, su odstranené nadbyto¢né medzery. Nasledne su
zdznamy porovnavané pomocou algoritmov na ur¢ovanie podobnosti retazcov. Po urceni
podobnosti nastava klasifikacia porovnavanych zaznamov a vyhodnotenie — overenie
vysledkov.

Algoritmy na hl'adanie podobnosti retazcov su:

e znakové

e vektorové
Znakové algoritmy a techniky su zalozené na modifikaéné operacie ako napriklad
odstranenie znaku, vymena znaku a ich ratanie. Znakov¢ algoritmy st vhodné na uréovanie
podobnosti retazcov v pripadoch, ked” obsahuju preklepy, alebo skratky. Pre dlhsie retazce
su znakové algoritmy neefektivne. Prikladom znakovych algoritmov su:

e Levenshteinova vzdialenost’

e Damerau-Levenshteinova vzdialenost’

e Bag vzdialenost’

e Smith-Watermant

e Jaro vzdialenost’

e N-gramy
Vektorové techniky su urcené na dlhSie retazce, pretoze retazce reprezentuju ako tokeny
ktorych poradie nie je ddlezité. Ret'azce st reprezentované ako riedke n-dimenzionalne
vektory realnych cisel, kde kazd4 hodnota patri tokenu v ramci retazca. Prikladom je
napriklad TF-IDF metdda.

Strojové ucenie
Strojové ucenie je oblast’ umelej inteligencie ktord umoznuje pocitacovému systému ,,ucit’
sa* - zlepSovat’ vysledky na zdklade predchadzajucich vysledkov. Strojové ucenie objavuje
pravidelnosti a klasifikuje data. Klasifikacia je zalozend na trénovacej mnoZine s
oznacenymi triedami a testovacej, na ktori sa uplatiluje nauCeny model. Algoritmy
strojového ucenia st napriklad:

e K najblizsich susedov

e Podporné vektory (SVM)

e Neurdnové siete

e Rozhodovacie stromy

e Logistickd regresia

Ndvrh metody
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Nami navrhovany metdda je zalozena na algoritmoch podobnosti ret'azcov, ktoré urcuji
podobnost’ medzi hodnotami atributov porovnavanych zaznamov a algoritmoch strojového
ucenia pre automaticku korelaciu. Metdda sa sklada zo zakladnych krokov:

e Priprava dat, normalizacia atributov a extrakcia atributov

e Rozdelovanie zdznamov, nastavenie zdkladnych véh pre atributy

e Aplikacia vhodnych algoritmov na uréovanie podobnosti ret'azcov

o Aplikacia klasifikatorov — trénovanie modelu a klasifikéacia

e Verifikacia vysledkov
Priprava dat je prvy krok, pri ktorom sa vstupné data ukladaju v jednotnom formate do
databazy. Okrem toho sa jednotlivé atriblty transformuju a Standardizuju. V naSej praci
navrhujeme import CSV formatu (,,comma separated value™ ang.) kde zdznamy vyzeraju
napr.“id: first attribute value; second attribute value”. Normalizdcia vstupnych dat
spo¢iva v zmene vSetkych znakov na malé pismend, odstranenie interpunkénych
znamienok, nahradenie viacero medzier jednou medzerou a odstranenie medzier pred a za
ret'azcom.

Vstupné data obsahuju rozne atributy , niektoré z nich mézu byt rozdelené na pod-
atributy, ako napriklad atribGt meno moéze byt rozdeleny na krstné meno, tituly a
priezvisko. Navrhujeme metddy na extrakciu pre atribaty krstné meno, priezvisko, tituly a
emailovu adresu.

Urcovanie korelacie pri vel’kom mnozstve zaznamov v tloziskach identit méze byt
neefektivne vzhl'adom na to, Ze pri porovnavani zdznamov (karteziansky sucin) dochadza
k porovnavaniu kazdého zdznamu s kazdym. V naSej metdde navrhujeme rozdelovaci
mechanizmus vd’aka ktorému sa na zaklade frekvencie vyskytu atribitu zoradia zaznamy a
rozdelia sa na rovnaké skupiny. Tieto skupiny sl navzajom porovnavané. Napriklad 6000
zdznamov zoradime podla atributu ,krstné meno* a ur¢ime velkost’ skupiny na 100.
Vznikne tak 60 skupin, ktoré su porovnavané tak, ze 1. skupina z prvého zdroja identit je
porovnavana s 1. skupinou z druhého zdroja.

Korelacia zaznamov je zalozena na podobnosti hodndt atributov. V praci vyuzivame
funkciu sim,(attrl, attr2), ktora pre kazdu dvojicu atribitov z dvoch zdznamov uréi
podobnost’. Vsetky hodnoty podobnosti atributov su ulozené vo forme vektora [sim,, sim,,
sim. ... |. Kazdy vektor obsahuje hodnoty od 0 po 1, kde 1 je zhoda a O je nezhoda.
Analyzovali sme rozne algoritmy na urcovanie podobnosti a pre jednotlivé atributy sme
urcili jeden algoritmus, ktory dosahoval najlepSie vysledky. Pre krstné meno je to Jaro-
Winkler algoritmus, pre priezvisko je to Jaro vzdialenost’ atd. Po vytvoreni vektora s
podobnostami zdznamov prichadza strojové ucenie, pomocou ktoré¢ho algoritmov sa
natrénuje model, ktory bude aplikovatelny na nové data a klasifikuje porovnavané
zaznamy ako zhodu, alebo nezhodu. Proces klasifikacie pozostava z:

e Rozdelenie zdznamov do skupin

e Vytvorenie vektora podobnosti

e Vytvorenia trénovacej mnoziny
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¢ Aplikovanie modelu na testovaciu mnozinu

Implementdcia metody

V nasej praci sme navrhli a implementovali korelaény rdmec na korelaciu identit z r6znych
zdrojov. Ciel'om ramca je spravit’ tento proces ¢o najviac automaticky. Scenar pre pouzitie:

e Vyber vstupnych dat (zdroje idajov o identitach)

e Import dat vo formate CSV, nastavenie vah atributov (manualne/automatické)

e Zaznamy su automaticky zoradené a rozdelené do skupin

e Vypocet podobnostnych vektorov

e Trénovanie/aplikdcia modelu

e Verifikécia vysledkov
Vstupné data su spracované a normalizované. Vytvoria sa objekty pre reprezentdciu
identity. Pre kazdy objekt st vypocitané vahy pre jednotlivé atributy. Objekty st rozdelené
do skupin pre nasledné urovanie podobnosti. Vo faze vytvarania modelu st vektory
obohatené o rucne urcenu triedu (¢i vektor oznacuje zhodné zaznamy, alebo nie).
Pouzivatel’ vyberie klasifikator, nastavi parametre a spusti trénovanie modelu. Vytvoreny
model nésledne aplikuje na testovaciu mnozinu a verifikuje vysledky. V pripade, zZe je
model uz vytvoreny, aplikuje ho na data.

V praci sme vyuzili data o zamestnancoch Slovenskej technickej univerzity v

Bratislave zo zdrojov AIS (Akademicky informacny systém). Rovnaké data sme ziskali aj
z webu www.portalvs.sk (portal vysokych §kol). Data obsahovali udaje o zamestnancoch

fo formate: kompletné meno, organizacné jednotka, ¢islo kancelarie, telefon, email (“Ing.
Marta  Ambrovad, PhD.;OAT UATM FCHPT;SB172;+421 (2) 59 325 783;marta.ambrova  [at]
stuba.sk” ).

Data obsahovali 6625 zaznamov a pri experimentoch sme vytvorili rdozne
podmnoziny (50, 100, 150, 200, 500) zdznamov, pre ktoré sme vytvorili umelé chyby —
preklepy, vynechania slov, vynechania znakov, zmenu pozicie slov atd. Implementacia
korelacného ramca je realizovana ako webova sluzba s vyuzitim Ruby on Rails webového
programového rdmca a databazy PostgreSQL.

Experimenty

Na vyhodnotenie vysledkov klasifikdcie vyuzivame metriky presnost, pokrytie a F1. V
prvom experimente sme sa zamerali na ur¢enie preddefinovanych vah atribatov. Zist'ovali
sme rozliSovaciu schopnost’ daného atributu a podl'a toho sme nastavili preddefinované
vahy atribatov. Tie su vypocitané ako sucet unikatnych vyskytov hodnoty atributu
vydeleny poctom zaznamov. Na overenie vplyvu automaticky preddefinovanych vah
atributov sme vyskusali urcovat’ podobnost’ na podmnozine 150 zaznamov. Z vysledkov je
vidno, Ze pri pouziti preddefinovanych atributov sa zlepsilo F1 skore o 4%.
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Algoritmy na uréovanie podobnosti zaznamov boli jednotlivo vyskuSané na kazdy atribtt a
najlepsie vysledky zaznamenali:

e plné meno — Jaro-Winkler vzdialenost’

e krstné meno — Jaro-Winkler vzdialenost’

e plné meno s titulmi — Jaro-Winkler vzdialenost’

e tituly pred menom — Levenshtein vzdialenost

e tituly za menom — Levenshtein vzdialenost’

e potencidlne priezviskad — Jaro

e TEXT — Ngram (N =2)

e Cisla—Jaro

e doménova pripona — Jaro-Winkler vzdialenost’

e email malym pismom — Levenshtein vzdialenost’

e emailovy prefix — Jaro-Winkler vzdialenost’

Vykonali sme experimenty s rdoznymi algoritmami strojového ucenia a réznym
nastavendm parametrov pre tieto algoritmy. V prvom experimente sme porovnavali
algoritmus K najblizS§ich susedov s algoritmom podpornych vektorov s vyuzitim
preddefinovanych vah atributov a bez rozdelovania zaznamov. Podporné vektory
zaznamenali 0 3% vyssie F1 skore. Dalsi experiment porovnaval algoritmus podpornych
vektorov, neurénovych sieti a logistickej regresie. Experiment sme realizovali s vyuzitim
rozdel'ovania a porovnali sme ho aj bez vyuzitia rozdelovania. Vysledky ukdzali, Ze
najlepsie klasifikoval algoritmus logistickej regresie s rozdel'ovanim. Pre neurénovu siet’
sa nam nepodarilo nastavit’ parametre a neurdény v skrytej vrstve tak, aby sme dosiahli
porovnatel'né vysledky s ostatnymi algoritmami.

Pri préaci s vel'kym mnozstvom zaznamov (6000) prichadza k porovnaniu 36 000 000-
krat v pripade, Ze nevyuZijeme rozdelovanie. To ma zasadny vplyv na dizku a kvalitu
klasifikacného modelu. V naSom experimente sme testovali rozne velké skupiny a
sledovali sme vplyv na vysledok a dizku klasifikicie. Vysledky ukézali, ze prili§ malé
skupiny su sice rychlo klasifikované, avSak presnost’ je nizka. Naopak vel'ké skupiny st
Casovo narocnejSie, avSak presnost’ je dobrd. NajlepSiu presnost sme zaznamenali pri
velkosti skupiny 40-50 %.

Zhrnutie

V naSej praci sme analyzovali problematiku systémov pre spravu identit s dérazom na
pristupy, ktoré spravuji zivotny cyklus identity a riadenie identit v ramci organizacie.
Zamerali sme sa na oblast’ automatickej korelacie zdznamov. Zistili sme, Ze existujice
pristupy v rdmci systémov na spravu identit neposkytuji automatické korelacné nastroje, a
tak je nutnd manuéalna praca. Hlavnym cielom naSej prace je navrhnut’ a implementovat’
automaticku korelacni metodu. Nasa metdda spracuva vstupné udaje o identitach,

normalizuje zaznamy a vytvdra navySe odvodené atriblity z povodnych pre lepSie
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urovanie podobnosti medzi zdznamami. NaSa metdoda pouziva rozne algoritmy na
urcovanie podobnosti retazcov a aplikuje ich na konkrétne atributy. Navrhujeme tiez
mechanizmus na urcovanie preddefinovanych vah atributov na zlepSenie urcovania
podobnosti atributov. Pomocou algoritmov strojového ucenia — podporné vektory,
logistické regresia a rozhodovacie stromy vytvarame klasifikatné modely a automaticky
klasifikujeme zdznamy o identitaich. NaSa metoda je sucast’ korelaéného ramca ktory
spraciva ako vstup CSV format, poskytuje moznost’ vytvorenia modelu pre jednotlivé

uloziska identit a nasledne aplikaciu modelu pri klasifikovani zdznamov.
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