

Slovak University of Technology in Bratislava

FACULTY OF INFORMATICS AND INFORMATION TECHNOLOGIES

 FIIT-5220-64357

Bc. Tomáš Jendek

Intelligent identity information
processing

Diploma thesis

Degree course: Software Engineering

Study field: 9.2.5. Software Engineering

Department: Institute of informatics and software engineering, FIIT STU Bratislava

Supervisor: Ing. Radovan Semančík, PhD.

Education supervisor: Ing. Anna Považanová

May 2014

Anotácia

Slovenská technická univerzita v Bratislave

FAKULTA INFORMATIKY A INFORMAČNÝCH TECHNOLÓGIÍ

Študijný program: Softvérové inžinierstvo

Autor: Bc. Tomáš Jendek

Diplomový projekt: Inteligentné spracovanie údajov o identitách

Vedenie diplomového projektu: Ing. Radovan Semančík, PhD.

Pedagogický vedúci: Ing. Anna Považanová

Máj, 2014

Správa identít je oblasť, ktorá sa zaoberá získavaním a spravovaním informácií

o používateľoch v informačných systémoch, ich právach a prístupových účtoch. Práve

informácie o prístupových účtoch a právach používateľov sú mnohokrát umiestnené

v rôznych databázach a úložiskách údajov ktoré sú často heterogénne. V súčasnosti existujú

systémy na správu identít, ktoré integrujú informácie z desiatok až stoviek podsystémov.

Tieto podsystémy môžu v podnikovej sfére a v reálnom nasadení obsahovať tisícky záznamov

o používateľských identitách. Čím viac podsystémov je integrovaných, tým je väčšia šanca

vznikaní nekonzistentnosti.

Hlavným problémom integrácie je nedostatočná korelácia medzi záznamami

o identitách. Existuje niekoľko prístupov ku tomuto problému, avšak ani jeden nie je

dostatočne efektívny. Niektoré z týchto prístupov zahŕňajú korelačné výrazy a potvrdzovacie

pravidlá, ktoré sú príliš jednoduché pre zložitejšie prípady nasadenia. Rovnako existuje

mnoho prác o prepájaní záznamov a algoritmov pre hľadanie podobnosti znakov slov, avšak

žiadny z prístupov neposkytuje verejne dostupné riešenie. Nedostatok automatických riešení

má za následok manuálnu koreláciu identít, ktorá je síce najpresnejšia, avšak pre veľké

organizácie časovo náročná.

V našej práci analyzujeme existujúce prístupy v oblasi správy identít, podobnosti

záznamov o používateľoch a korelácie používateľov s využitím algoritmov strojového učenia.

Predstavujeme návrh metódy na automatickú koreláciu údajov o identitách z rôznych

systémov. Hlavný prínos našej metódy spočíva v automatizovaní procesu korelácie s využitím

čo najmenej manuálnej práce. Naša metóda pomocou algoritmov na podobnosť reťazcov

a algoritmov strojového učenia poskytuje možnosť spájať záznami o identitách z viacerých

zdrojov. Implementáciu navrhnutej metódy realizujeme pomocou webovej aplikácie

a overujeme pomocou experimentou s údajmi o zamestnancoch Slovenskej techniskej

univerzity v Bratislave.

ANNOTATION

Slovak University of Technology Bratislava

FACULTY OF INFORMATICS AND INFORMATION TECHNOLOGIES

Degree Course: Software Engineering

Author: Bc. Tomáš Jendek

Diploma project: Intelligent identity information processing

Supervisor: Ing. Radovan Semančík, PhD.

Educational supervisor: Ing. Anna Považanová

2014, May

Identity management systems manage various identity sources, integrate them and provide

identities access to various heterogeneous systems. These identity sources often consist of

records with various inconsistent attributes and thus integration can be difficult. Nowadays

there are identity management solutions which integrate information from various stores,

from tenths to hundreds of subsystems. Subsystems used in corporate sphere can include

thousands of records with identity information. The more subsystems are integrated the more

likely occurrence of inconsistent identity data is.

 Main problem with integration is the proper correlation of identity records from

various heterogeneous identity sources. Some correlating mechanisms were proposed, but

neither of them is sufficient. For example correlation expressions and confirmation

expressions are too simplistic to handle complicated scenarios. There are also many literature

sources describing record linkage processes and string matching algorithms. However there is

lack of open solutions for this problem. The lack of available automated solutions result in

manual correlation, which is probably the safest way to correlate identities. But it is too time-

consuming for larger identity management deployments.

 In our work we analyze existing approaches in field of identity management systems,

record matching, data deduplication and correlation of user records with using string

similarity algorithms and machine learning approaches. We propose method for automatic

correlation of identity records from various sources. Main asset of our work is automation of

correlation process and saving manual work. Our method uses string similarity algorithms and

machine learning algorithms for correlating identity records. Implementation is realized as

web application and verification is done by experimenting with dataset from Slovak

university of technology in Bratislava.

Table of Contents

1 Introduction ... 1

2 Identity Management .. 3

2.0.1 Basic Principles in Identity Management .. 4

2.1 Identity Stores ... 5

2.2 Access Management.. 5

2.3 Provisioning .. 7

2.4 Role-Based Access Control .. 8

2.5 Reconciliation .. 9

3 Identity Correlation ... 11

3.1 Record Linkage ... 12

3.2 Typical Errors in Matching Variables .. 14

3.3 String Normalization .. 14

3.4 String Comparison Methods .. 15

3.5 Machine Learning Data Correlation ... 17

3.6 K nearest neighbor .. 18

3.7 Support vector machines SVM .. 18

3.8 Neural networks .. 19

3.9 Decision trees .. 20

4 Account Correlation in Identity Management Systems .. 21

4.1 Oracle Identity Manager ... 21

4.2 Open IAM... 21

4.3 OpenIDM ... 22

4.4 midPoint .. 24

5 Correlation method proposal .. 27

5.1 Data preparation and normalization ... 27

5.2 Attribute extraction ... 28

5.2.1 Given name extractor .. 28

5.2.2 Last name extractor ... 28

5.2.3 Title extractor .. 28

5.2.4 Email address extractor ... 29

5.3 Partitioning .. 29

5.4 Similarity algorithms .. 30

5.5 Machine learning algorithms ... 32

6 Correlation framework .. 33

6.1 Dataset .. 35

6.2 Implementation ... 36

7 Experiments ... 37

7.1 String similarity metrics and attribute weights ... 38

7.2 Machine learning algorithms comparison ... 40

7.3. Experiment summary .. 44

8 Conclusion ... 45

References .. 47

Appendix content .. 51

Appendix A –Use case diagram ... 51

Appendix B –Class diagrams ... 51

Appendix C –Component diagram .. 51

Appendix D - User manual .. 51

Appendix E – Experiment examples .. 51

Appendix F – Content of digital medium .. 51

Appendix G – Resume in Slovak language .. 51

1

1 Introduction

Identity management systems manage various identity sources, integrate them and provide

identities access to various heterogeneous systems. These identity sources often consist of

records with various inconsistent attributes and thus integration can be difficult. Nowadays

there are identity management solutions which integrate information from various stores,

from tenths to hundreds of subsystems. Subsystems used in corporate sphere can include

thousands of records with identity information. The more subsystems are integrated the

more likely occurrence of inconsistent identity data is.

 Main problem with integration is the proper correlation of identity records from

various heterogeneous identity sources. Some correlating mechanisms were proposed, but

neither of them is sufficient. For example correlation expressions and confirmation

expressions are too simplistic to handle complicated scenarios. There are also many

literature sources describing record linkage processes and string matching algorithms.

However there is lack of open solutions for this problem. The lack of available automated

solutions result in manual correlation, which is probably the safest way to correlate

identities. But it is too time-consuming for larger identity management deployments. Our

aim is to design and develop effective method for user correlation with emphasis on the

automation of matching process. This thesis is divided into sections. Section 2

describes principles in identity management especially identity stores, access management,

provisioning, reconciliation. Section 3 describes identity correlation mechanisms like

record linkage, string similarity algorithms etc. Section 4 presents analyzes of existing

identity management solutions with focus on identity correlation. Section 5 presents

correlation method proposal with data preparation process, normalization and detection

methods. In section 6 we describe implementation of our correlation framework and

dataset. In section 7 we describe experiments and results of our method.

We conclude with evaluation of our project and possibilities for further

development.

2

3

2 Identity Management

Identity management manages identities in cyberspace. [5] It is also defined as

combination of technologies and practices for representing and recognizing entities as

digital entities in cyberspace. Identity management systems are not same for every

organization, because of specific requirements of each organization. Main purpose of

identity management system is integration of identity data, process and handle their life

cycle including creation of new identities, modification and deletion.

 [4] Person in digital world can be described as set of attributes which can be

managed by technical means which is called digital identity (Figure 1). Digital identity

uses personal data which can be stored and automatically processed by computer

application. Term virtual identity is used as synonym to digital identity.

Identity in general is exclusive reception of life integrated into social group, which

is bound to body and is constantly shaped by society around this identity. Identity is also

any subset of attributes which identifies individual within set of individuals. “I” represents

individual self as instance of liberty and initiative. “Me” represents social attributes which

define human identity.

[21] Role is a set of connected actions taken by identity in specific social situations

which is basically expected behavior. Technical description of identity is digital identity,

which consists of attribute identifiers of individuality.

Partial identity is subset of person attributes both in real and digital world which

represents person in specific situation or context. Usually person uses more than one partial

identity e.g. for work, school or other activities. Partial identities contain information on

person, which can be static (birthplace) or dynamic (phone number). Person may use

different names – nicknames or pseudonyms.

User account stores all information about person in cyberspace. It can be also called

user record, user identity or simply account. User account stores information about real

world person for example surname or age. It also stores technical information in context of

system, in which account was created for example account permissions or system resource

settings.

4

Figure 1. Person in cyberspace

Growth of Internet and distributed systems forced field of identity management to change

from manual processes to fully automated processes. [6] There are three main

environments with their specific problems within identity management: enterprise, internet

and government. There are three areas of identity management technologies dealing with

each environment:

 Enterprise identity management which takes place in enterprise environment and

automate user management, authentication and authorization

 User-centric digital identity management take care about user’s data in Internet

environment

 Government digital identity management focus on data managed by government

and has serious legal aspects of person’s lives

Identity management is important for organizations which need to provide access to

different subsystems for their employees or contractors. It is also need to manage life cycle

of hiring new people by creating new accounts, modify them, or disabling accounts for

fired employees. Every employee in organization has his own role, which need to be

represented by technical means by providing access rights to resources. These roles and

rights can change in time, so there is need to capture changes in system. Large

organizations need to integrate numerous systems and subsystems and identity

management systems reduce complexity and difficulty of integration process.

Identity management contains various technologies and we can define three main

technology groups:

 Identity stores

 Access management

 Provisioning

2.0.1 Basic Principles in Identity Management

Anonymity and pseudonymity are core concepts preserved in identity management

systems. [1] Anonymity is state of being unidentifiable or not uniquely characterized

within anonymity set – set of subjects. Subject is acting entity i.e. human or computer.

Subject anonymity can be enabled only if there is an appropriate set of subjects with same

attributes. Anonymity ensures that user can use service without exposing his identity.

Pseudonymity uses pseudonyms as identifiers. Being pseudonymous is state of using a

pseudonym. Pseudonyms are identifiers of subjects and he holder of pseudonym is subject

which the pseudonym refers to. Pseudonyms are another kind of attributes widely used in

IT systems because pseudonymity ensures that user can use resource or service without

exposing his identity, but still can be able to use it. Digital pseudonyms are strings, which

5

has to be meaningful in certain context. It also must be unique as an identifier and must be

able to authenticate the holder’s actions.

2.1 Identity Stores

Identity stores hold information about user’s accounts and are often shared with other

application within organization trough network. Identity stores use various technologies,

especially Directory Services which provide storing user and accounts in tree structure for

example LDAP (Lightweight Directory Access Protocol). Active directory is directory

service which provides authentication and authorization users and computers within

Windows domain type networks.

Directory services often use [27] LDAP protocol, which is application protocol for

accessing distributed directory information services over network. Directory information

services can provide structured records such as organizational email directory. LDAP

protocol is very popular because of his scalability.

Identity store can be part of one application, or it can be shared with more than one

application (Figure 2).

Figure 2. Shared identity store

2.2 Access Management

Access management manages user authentication and authorization and unifies security

processes. In many systems the importance of resource security is paramount, especially in

identity management which deals with sensitive personal data.

Authentication is part of access management which provides verification of users. It

is the process of establishing who a person is and creating trust relationship between

system and consumer of services. There are many options for authentication for example

using matching process between public identifier (user name) and private identifier

(password) or digital certificates.

6

Authorization takes place when user is successfully authenticated and need access

to system resources. Authenticated identity has certain set of permissions and authorization

deals with determining which permissions will be granted to identity.

[8] Single sign-on (SSO) is concept that provides user to authenticate once and gain

access to all systems without logging again. Single sign-on concept is part of access

management. User has to remember only one password to get access to many different

systems and resources. [7] There are four types of SSO:

 Enterprise SSO connects systems within same enterprise

 Multi domain SSO connect multiple systems across multiple enterprises

 Web SSO connects applications and services across the web

 Federated SSO connect systems based on federated identities by combining

identity attributes from multiple IDM systems

There is a variety of architectures which can be used for SSO implementation:

 Broker-based SSO

 Agent-based SSO

 Token-based SSO

[10] In Broker-based SSO solution there is one server for central authentication and broker

gives electronic identity that can be used for requesting access to various systems. [28]

Kerberos is an authentication protocol for TCP/IP networks and it is basic model for a

broker-based Single Sign-on architecture. It uses trusted Kerberos server which is actually

broker. Kerberos server centrally authenticates users and give them electronic identity

based on the credentials given. After the user was authenticated on server, he gets ticket for

different services and applications.

 Agent-based SSO solution is based on agent program placed on server side acting

as interpreter between authentication system and authentication method used by client. The

SSH is an example of agent-based solution.

[9] Token-based SSO uses physical token that generates time dependent one-time

passwords for user authentication. When user logs on system, a centralized authentication

server will authenticate user and generates user token including session key and time

stamp. User can use token to access various application servers. These servers send users

request to centralized authentication server for token validation. SecurID is one of

implementations of this token and is based on synchronized clock on hardware token and

network server. Generated password is accepted only within certain time window.

7

Figure 3. Single sign-on schema

2.3 Provisioning

Provisioning part of identity management systems take care of managing and integrating

many identity stores. Provisioning systems synchronizes various data and models from

many sources by replicating changes to the different resources. Provisioning includes

complex rules and expressions mechanisms to match models of connected systems and

stores.

For example hiring new employee starts with creating record about person in

human resource system. Provisioning system then automatically detects new record and

assign role to user. Based on role provisioning system creates accounts in the external

systems.

Another example can be when work position of an employee changes and new role

must be activated. Provisioning system detects change made in the human resource system

, changes the role and creates new accounts.

[14] Identity management systems provide alternatives to provision resources to

authorized users on request-based, role-based and hybrid approach. In request-based

approach, users request access to special applications and resources with certain privilege

levels within system. Requests are validated by workflow driven approvals. Administrators

are alerted to new or unused accounts and have an option to activate, modify or delete such

accounts.

Role-based provisioning approach automates process of granting access to

resources. Users are assigned to roles and get specific set of accounts and access rights

based on their role. User can be removed from role and entire set of corresponding

accounts and rights are removed.

Hybrid approach combines request and role-based approach. Automated role-based

assignment access rights and accounts can be enriched by providing options to manage

accounts manually.

8

Figure 4. Identity management system

2.4 Role-Based Access Control

Large organizations has to deal with unauthorized access to organizational resources,

applications or external systems. Role-based access control (RBAC) is one of the most

known access control standards. It simplifies access control policies by grouping users in

roles, which are ordered in a role hierarchy. [12] There are overlapping responsibilities and

privileges that users can have within organization and users with different roles may need

to do common operations. A role hierarchy defines roles that can contain other roles which

mean that one role can use operations from another role. Role is abstraction that contains

set of responsibilities with corresponding allowed operations. Privileges are assigned to

role which means that certain role has predefined set of operations within system. As

shown on figure 5, user cardiologist has role Cardiologist which contains privileges of

doctor role and intern role.

[11] RBAC abstraction provides security administration at business enterprise level

rather than at the user identity level. Functional roles in organizations are captured as role

with defined permissions and role, or set of roles are assigned to user.

9

Figure 5. Role hierarchy

2.5 Reconciliation

Reconciliation is process of synchronization user account from various resources and

purpose is to create user-centric identity system that holds single profile with links to

accounts in other systems. For determination of an ownership reconciliation compares

account information between information from user accounts. [22] There are multiple

options for reconciliation for example automatic matching accounts with consistent unique

identifiers, matching other attributes or using mapping tables if they are available in

organizations. Reconciliation process is based on following steps:

 Reading relevant information from the source system

 Match the information from the source system to existing information in the

identity store using a correlation function (correlation rule)

 Read relevant information from identity store

 Compare the information retrieved from the source system with the information in

the identity store and calculate differences

 Perform defined actions based on calculated differences

Information represents user attributes and permissions or roles. Actions to be performed

are for example modification of user when account is linked, delete or unlink account,

resolve collision etc.

10

11

3 Identity Correlation

Identity can operate under various accounts in different systems with different names

(Jhsmith, James_smith, JS54), addresses etc. as shown on figure 6. Identity management

systems need to keep user accounts linked, so that multiple user accounts from various

systems can be easily changed. For example if the surname of employee changes after

marriage, identity management system changes this name in all subsystem accounts. Or in

case of firing employee, all accounts must be disabled or destroyed which is called de-

provisioning. Identity correlation is process of reconciliation and validation of multiple

user accounts which are linked by individual ownership. Identity matching is usually done

by comparing user attributes using expression languages. Identity correlation is part of

account linking process. Links are usually created automatically, but there is need to

manually verify results of linking. Manual linking does not scale and is not efficient.

Identity management systems provide integration of various identity stores

containing heterogeneous data. Usually there is no single authoritative source, so

integration can be very difficult. Main goal of integration is to map identities or user

accounts from various sources using for example rule engines, or expression languages.

Integration is used by synchronization mechanisms which checks correctness of user

account state - consistency.

Figure 6. Identity correlation

Existing provisioning systems usually use simple correlation expressions to match the

identities as shown on figure 7. These expressions get information from the account and

build search query for finding owner of an account. Correlation expression is usually

parametric search query, i.e. a search query with some parts determined by a dynamic

expression. When correlation expressions match two or more accounts, confirmation

expressions take place. Confirmation expression provides comparison of potential users

accounts.

12

Figure 7. Correlation and confirmation expression schema

3.1 Record Linkage

Organizations often need to identify and match records within large databases. Especially

in systems which are dealing with personal data integration.

User account records in databases consist of attributes for example name, address,

date of birth etc. These attributes often contain typographical errors (misspelling, missing

letters, incomplete words, incorrect or missing punctuation, abbreviations and fused or split

words), data representation across sources may differ or change in time, which make

duplicate identification very difficult.

[15] Record linkage is methodology of matching corresponding records from two

or more sources or finding duplicates in files. Identity management deals with situations

where several account records from various identity sources may refer to the same real

world entity while not being syntactically equivalent. Set of records which refer to the

same real world entity can be in general interpreted in two ways. First is to take one of the

records as correct and the other records as duplicates containing errors. There is need to

clean error duplicates. Other way is to merge matching records as partial sources of

information to create one complete record. This is common with identity management

systems, where is need to map records but not necessarily change them.

Record linkage involves bringing potential matches together for comparison

including duplicate detection. It also involves comparison of potential record pairs whether

they belong to the same real world entity. There are two approaches:

 Probabilistic linkage

 Deterministic linkage

Deterministic linkage is also called exact due to exact one to one matching character within

linkage variables with one high quality identifier. Probabilistic linkage uses combination of

the partial identifiers for example first name, email or address to compute weights for each

potential match based on probabilities.

[17] Duplicate detection in record linkage is straightforward method for revealing

exactly same records – real world entities. Records are sorted in a table and then

13

neighboring tuples are checked. This approach could be also used to detect approximate

duplicates. Sorting is based on application-specific key for example first name and last

name so that likely records appear near each other. There are duplicate detection

algorithms using sliding window of fixed size for sorted records. The size of window is W

and i is record, i is compared with record i-W+1trough i-1 if i > W, and otherwise with

records 1 trough i-1. Repetitions and combining results of sliding window matching with

small window size lead to better results as one repetition with large size of window.

[16] Traditional approaches to duplicate detection are on approximate string

matching criteria. It can be enriched with domain specific rules. Recently there have been

new adaptive approaches which use attributes and labeled data. Persons similarity is

enriched with additional attributes for instance if two accounts refers to same location, or

same workgroup, it is highly probable that these accounts belongs to same person.

 Record linkage matching results are dependent on attribute value having errors and

inconsistencies. Different attributes need different metrics when comparing values.

[20] Record linkage process consists of five steps (figure 8):

 Cleaning and standardization deals with data errors and inconsistencies by

converting attributes to same format, adding derived variables

 Indexing / blocking generates candidate record pairs

 Comparison results are weight vectors that contain numerical similarity values

 Classification is based on weight vectors and results are of type matches, non

matches, possible matches

 Evaluation of quality of generated matches and non matches. Often manual review

is needed to decide final linkage

Figure 8. Record linkage process overview

14

3.2 Typical Errors in Matching Variables

[23] Sources of errors in matching personal records are for example misspellings, using

phonetic name, use of synonyms or nicknames, lack of initials, compound names etc. Most

common errors are:

 Present surname can change due to marriage or divorce. There are also compound

surnames where birth surname and marriage surname are mixed.

 First forename brings errors with variations of forenames due to transcription or

modifying forenames caused by fashion trends (popular persons). People often use

nicknames instead of forename.

 Address can change during person’s life quite often. There are also problems with

using mailing addresses and physical addresses.

 Date of birth is variable used to verify age of person, but there are also problems

in format of date (European, US).

 Swapping names and surnames is frequent error caused by transcriptions.

 Titles in name variable are for example marital status, academic title, academic

degree, church, family order, concatenated names etc. Titles cause problems with

name matching due to difficulties with parsing name to forename and surname.

3.3 String Normalization

Preprocessing of record information or attributes is most suitable before using string

comparison methods. Normalization can make string comparison easier, sometimes even

basic string matching is enough. Normalization can be considered at cleaning and

standardization level if it does not spoil information value in attribute. Basic normalization

methods are:

 Transformation of all characters to lowercase

 Removing whitespaces before and after string

 Removing punctuation characters or replacing them

Special normalization techniques can be applied in addition to type of information or

attributes in identity records. For example if attribute is name of person, then we can

extract academic or other titles into new attribute and then we can user or process these

information later. Another example is address attribute, which can contain compound

address information (part of the town) and this can be extracted to new attribute and used

later.

15

3.4 String Comparison Methods

There are several methods for record linkage i.e. entity name clustering and matching, edit

distance, vector space cosine similarity. Some recent works combine multiple standard

methods and metrics.

 Similarity estimation can vary depending on the domain. For string similarity

improvement there is need for adapting string similarity metrics for each field

corresponding to the particular domain.

[3] Methods for string similarity can be divided into two groups:

 Character based techniques

 Vector space based techniques

Character based techniques rely on character edit operations such as deletions,

substitutions, insertions, comparison of subsequences. Such technique is Levenshtein

distance which is defined as minimum number of insertions, deletions or substitutions

necessary to transform one string into another string. Character based techniques work well

for estimating distance between strings with typographical errors or abbreviations, but

these metrics are computationally expensive and also less accurate for larger strings.

Vector space techniques deals with this problem better, because such techniques are

based on viewing strings as bags of tokens. The order of tokens is unimportant. Strings in

tokens are represented as sparse n-dimensional vectors of real numbers where every

component corresponds to a token present in string. TF-IDF is probably most known

method and useful for larger strings and text documents.

Records can be composed of multiple attributes and distance between these records

must combine similarity estimates for each attribute. Each attribute can have different

informative value and thus is necessary to weight attributes properly.

In [2] the authors propose object identification system based on domain independent string

transformations to compare objects shared attributes. They use candidate generator which

use set of domain independent transformation to judge similarity between objects.

Candidate generator produces an initial set of candidates. The authors propose unary

transformations which are used to determine candidates:

 Equality for testing if a token contains same character in the same order

 Stemming converts a token into its stem or root

 Soundex converts token into a soundex code. Tokens that sounds similar have same

code

 Abbreviation looks up token and replaces with abbreviation

N-ary transformations:

 Initial computes if one token is equal to the first character of other token

 Prefix determines if one token is equal to a continuous subset of the other starting

at first character

16

 Suffix determines if one token is equal to a continuous subset of the other starting at

last character

 Substring computes if one token is equal to a continuous subset of the other but not

include first or last character

 Acronym computes if all characters of one token are initial letters of all tokens from

other objects

 Drop determines if a token does not match any other token

Tokenization is process of lowercasing all characters in text and removing punctuation

characters. Transformations are used after tokenization.

Matching variables in records contain string values. There are several solutions for

string comparison for example:

Levenshtein distance (edit distance), [29] which is defined as smallest number of

insertions, deletions or substitutions of characters needed to change one string to another.

Levenshtein distance can be modified to provide different edit costs – weights for edit

operations in special situations depending on domain in which Levenshtein method is used.

It can be effectively used in some situations i.e. “I” and “L” can be mechanically scanned

as same letter and we need to give lower edit cost to operations witch these characters.

Damerau-Levenshtein distance [30] is variation of Levenshtein distance.

Transposition is new operation and it costs just one edit instead of deletion and insertion. It

is often used when error rate in string is low (misspellings).

Brute force string comparison is simplest algorithm to use. Algorithm try to

match all possible pattern positions in string and verifies that pattern at exactly same

position. If one string contains x characters and second string contains y characters, then in

worst case there are x.y comparisons.

Knuth-Morris-Pratt (KMP) [31] algorithm is faster than brute force algorithm

because of using sliding window over the strings in text. It does not try all positions as

brute force, but it reuses information from previous check.

Boyer-Moore algorithm works similar to KMP, but check inside the window can

proceed backwards and forwards.

Bag distance is cheap approximation to edit distance. A bag is defined as a multiset

of the characters in a string (for example, multiset ms(‘peter’) = {‘e’, ‘e’, ‘p’, ‘r’, ‘t’},

and the bag distance between two strings is calculated as

distbag(s1, s2) = max(|x − y|,|y − x|), with x = ms(s1), y = ms(s2) and |·| denoting the

number of elements in a multiset.

Smith-Waterman is algorithm suitable for names with initials and compound

names. It is based on a dynamic programming approach similar to edit distance, but allows

gaps

as well as character specific match scores.

17

 Longest common sub-string (LCS) repeatedly finds and removes the longest

common sub-string in the two strings compared, up to a minimum lengths. This algorithm

is recommended for compound names and names where first name and surname are

swapped.

Q-grams are sometimes called n-grams are substrings of length (q,n). If q = 2, then

name “Thomas” is split to bigrams “Th”, “om”, “as”. Similarity is calculated between

splited n-grams so that similarity counts grams which are common.

Positional q-grams is extension to q-grams and add positional information and

match only grams within certain distance.

The Jaro distance algorithm is used for name matching in data linkage systems. It

counts for insertions, deletions and transpositions. The number of common characters and

number of transpositions are used in this algorithm.

Results in [18] shows that for names parsed into separate fields, Jaro algorithm

performs well with given and surnames. They also recommend knowing data, types of

names and separators before choosing matching algorithm.

 In paper [19] the authors present novel person name matching model. They

formalize name variations in English language, introduce name transformation paths.

Subsequently supervised techniques are used to learn a similarity function and decision

rules. Transformation paths are weighted to give reasonable results and similarity function

counts with these weights to improve estimations. They use support vector machine to

(SVM) to learn a decision rule.

3.5 Machine Learning Data Correlation

Machine learning provides algorithms that automatically improve their performance based

on gaining experience. Generating predictions is core functionality of machine learning

algorithms. Algorithm can learn - improve predictions based on example data inputs.

Recent research shows that there is no generic learning approach for all cases and in fact,

different algorithms can produce similar results. The nature of data used to characterize

task influence success of a learning algorithm. Data must be statistically regular and that is

condition for learning algorithm to provide reasonable results.

 Machine learning discovers regularities and classifies data, which must be

preprocessed (removing redundant or irrelevant data) in order to provide less time

consuming computations. Classification task in machine learning is based on

generalization from the training objects to provide new object to be identified as belonging

to one of predefined classes. [24] Predefined classes with specific example objects

(training objects) are labeled and this is called supervised learning. In unsupervised

learning, there are no predefined objects labeled with appropriate classes. Supervised

learning is dependent on quality of data provided for training. Authors used Levenshtein

distance with affine gaps, where affine gaps are sequence of non-matching characters. This

method provides better results with abbreviations and can be modified using parameters for

18

penalization certain affine gaps in special cases. For example various characters has

different meanings within attributes – numbers in address are more important than number

in person’s name. Authors use support vector machine (SVM) for classification.

 Case-based learning algorithms (CBL) is presented in [25], where authors present

CBL algorithms as good choice for supervised learning tasks and are describing framework

for CBL algorithms. They focus on learning issues and do not perform case adaption and

smart indexing schemes. There are various CBL algorithms, for example Protos and

MBRtalk, which were applied to a large range of tasks with considerable success. Overall

experience shows that algorithm which work with one application, does not ensure that it

will work for other.

3.6 K nearest neighbor

[32] K nearest neighbor algorithm is one of the simplest decision procedure. It classifies

samples in addition to the category of nearest neighbors. K nearest neighbour algorithm

assigns to a test pattern the class label of its k-closest neighbour(s) by using majority vote.

The value of k is the most important, beacause the right value can improve accuracy. There

are modifications of this algorithm for example modified k nearest neighbor algorithm,

where nearest neighbors are weighted according to their distance from test node. Instead of

using majority vote for classification, a weighted majority rule is applied. As seen on

figure 9, testing point (green) will be classified as red triangle if k = 1, 2, 3. If k = 5, class

is blue square.

Figure 9. K nearest neighbor example

3.7 Support vector machines SVM

The support vector machine is binary classifier. It creates a decision boundary in multi-

dimensional space by using sub-set of training set vectors. [32] The elements of sub set are

support vectors. Support vectors are geometrically those training patterns, that are closest

19

to the decision boundary. For determination of classes, the linear discriminant functions

can be used. In general decision boundary is obtained as hyper-plane for separation of

testing nodes. An SVM model is representation of the example nodes as points in space

which are mapped so that the examples of different categories are divided by a clear gap

which is as wide as possible. New examples will be mapped into the same space and

predicted to belong to a category in order to position in gaps. SVM can maximize the

margin around the separating hyper-plane.

Figure 10. SVM hyper-plane example

Support vector machine classifier is used in text categorization, images recognition,

medical science and hand written characters recognition.

3.8 Neural networks

[32] Artificial neural network was based on observing how human brain works. The output

of neural network depends on inputs and weights in the network. The training of neural

network consists of making the network give the correct output for every training input.

Every link in the network gets random weight and if the output is correct, weights are not

changed. Otherwise new random weights are created. This procedure is repeating until all

inputs have correct output. Neural network consist of artificial neurons that are modeled as

neurons in human brain. The input in the neuron is weighted and summed up. If

aggregation exceeds a threshold, neuron outputs signal. Neural network models are

20

mathematical models that define functions. Network functions are made of other

predefined functions such as hyperbolic tangent. Neural networks are used in robotics, data

processing, clustering etc.

3.9 Decision trees

[32] Decision trees are commonly used data structures in pattern classification because of

high transparency. A decision tree is a tree where non-leaf nodes are associated with a

decision and the leaf nodes are associated with class label. Each internal node test one or

more attribute values and links to another node. Decision trees are good for choosing

between several courses of action.

Figure 11. Simple decision tree example

For patterns classification using decision trees, the nodes represents status of the problem

after making decision. The leaf nodes are labels of the classification rule based on the path

from the root node to leaf node. In decision trees both numerical and categorical features

can be used. The tree can be binary or non-binary, so that we can decide between many

options. The rules are simple and easy to understand. Cons of decision trees are time

difficulty for construction of the tree. There are many construction algorithms for example

ID3, C4.5 etc.

21

4 Account Correlation in Identity Management

Systems

There are existing solutions in field of account correlation in identity management systems.

There are open-source projects such as OpenIAM or OpenIDM and commercial solutions

like Oracle Identity Manager. We present short overview on these systems with focus on

provisioning and reconciliation part of these systems which partly deals with account

correlation.

4.1 Oracle Identity Manager

Oracle Identity Manager is an enterprise identity management system that automatically

manages user’s access privileges within enterprise resources. System provides secure

access management for applications, data, web services and cloud-based services. It also

provides single sign-on, authorization, mobile and social sign-on etc. Oracle Identity

manager provides identity governance user self service, which simplifies account

administration. Identity governance provides user registration, access requesting, role

lifecycle management, provisioning, access certification etc. Oracle Identity Manager uses

correlation and confirmation rules for finding user account owners and mapping accounts.

Correlation rules consist of object attributes – account representation used for attribute

based search and list of attribute conditions which determine list of potentially matching

users.

 After deploying Oracle Identity Manager infrastructure definitions of security

polices take place which determine what data users or applications can access. These

polices are stored in access control lists in Oracle Internet Directory. User identities are

provisioned in Oracle Internet Directory. Identities come from multiple sources for

example human resources applications or user administration tools. These identities,

groups and roles are synchronized with other directories. User identities, groups and roles

are associated trough provisioning process which can be performed manually or

automatically trough provisioning integration.

4.2 Open IAM

Open IAM is open source identity management system based on Service Oriented

Architecture. It is one of the oldest open source provisioning systems. Services like

identity service or audit service are exposed to users and administrators by Enterprise

Service Bus (ESB). Open IAM provides identity management functionality like identity

life cycle managing, provisioning, synchronization etc. Provisioning manages accounts

based on rules or roles. Audit logging and reports are part of provisioning module.

Synchronization functionality allows to synchronize information from several authoritative

sources. OpenIAM synchronization is based on:

22

 Events which allows real time synchronization by sending message to Identity

Manager Bus and then synchronization starts

 Scheduled intervals are precisely configured time intervals in which

synchronization can be done.

Reconciliation detects changes in managed systems for example if Active Directory make

change, reconciliation mechanism based on rules take place and synchronize this change

with OpenIAM directory.

Figure 12. OpenIAM architecture overview

Figure 12 shows OpenIAM architecture overview where Enterprise Service BUS (ESB) is

a central component acting as transit system for carrying data between applications. The

heart of system is message bus which routes messages between endpoints. Services

provide identity management functionalities such as authentication, authorization,

password management, provisioning etc. Services are scalable and extensible for example

by ability to plug new methods of authentication.

4.3 OpenIDM

OpenIDM is an open source identity management system written in Java programming

language. OpenIDM is flexible, modular and provides RESTful interfaces to satisfy

business needs and requirements. System provides password management for defining

password policies and also synchronization of passwords from Microsoft Active Directory

23

(AD) and ForgeRock OpenDJ. OpenIDM offers scalable method for discovering new,

changed or deleted accounts.

Architecture is focused on modularity by providing components that can be

composed together according to special needs. Component architecture allows to easily

add new components or remove existing components. Following figure 13 shows

architecture overview on system.

Figure 13. OpenIDM architecture

Core services are for example scheduler that takes care about regular synchronization and

reconciliation by using Quartz library. Script engine provides triggers and plugin points for

OpenIDM. Audit logging logs all relevant system activity to log stores. It also stores data

from reconciliation for reporting. Managed objects represent identity related data managed

by OpenIDM. These objects can be configured as user, group or role. System objects are

representation of object in external systems. External object for example user entry in

external LDAP directory is represented as system object. Mappings define policies

between target objects and source objects. Mapping can define triggers for validation,

filtering and transformation of source and target objects. Synchronization provides

creating, updating and deleting resources from a source to a target system. Reconciliation

provides resource comparisons between OpenIDM managed objects and source objects

from external systems. Comparisons can result with proper actions depending on defined

mapping between systems.

 Access layer consist of RESTful interfaces for CRUD operations. User interfaces

provide password management, registration and workflow services.

 Provisioning system in OpenIDM manages accounts, groups and roles.

Provisioning subsystem is connected to other resources systems for example human

24

resource servers, directory servers, provide communication between these systems and take

care about managing changes. Changes are propagated by synchronization process that

propagates changes from OpenIDM to other external resources or vice versa. There is a

chance that inconsistencies arise due to maintenance one of external systems and

reconciliation is needed. Reconciliation manages changes by comparing information from

external resources and OpenIDM information.

4.4 midPoint

midPoint is an open-source provisioning system providing user provisioning, de-

provisioning, synchronization of identities and automated identity management processes.

It also supports security and reporting. [26] midPoint solution focuses on efficiency and

practical usage. For example provisioning scenarios are easy to setup and use because there

is no need to code, instead configuration and simple expressions are needed. midPoint is

designed to be modular and extensible by providing open iterfaces and plugins. System

core consist of repository component, provisioning and model components (figure 14).

Repository is storing authoritative identity data and links to identity objects in other

systems, roles and access rights. Provisioning component deal with other systems, read

data from them and modifies them if needed. Core components are configurable, but also

customizable in special cases (adding new attribute expression or redefinition of a role).

Highly customizable component is for example user interface.

midPoint uses hybrid Role-based Access Control model which use rules to extend

role definitions so that less roles can handle more situations. midPoint also unifies identity

data models from integrated systems providing unified model to reduce integration

overhead, but also provides customatizations and exceptions if needed.

 Synchronization mechanism of midPoint uses account linking based on correlation

and confirmation expressions.

25

Figure 14. midPoint component overview

26

27

5 Correlation method proposal

In this section we would like to present our method proposal for automatic correlation of

user records. Our method is based on string similarity metrics detecting similarity of user

records and machine learning algorithms for automatic correlation. Method includes these

steps (as shown on figure 15)

 Data preparation, normalization of attributes and attribute extraction

 Partitioning records, setting default attribute weights

 Applying appropriate string metrics for similarity estimation

 Applying machine learning algorithms to train model and classification

 Manual checking – verification

Figure 15. Correlation method overview

5.1 Data preparation and normalization

Data preparation phase is first step to user correlation detection. Input data must be stored

uniformly in the database so it is easy to work with them. The problem is that data are

stored in heterogeneous structures and so we need to define common structures to work

with many data sources. Data preparation deals with parsing input data, transforming and

standardize (normalize) them.

 Parsing of input data depends on input format for example (xml, csv, database

schema, plain text). We designed parser for structure of coma-separated format where

records looks like “id: first_attribute_value; second_attribute_value”. Transformation of

attribute data type is important because we often need to transform for example numbers

(integers) to string data type for later processing.

Input data with user account information contain various attributes. For proper

matching and correlation detection we must estimate similarities based on attribute values

from many sources so there is need to have normalized and standardized attributes. Some

of the normalized attributes are suitable for simple string comparison without any other

techniques because normalized form is adequate. In most cases, there is need to more

28

sophisticated matching algorithms. The quality of normalized data do not differ from

original data so we normalize before insertion into database. There are various methods

for data normalization. We apply these basic methods:

 Changing all characters to lower case

 Removing punctuation

 Replacing multiple white space characters with one space character

 Removing white spaces at the beginning of string and in the end of string

For numerical attributes like phone number we remove non numerical characters. For

example telephone number “+420 987 343 (2)” is modified to “4209873432”.

5.2 Attribute extraction

Attributes may be too general and represent mixed user attributes for example attribute

“name = “Ivan Torna” reflects given name and last name of person. We want to split this

attribute and create more specific attributes – given name, last name for more precise string

(attribute) matching. For this purpose we propose detection methods which process and

detect attributes for Slovak language.

5.2.1 Given name extractor

Given name/first name detector is based on list of given names for specific country or

domain (Slovak in our case). It can be modified in order to detect special subset of users

(organization has external employees in different country). There is also separate list of

male names and female names because of need to detect gender of user. For Slovak users

there is another option to detect potential female by finding last name suffix “ová, ova”.

The problem with first name is, that when there is misspelling error, we can not find

appropriate name from list, so we need to apply string similarity algorithms for

approximate estimating of first name.

5.2.2 Last name extractor

Last name detector takes name attribute, remove already detected given name and result is

set of potential last names. In most cases, there is only one last name detected, but there is

a chance to have woman user with two last names – born last name and marriage last

name.

5.2.3 Title extractor

Titles usually take place at the beginning and in the end of full name. As far as we

determine given name and last name, we can assume, which strings in name can contain

titles. For title detection we use list of honorific titles.

29

5.2.4 Email address extractor

Email address attribute can be divided into prefix part which usually contains given name,

surname or abbreviations of name. Suffix part mostly reflects webmail service (google

mail, yahoo mail etc.) or organization domain name (@organization_name.com).

5.3 Partitioning

Finding correlation on large datasets may be too ineffective due to comparing and

matching large number of user record objects. In worst scenario, comparing includes

Cartesian product. Thus we propose partitioning mechanism, which can make this task

more effective (Figure 16). We have user objects with attribute frequencies stored in

database sorted by combination of last name attribute frequency and given name attribute

frequency. Same approach is applied to source input data, so that we have two sorted list of

user objects. Then we choose partitioning strategy of choosing N partitions –

experimentally determined

In partitioning we choose sorting attribute with most distinguishing ability.

Estimating most distinguishing attribute is based on counting number of attribute values

for certain attribute. The more unique attribute values are present within attribute, the more

distinguishing ability attribute has. Partitioning algorithm sort two data sources and create

data partitions for example data source containing 6000 user records is divided into three

partitions of 2000 records. These partitions are used in correlation process where only

certain partitions are processed which saves time. Partitioning can be optional when time

of correlation process is not critical and then results can be improved.

30

Figure 16. Partitioning of user records

Our method use string metrics and similarity between records to estimate user correlation.

The core of the user correlation problem is that we have one user object, which is

compared to other user objects in order to find correlation. We assume set of user objects

which are compared to new user objects from other data sources – which are actually

duplicates. Then we can use multiplicity of attribute value in set of users to improve

similarity metrics and estimations. For example we have 100 users but only one of them

has attribute last name set to “Astaloš” and given name to “Jan”. This user has unique last

name within user set and when estimating new correlation, this attribute have higher

distinguishing ability than given name “Jan” which is more often occurring in given set of

users. For this purpose we estimate attribute importance for all attributes and choose

attribute with highest distinguishing ability to set default weights for string similarity

algorithms.

In real life deployment correlations must be verified and so we propose verification

tool which summarizes results of correlation and give ability to manually correlate users,

or change bad user correlations. Besides overall verification, we want to apply

recommendation of potential user matches for manual check in order to improve

correlation framework. For example in organization, human resources employee wants to

correlate two sources and our system propose him potential correlation during process and

he manually approves or rejects our recommendations. We keep this information to

improve our correlation model. If there is certain amount of approves without rejects, there

will be less correlation proposals. On the other hand, if there are too many rejects, our

correlation framework need to apply these facts and change attribute weights, partitioning

strategy or string similarity metrics.

5.4 Similarity algorithms

User correlation is based on attribute similarity. We propose basic similarity function

sima(attr1, attr2), where each similarity is computed within attribute and between two user

objects (UserX, UserY). All similarities are stored in similarity vector [sima, simb, simc …]

and these vectors are used for match estimation. 1 represents match and 0 dissimilarity of

compared attributes.

 (7.1)

In general for name attributes we use these distance metrics:

 Jaro distance

 Jaro-Winkler distance

 Hamming distance

 N-gram similarity

31

We have analyzed multiple string similarity metrics for attributes in our method. Figure 17

shows metrics results for experimental records containing full name attribute, where

similarity was estimated between manually modified records (“Marcel Abbas”, “Marcel

Abas”). Jaro-Winkler distance, Jaro distance and Soundex were most accurate.

Figure 17. Full name similarity results

We have also analyzed all other attributes (given name, last name, email, organization unit

etc.) from our dataset for most efficient and accurate string similarity metric.

For given name attribute we use Jaro-Winkler distance, where first characters of

string are more important which makes given name comparison more effective because of

low number of misspellings at the beginning of given name. More misspellings occur in

the middle of strings.

For last name attribute we use Jaro distance, which is suitable for short strings. Jaro

distance count with length of string so that misspelling in longer word is less important

than in shorter word. Jaro distance and Jaro-Winkler distance are quite similar, so we want

to experiment combinations of attributes and different distance metrics. Misspellings in

names occur in the middle of string and so we can use Hamming distance in case of same

length of compared strings. Distance counts number of different characters which is

suitable for strings of same length. N-gram similarity split string into n-grams for example

N=3 (“tomas” = “tom”, “oma”, “mas”). Jaccard coefficient is applied to results of n-gram

similarity. There is problem with estimating suitable value of N, so that the substrings are

not too short or too long.

Honorific titles and titles are compared by using Hamming distance and Damerau-

Levenshtein distance which is similar to Levenshtein distance but there is extra operation –

transposition (swapping characters). This distance is good for short strings and strings with

misspellings, which can easily occur in titles and honorific titles.

E-mail attributes are compared by Hamming distance for e-mail suffixes and Jaro

and Jaro-Winkler distance for email e-mail prefixes.

0

0,2

0,4

0,6

0,8

1

1,2

Full name similarity

32

Organization unit attributes are usually longer strings or abbreviations. Therefore

we need to combine Levenshtein distance, N-gram distance and Damerau-Levenshtein

distance.

Numeric similarity metrics are usually based on simple string conversion and

primitive comparison. We propose cosine similarity for numerical attributes like age etc.

5.5 Machine learning algorithms

Our method prepares source data for supervised machine learning phase, which can

automatically classify records. The training data consists of training examples vectors

containing similarities between each record attributes and label (if records are duplicates or

not). Machine learning algorithms analyzes these training data and creates inferred

function – model for mapping new examples (Figure 18). The main advantage of

supervised machine learning is that once the model is trained, we can apply it to various

datasets. Our method:

1. Partition source data

2. Creates similarity vectors between records

3. Creates training set

4. Apply learned model to example set

Figure 18. Machine learning process overview

We analyzed and applied these machine learning algorithms:

1. Support vector machine (SVM)

2. K-nearest neighbour (KNN)

3. Logistic regression (LR)

4. Neural network (NN)

5. Decision trees

For each algorithm there are parameters to be set which were tuned in our experiments.

33

6 Correlation framework

We propose complex framework for correlation process of user identities from many

heterogeneous sources. Our goal is to make process as automatic as possible in order to

save time with manual correlation. We deal with data preparation, normalization and we

are proposing detection methods for attribute enrichment. Our correlation method is based

on similarity metrics and machine learning algorithms. The scenario of usage correlation

framework (Figure 19):

 User choose data source

 User imports data source in CSV format (comma separated values) and choose

either automatic attribute weights or manually set attribute weights

 User records are automatically sorted and split into partitions

 User starts automatic correlation process

 User see results of correlation process and verify matches

 Model is adjusted if results are incorrect

Figure 19. Correlation framework schema

Input data are pre-processed and normalized. Then creating user objects takes place. For

every record in database there is user metadata object with default weights and attribute

frequencies stored in user metadata object. User metadata object may also contain multiple

attribute values for certain attributes from preceding source correlation detection. User

objects are partitioned and for each user in partition, matching vectors are created:

Attribute vector = [attr1, attr2…attrn]

Default weights vector (DW) = [dw1, dw2…dwn]

Similarity between same attribute i of two user objects is defined as:

 (6.2)

34

Di represent distance between attributei values computed by using similarity algorithms

between two user objects. DWi is experimentally predefined value (Formula 6.2). Overall

similarity between two user objects a,b is:

 (6.3)

Where N represents number of attributes in user object (Formula 6.3). Result of similarity

estimation is classified by using K-nearest neighbor algorithm, logistic regression, decision

tree and Support Vector Machine (SVM) classifiers.

Result data are split into training set and testing set. Training set contains manually

pre-labeled tuples which are used to train classifier. Testing set is used to validate learned

classifier.

Trained classifiers can be applied on real datasets and user sources. Adding single

source of data and integration with existing database need to implement updating

mechanism for database records and user metadata objects. When new record is inserted,

frequencies must be re-calculated. If user match was detected, we need to store attribute

values in metadata object, so that some of the attributes may differ, or can be enriched by

new record. For example when user A has e-mail “jan@gmail.com” and is correlated to

user A’ which has e-mail “jan.sukenik@gmail.com”, we want to keep this information for

future matching. Here is overall schema of our framework (also shown on figure 20):

 Create source object and import data (comma separated format)

 Pre-processing transforms and normalize input data by using detection methods for

attributes

 User objects are created (When database is empty, attribute frequencies must be

computed)

 Order data by attribute (most distinguishing)

 Partitioning data (Only same partitions are compared with their estimated

similarities)

 Similarities between records are computed

 Creation of training and testing set

 Classifier is trained

 Model is applied to example set

 User verifies results

35

Figure 20. Correlation framework prototype schema

We propose enriched user schema model with ability to store multiple attribute values for

one user. If we detect correlating user objects, some of their attribute values can vary and

so we want to keep this information for future matching. For example we have two

correlated user objects – U1, U2 where U1(email)=”martin.svec@gmail.com”,

U2(email)=”m.svec@gmail.com”. We keep both email addresses in database for

improvement matching other future data sources.

6.1 Dataset

Suitable dataset with appropriate organizational and personal data with Slovak people was

not easy to find, but we found dataset containing employees of Slovak University of

Technology. This dataset contains 6625 users with personal and organizational attributes:

 Full name

 Organizational unit

 Office number

 Telephone

 E-mail

User record example: “Ing. Marta Ambrová, PhD.;OAT ÚATM FCHPT;SB

172;+421 (2) 59 325 783;marta.ambrova [at] stuba.sk”

We created smaller subsets of original dataset which contains (50, 100, 150, 200, 500)

randomly selected users. These subsets are manually modified and misspellings to attribute

values are created, abbreviations and character swaps are applied. The reason why we need

to create subsets manually is fact, that there are no sufficient sources of public available

data on users or employees with Slovak people. String similarity algorithms were tuned on

subsets of these data for example tuning of given name for Jaro-Winkler algorithm was

applied on list of given names from STU dataset.

36

6.2 Implementation

Our correlation framework is implemented in ruby language and web framework Ruby on

Rails. We use

 PostgreSQL database system

 Libsvm library (Library for support vector machines)

 Ai4r (Collection of ruby algorithms for classification and clustering)

 Liblinear (Logistic regression)

 RubyFann (Library for neural network classifier)

 Decision tree library for ruby

 Amatch, Fuzzy string match, Hotwater (Libraries for string similarity algorithms)

Correlation framework is designed as web application. We have chosen Ruby language

due to its easy and clear syntax, strong community support, availability of various libraries.

Ruby on rails is web based framework which makes web development as easy as possible

so we can focus on functionality. Our correlation framework was designed as web

application because nowadays trend is to provide software as a service. User trough web

interface access functionality so user do not need to install and maintain system locally.

Input of our system is CSV format because it is common and simple form. It is also easy to

process input data. Moreover another formats like XML or JSON can be easily

transformed to CSV format. We store all data in PostgreSQL relational database because it

is free, reliable, scalable and stable with strong support. Relational database was chosen

because of need for ad-hoc queries based on filtering various columns, easy to use SQL

syntax and it’s maturity (stability, bug free, well tested over years).

37

7 Experiments

For evaluating results of classifiers, precision, recall and F1 measure are used. Precision is

the ratio of number of relevant records retrieved to the total number of irrelevant plus

relevant records (Formula 7.1). Recall (Formula 7.2) is the ratio of the number of relevant

records to the total number of relevant records. Both precision and recall are expressed as

percentage. Metric that combines the precision and recall of the metric in the harmonic

mean is called F-measure (Formula 7.3), also known as the F1 metric. F1 take values from

interval <0,1> and the higher value is, more successful system is. Since the F-metric is a

combination of precision and recall, it corresponds to a compromise between accuracy and

coverage. Results can be divided into four classes:

 True positives correct matches

 True negatives correct non-matches

 False positives incorrect matches

 False negatives incorrect non-matches

 (7.1)

 (7.2)

 (7.3)

38

7.1 String similarity metrics and attribute weights

Correlation based on string similarity metrics without machine learning is first step, where

we tuned our detection methods and similarity algorithms for attributes. We have also set

up default weight estimation and partitioning strategy.

 Default weights are dependent on distinguishing ability of attribute so that default

weight for more distinguishing attribute is higher. We used example set of 150, 200, 6000

randomly chosen user records from our dataset to estimate which attributes should have

higher default weights for string similarity estimation and results are averaged.

Figure 21. Attribute distinguishing ability overview

As shown on figure 21 the most distinguishing ability has attributes:

 Full name original

 Email (in lowercase)

 Full name without titles

 Potential surnames

 Office number

Default weights are computed as sum of unique attribute values divided by number of

records.

Default weights for all attributes are used as default weight vector in similarity estimation

between two user records.

To verify the impact of using weights of attributes in similarity matching, we have

made experiment with comparisons of small sample data with and without weights. We

have randomly chosen 150 user records from dataset and then we have modified their

attributes randomly. For every record there is one or more manually created errors

(misspellings, omitting parts of honorific titles, abbreviations etc.). The process consisted

of these steps:

0,006 0,013 0,0266 0,0733

0,546 0,553 0,6
0,733

0,913
0,99 0,991 0,996

Distinguishing ability of attribute

39

 Import sample user data

 Estimate default attribute weights

 Compare records and create similarity vectors

 Adjust boundary for classification

 Manually check results of classification and repeat process without default

attribute weights

As shown on figure 22, overall results are slightly better with using default attribute

weights. Precision is improved by 8% and F1 measure is improved by 4%. String similarity

method with manually adjusted boundary for classification is good for experimenting and

improving correlation method, but can not be used in automatic classification.

Figure 22. String similarity with and without attribute weights

String similarity algorithms were individually tested on STU users dataset and distance

metrics with higher score for each attribute are:

 Full name original – Jaro-Winkler distance

 Given name – Jaro-Winkler distance

 Full name without titles – Jaro-Winkler distance

 Honorific prefixes – Levenshtein distance

 Honorific suffixes – Levenshtein distance

 Potential surnames – Jaro

 Generat TEXT attribute – Ngram (N = 2)

0,86

0,88

0,9

0,92

0,94

0,96

0,98

1

with weights without weights

String similarity results

P

Recall

F1

40

 Number – Jaro

 Domain suffix – Jaro-Winkler distance

 Email lowercase – Levenshtein distance

 Email prefix – Jaro-Winkler distance

7.2 Machine learning algorithms comparison

We have experimented with multiple machine learning algorithms and various parameter

settings. First we applied KNN (k nearest neighbour) algorithm and SVM (Support vector

machine) with using default weights and without data partitioning. We have experimented

on dataset consisting of 1000 user records in which 150 records contained one or more

misspellings or errors. For KNN algorithm we experimented with parameters:

 Number of neighbours (K=5, K=10, K=30)

 Distance metric (Euclidean distance, Cosine similarity)

Parameters for SVM algorithms are:

 Type of kernel function (Radial, DOT, Polynomial)

 Epsilon

 C (Soft margin)

SVM achieved better results. SVM has F1 score about 3% higher than KNN. Number of

user vecetor comparisons is 1000 000, so that SVM classification took approximately 2

times longer than KNN classification (7 minutes). Despite simple KNN implementation

and need for tune only two parameters, we choose SVM classifier for future experiments

because results quality matters more than time in our case.

 Our second experiment compared SVM, Neural Networks and Logistic regression.

We used dataset containing 150 user original user records and 150 misspelled records. We

have tested results with partitioning and without partitioning. For SVM classifier we used

tuned parameters from first experiment and for Logistic regression the parameters are:

 C

 Epsilon

 Solver type

 Bias

For Neural Network classifier we were not able to tune classifier parameters and results

were inadequate (0.4 F1 score). The problem was proper setup of neurons in hidden layer.

Input data – vectors are Cartesian product and so that most of the vectors are not matches

so that network function was not able recognize patterns. Results for SVM and logistic

regression are above 0.9 F1 score (Figure 23). Results show that logistic regression has

higher F1 score than SVM. The score is even higher with partitioning strategy (In our

experiment 150 user records were partitioned in group of 50 records – 3 partitions) as

41

shown on figure 24. Time of classification was approximately same with SVM and logistic

regression.

Figure 23. SVM vs. Logistic regression comparison

Figure 24. SVM vs. Logistic regression comparison with partitioning

Learning curve for linear regression (Figure 25) and SVM classifier (Figure 26) trained on

dataset consisting of 500 user records in which 30 records were modified and order of

records was shuffled shows that the bigger training set is, lower error rate is. Error rate in

this experiment is ratio of misclassified (FP, FN) records to all records.

SVM Logistic Regression

0,92

0,93

0,94

0,95

0,96

0,97

0,98

0,99

1

Machine learning algorithms comparison
without partitioning

P

Recall

F1

SVM Logistic Regression

0,96

0,965

0,97

0,975

0,98

0,985

0,99

0,995

1

Machine learning algorithms comparison
with partitioning (3 parts)

P

Recall

F1

42

Figure 25. Learning curve for logistic regression

Figure 26. SVM vs. Learning curve for SVM classifier

The partitioning of input data is important for classification larger datasets, because

learning and applying model for 6000 records (36 000 000 vectors) may take ~ 2,5 hour.

We have tested partitioning size for SVM classifier where we split user records to groups

of 10%, 20%, 30%, 40%, 50% and above 50% there are only two groups. With 150 user

records, 10% split is 15 user records. Initial 150*150 (22500 comparisons) is reduced to

the 2250 comparisons. The smaller the group is, the quicker the classification is, but error

rate is higher. In small group there is high chance of missing records. On figure 27 there is

error rate for SVM classifier with partitioning that shows low error rate at 40-50%. It

means that when we have 2 or 3 groups the error rate is low.

0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,08

0,09

10% 20% 30% 40% 50% 60% 70% 80% 90%

Er
ro

r
ra

te

Training set size

Learning curve - Logistic regression

0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,08

0,09

0,1

10% 20% 30% 40% 50% 60% 70% 80% 90%

Er
ro

r
ra

te

Training set size

Learning curve - SVM

43

Figure 27. SVM classifier error rate with partitioning

Another factor in correlation detection is time of creating model (training and applying) in

order to partition size. On figure 28 there are four classifiers and three partition sizes.

Classification process takes up to 100 seconds for dataset (150 user records) for SVM,

Logistic Regression and Neural network. For decision tree the time grows much more

faster than for others. 60% partition size equals 11700 vectors in training set and Decision

tree classification took 900 seconds.

Figure 28. Time of classification and partitioning size dependency

0

0,02

0,04

0,06

0,08

0,1

0,12

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

SVM partitioning error rate

Error rate

0

100

200

300

400

500

600

700

800

900

1000

20% 40% 60%

Ti
m

e
 (

se
co

n
d

s)

Partition size

Neural Network

Logistic Regression

SVM

Decision Tree

44

In our last experiment (Figure 29) we created dataset consisting of 150 user records and

classify them using:

 Logistic regression

 SVM

 Decision tree

Figure 29. Classification score

Decision tree has higher F1 score in all partition cases, but from the previous experiment

the time of classification is much higher than others. In large datasets it could cause

problems. SVM classifier has better score when partitioning size is between 40 – 60 %.

7.3. Experiment summary

We did experiments with string similarity metrics where metrics with best score were

selected and implemented in framework as part of creation of similarity vector between

two records. We have implemented machine learning algorithms – SVM, neural network,

logistic regression and decision tree. SVM and logistic regression gained highest score and

are suitable for experimental dataset.

0,84

0,86

0,88

0,9

0,92

0,94

0,96

0,98

1

20% 40% 60%

f1
 s

co
re

Logistic Regression

SVM

Decision Tree

45

8 Conclusion

In our work we analyzed field of identity management systems with focus on provisioning

and identity stores which manages identity lifecycle and identity storage within

organization trough identity management system.We have analyzed possibilities of

correlation detection as a part of record linkage field within identity management systems.

Particular focuse was on automatic identity correlation process, which includes cleaning

and standardization of input data sources, finding similarities between records and

classification in order to make correlation proces as automatic as possible.

 We have discovered that existing open identity management systems deal with

correlation of users mainly manually, but there are solutions like correlation expressions,

where some rules are applied to make this process more automatic thus these are not

sufficient. String similarity metrics are widely used in deduplication problems, but they

need to be properly setup when dealing with identity correlation detection. Even more

important in automatic correlation process are machine learning algorithms which discover

regularities and classifies data.

 The main goal of our work is to design effective and automatic correlation method

for identity correlation detection. The method is part of our correlation framework

implemented as web application.

 Our method deals with data preparation, normalization of input identiy data. We

designed attribute extraction methods which process normalized input data in order to

improve similarity detection between two records and creates specific sub-attributes for

example full name attribute is divided into given name, surname, honorific prefixes etc.

When working with large amount of identity data, we need to create partitions which are

mutually compared in order to improve time difficulty. Our correlation method is based on

similarity estimation between two records, where each attribute is compared and similarity

vector is computed. We propose mechanism for estimating default attribute weights based

on attribute distinguishing ability so that similarity vector can be computed with these

weights. User can adjust these weights if needed. Our method uses experimentally selected

string metrics for each attribute type. Final correlation is proceed by using machine

learning algorithms such as SVM and Logistic regression and final results are verified

manually by user. User can use predefined classification models, or can create own model.

 The method was verified by using our correlation framework, where experimental

dataset was imported, processed, classifiers were trained and applied to testing set. Results

were manually verified. We have made various subset from original dataset and adjusted

parameters for classifiers in order to impruve score.

 We have realized experiments with string algorithms, partitioning strategies and

machine learning algorithms.

 Our method is part of correlation framework which can process various input data.

Supported format is CSV „comma separated values“, but can be easily extended to other

46

formats i.e. XML, JSON etc. User can create own classification model and apply to testing

set, but there is need to create training set himself. User can adjust classification

parameters in order to improve score and use this model to new data sources.

47

References

[1] Andreas Pfitzmann, Marit Hansen. Anonymity, Unlinkability, Unobservability,

Pseudonymity, and Identity Management – A Consolidated Proposal for Terminology.

2006

[2] Sheila Tejada, Craig A. Knoblock, Steven Minton. Learning domain-independent string

transformation weights for high accuracy object identification. In proceedings of the eighth

ACM SIGKDD international conference on Knowledge discovery and data mining,

pages 350-359, 2002

[3] Mikhail Bilenko, Raymond J. Mooney. Adaptive Duplicate Detection Using Learnable

StringSimilarity Measures. In proceedings of the ninth ACM SIGKDD international

conference on Knowledge discovery and data mining, pages 39-48, 2003

[4] Sebastion Clau ß, Dogan Kesdogan, Tobias Kolsch. Privacy Enhancing Identity

Management: Protection Against Re-identification and Profiling. In proceedings of the

2005 workshop on Digital identity management, pages 84 – 93, 2005

[5] Audun Jøsang, Muhammed Al Zomai, Suriadi Suriadi. Usability and privacy in identity

management architectures. In proceedings of the fifth Australasian symposium on ACSW

frontiers - Volume 68, pages 143-152, 2007

[6] Semančík, R. Choosing the Best Identity Management Technology for Your Business.

In proceedings of InfoSecOn 2006 Conference, Cavtat, Croatia, pages 1- 10, 2006.

[7] Tarik Mustafic, Arik Messerman, Seyit Ahmet Camtepe, Aubrey-Derrick Schmidt, ´

Sahin Albayrak. Behavioral biometrics for persistent single sign-on. In proceedings of the

7th ACM workshop on Digital identity management, pages 73 – 82, 2011

[8] Messaoud Benantar. Access Control Systems Security, Identity Management and Trust

Models. Available from http://shazkhan.files.wordpress.com/2010/10/access-control-

systems.pdf

[9] Li Hui, Shen Ting. A token-based single sign-on protocol. In proceedings of the 2005

international conference on Computational Intelligence and Security - Volume Part II,

pages 180-185

[10] Jani Hursti. Single Sign-On. Available from http://www.tml.tkk.fi/Opinnot/Tik-

110.501/1997/single_sign-on.html

http://shazkhan.files.wordpress.com/2010/10/access-control-systems.pdf
http://shazkhan.files.wordpress.com/2010/10/access-control-systems.pdf
http://www.tml.tkk.fi/Opinnot/Tik-110.501/1997/single_sign-on.html
http://www.tml.tkk.fi/Opinnot/Tik-110.501/1997/single_sign-on.html

48

[11] D. Ferraiolo, J. Cugini, R. Kuhn."Role Based Access Control: Features and

Motivations. In proceedings, Annual Computer Security Applications Conference, IEEE

Computer Society Press, 1995

[12] David F. Ferraiolo and D. Richard Kuhn. Role-Based Access Controls. Reprinted

from

15th National Computer Security Conference (1992) Baltimore, pages 554 – 563, 1992

[13] Joseph Pato. Identity Management: Setting Context. Available from

http://artemis.cs.yale.edu/classes/cs155/spr03/idmgmt-tr.pdf

[14] Axel Buecker, Dr. Werner Filip, Jaime Cordoba Palacios, Andy Parker. Identity

Management Design Guide with IBM Tivoli Identity Manager. Available from

http://www.redbooks.ibm.com/redbooks/pdfs/sg246996.pdf

[15] William E. Winkler. Record Linkage Software and Methods for Merging

Administrative Lists. STATISTICAL RESEARCH REPORT SERIES NO. RR/2001/03,

WASHINGTON DC, US BUREAU OF THE CENSUS, 2001

[16] Indrajit Bhattacharya, Lise Getoor. Iterative record linkage for cleaning and

integration. In proceedings of the 9th ACM SIGMOD workshop on Research issues in data

mining and knowledge discovery, pages 11-18, 2004

[17] Alvaro Monge , Charles Elkan. An Efficient Domain-Independent Algorithm for

Detecting Approximately Duplicate Database Records.

[18] Peter Christen. A Comparison of Personal Name Matching: Techniques and Practical

Issues. In proceedings of the Sixth IEEE International Conference on Data Mining –

Workshops, pages 290-294, 2006

[19] Jun Gong, Lidan Wang, Douglas W.Oard. Matching Person Names through Name

Transformation. In proceedings of the 18th ACM conference on Information and

knowledge management, pages 1875-1878, 2009

[20] Peter Christen. Development and user experiences of an open source data cleaning,

deduplication and record linkage system. In ACM SIGKDD Explorations Newsletter

Volume 11, issue 1, June 2009, pages 39-48

http://artemis.cs.yale.edu/classes/cs155/spr03/idmgmt-tr.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/sg246996.pdf

49

[21] Qun Ni, Jorge Lobo, Seraphin Calo, Pankaj Rohatgi, Elisa Bertino. Automating Role-

based Provisioning by Learning from Examples.In proceedings of the 14th ACM

symposium on Access control models and Technologies, pages 75-84, 2009

[22] Sun Identity Manager Deployment Guide. Available from

http://docs.oracle.com/cd/E19225-01/820-5820/ahucl/index.html

[23] Leicester Gill, Great Britain. Office for National Statistics. Methods for automatic

record matching and linkage and their use in national statistics, 2001

[24] Mark A. Hall. Correlation-based Feature Selection for Machine Learning, 1999

[25] David W. Aha. Case Based Learning Algorithms

[26] midPoint community. Project wiki page: Architecture.

https://wiki.evolveum.com/display/midPoint/Architecture+and+Design

[27] K. Zeilenga, “Lightweight Directory Access Protocol (LDAP)”, RFC 4510, June

2006. [Online]. Available: http://tools.ietf.org/search/rfc4510

[28] J. Kohl, C. Neuman, “The Kerberos Network Authentication Service V5”, RFC 1510,

September 1993. [Online]. Available: http://www.ietf.org/rfc/rfc1510.txt

[29] Dan Jurafsky. Natural Language Processing, 2012. [Online]. Available:

http://www.nlp-class.org

[30] Wikipedia. Damerau-Levenshrein distance, 2012. [Online]. Available:

http://en.wikipedia.org/wiki/Damerau%E2%80%93Levenshtein_distance

[31] Wikipedia. Knuth Morris Pratt algorithm, 2013. [Online]. Available:

http://en.wikipedia.org/wiki/Knuth%E2%80%93Morris%E2%80%93Pratt_algorithm

[32] M Narashima Murty, V. Susheela Devi, 2011, Pattern Recognition.

http://docs.oracle.com/cd/E19225-01/820-5820/ahucl/index.html
http://www.google.sk/search?hl=sk&tbo=p&tbm=bks&q=inauthor:%22Leicester+Gill%22
http://www.google.sk/search?hl=sk&tbo=p&tbm=bks&q=inauthor:%22Great+Britain.+Office+for+National+Statistics%22
https://wiki.evolveum.com/display/midPoint/Architecture+and+Design
http://tools.ietf.org/search/rfc4510
http://www.ietf.org/rfc/rfc1510.txt
http://www.nlp-class.org/
http://en.wikipedia.org/wiki/Damerau%E2%80%93Levenshtein_distance
http://en.wikipedia.org/wiki/Knuth%E2%80%93Morris%E2%80%93Pratt_algorithm

50

51

Appendix content

Appendix A –Use case diagram

Appendix B –Class diagrams

Appendix C –Component diagram

Appendix D - User manual

Appendix E – Experiment examples

Appendix F – Content of digital medium

Appendix G – Resume in Slovak language

52

53

A Use case diagram

54

UC1 Manage source

 Interface for managing source

UC2 Show attribute weights

 List of attributes

 Each attribute has own attribute weight

 User can change attribute weight

UC3 Show correlations

 List all matches from correlation process for source

 Remove match from database

UC4 Correlate source

 Interface for correlation process

UC5 Choose source to correlate

 User selects source to correlate with actual source

UC6 Create partitions

 Source can be partitioned

 User inputs group size

UC7 Select model

 User can see list of predefined models

 User can choose appropriate model from database

 Apply selected model

UC8 Set default weights

 Default weights are computed for all records

UC9 Import source

 User select CSV file to import

 User choose attribute types for each column

55

UC10 Remove source

 Source is removed from system

 All records and metadata objects are removed

UC12 Create machine learning model

 Select machine learning algorithm

 Choose partitioning size for group

 Set parameters for machine learning algorithm

56

57

B Class diagram

Models

Class diagram of models in correlation framework shows relations between

UserSource and UserObjects. UserObjectRaw has attributes, and definition of these

attributes is stored in UserObjectMetadata. When the classifier is saved, the object

ModelSerialized is created and model is stored into filesystem. Every UserSource object

has SourceAttributeWeights which are used in creating similarity vector.

58

Class model

In this model, two main parts are correlation controller, which handles all machine

learning algorithms and string similarity algorithms. Source controller handles importing,

editing and removing sources. Parsing input is also part of source controller. In our

application there are several software design patterns for example singleton pattern –

concept of current user. Everytime the user is signed in, one current user object is created.

Dependency injection pattern is also used as instances are passed to methods as arguments

i.e. in create source method.

59

C Component diagram

On the component diagram below there are main components – Crrelator service, which

aggregates data import, attribute extraction and correlation core component. Correlation

core component handles string similarity algorithms and classifiers. Infrastructure

component handles model and access to database. It also provides MVC in web based

application, libraries for connection to database, logging infrastructure etc.

60

61

D User manual

Installation

Correlation framework is right now available as web application. For local installation you

need:

 Ruby on Rails version 4

 Ruby 2

Installation steps:

 Bundle install (Installation of libraries)

 Rake db:setup (Creation of database)

 Rails s (Start local server on localhost)

Import source

First step is to import data trough import source screen (Screen 1). User choose file in CSV

format, choose number of attributes and choose type for each attribute. Type can be:

fullname, text, number, email, given name, surname.

Screen 1. Import source

62

Source detail

Afrer importing source data, user can see list of records with all attributes. He can set

default attribute weights manually or automatically. He can correlate this data source with

another source already inported.

Screen 2. Source detail

63

Attribute weights edit screen

User can edit attribute weights for each attribute.

Screen 3. Edit attribute weights

Correlate source with another source

After user choose source to correlate with, he inputs partition size and choose appropriate

model from list.

Screen 4. Correlate source

64

Result of correlation process

User see list of records and can manually verify records.

Screen 5. Results of correlation process

65

Correlator machine learning model setup screen

User can train own model for each data source. He can choose partition size, parameters

for each classifier and he can save model.

Screen 6. Source detail

66

E Experiment examples

Results of comparing 150 original records with 150 error records.

Partition size

(%)

Neural Network Logistic

Regression

SVM Decision Tree

20 0,14 0,89 0,9 0,96

40 0,21 0,911 0,96 0,98

60 0,19 0,9 0,97 0,97

 Results are F1 score

Results of comparing 500 original records with 500 records containing 150 error records.

Partition size

(%)

Neural Network Logistic

Regression

SVM Decision Tree

20 0,12 0,84 0,92 0,93

40 0,2 0,85 0,9 0,92

60 0,21 0,86 0,91 0,92

 Results are F1 score

Time complexity of algorithms in addition to partitioning size (comparing 150 records vs.

150 records):

Partition size

(%)

Neural Network Logistic

Regression

SVM Decision Tree

20 30 6 13 130

40 45 35 28 490

60 68 42 50 930

 Results are shown in seconds

67

Decision tree model trained rule-set example

Decision Tree – Trained rule set with F1 score 0.962 (150 user records)

FULL_NAME_ORIGINAL >= 0.9787452210343168

=> 1 ()

FULL_NAME_ORIGINAL < 0.9787452210343168

EMAIL_LOWERCASE >= 0.8201058201058201

TEXT >= 0.22334299516908213

=> 0 ()

FULL_NAME_ORIGINAL < 0.9787452210343168

EMAIL_LOWERCASE >= 0.8201058201058201

TEXT < 0.22334299516908213

=> 1 ()

FULL_NAME_ORIGINAL < 0.9787452210343168

EMAIL_LOWERCASE >= 0.8201058201058201

TEXT < 0.22334299516908213

IS_POTENTIAL_FEMALE >= 0.4150877192982456

=> 1 ()

FULL_NAME_ORIGINAL < 0.9787452210343168

EMAIL_LOWERCASE >= 0.8201058201058201

TEXT < 0.22334299516908213

IS_POTENTIAL_FEMALE < 0.4150877192982456

=> 0 ()

FULL_NAME_ORIGINAL < 0.9787452210343168

EMAIL_LOWERCASE < 0.8201058201058201

=> 0 ()

68

69

F Content of electronic medium

Electronic medium has this structure:

/ Guide

/ Prototype – implemented prototype

/ Thesis – electronic version of diploma thesis

70

71

G Resume

Úvod

Systémy na správu digitálnych identít riadia dátové úložiská identít, integrujú ich a

poskytujú prístup k rôznym systémom. Dátové úložiská identít obsahujú záznamy s údajmi

o digitálnych identitách, ktoré môžu obsahovať nekonzistentné dáta. V súčasnosti existujú

rôzne systémy na správu identít ktoré pracujú s niekoľkými desiatkami až stovkami

dátových úložísk. Čím viac systémov je integrovaných, tým náročnejší je proces

mapovania a korelácie údajov o identitách. Hlavným problémom je nutnosť manuálneho

mapovania, ktoré je v mnohých prípadoch príliš náročné na čas. Existujúce riešenia v

oblasti automatickej korelácie údajov o identitách ako napríklad korelačné pravidlá nie sú

dostačujúce. Našim cieľom je preto navrhnúť a implementovať efektívnu metódu na

automatickú koreláciu údajov o digitálnych identitách.

Manažment identít

Manažment identít riadi identity v digitálnom priestore. Je to kombinácia technológií a

postupov na reprezentovanie a rozpoznávanie entít ako digitálnych entít v digitálnom

priestore. Každá organizácia má iné nároky na manažment identít, a tak je nutné

individuálne prispôsobovanie a nastavovanie procesov v rámci manažmentu identít.

Hlavnou úlohou systémov na správu a riadenie identít je integrácia údajov o identitách,

spracovanie a riadenia životného cyklu digitálnych identít – vytvorenie, úprava, zrušenie

digitálnej identity. Digitálna identita obsahuje údaje o osobe, reprezentované pomocou

technických prostriedkov ako množinu atribútov popisujúcich danú osobu. Používateľský

účet je entita obsahujúca informácie o osobe a kontexte v ktorom bol účet vytvorený. Môže

obsahovať napríklad osobné údaje, prístupové práva a systémové nastavenia.

V súčasnej dobe je oblasť manažmentu identít automatizovaný proces vzhľadom na

objemy dát s ktorými musí pracovať. Manažment identít je dôležitý pre akúkoľvek

organizáciu, ktorá chce poskytovať práva a prístupy do podsystémov pre svojich

zamestnancov a zákazníkov. Systémy na manažment identít pozostáva z troch hlavných

technologických častí:

 Úložiská identít

 Riadenie prístupov

 Správa účtov (angl. „provisioning“)

Úložiská identít obsahujú informácie o používateľských účtoch a sú často zdieľané

rôznymi aplikáciami v rámci organizácie, ale aj mimo nej. Úložiská identít používajú rôzne

technológie na správu údajov napríklad LDAP (Lightweight Directory Access Protocol).

Riadenie prístupu je oblasť, ktorá sa zaoberá autentifikáciou a autorizáciou v rámci

systému. Bezpečnosť aplikácií je väčšinou hlavnou požiadavkou a tak je nutné chrániť

citlivé dáta o identitách. Autentifikácia je proces verifikácie používateľa – overenie či je

72

osoba naozaj tá za ktorú sa vydáva. Využívajú sa na to overovanie verejných kľúčov,

prihlasovacích mien a hesiel. Autorizácia je proces, ktorý nasleduje po autentifikácii a má

zaručiť prístup k systémovým (aplikačným) zdrojom. Tieto zdroje môžu byť služby,

funkcionalita systému, prístup k údajom a iné.

V rámci riadenia prístupov v systémoch na správu identít sa využíva koncept

„Single sign-on angl.“ jednotné prihlásenie, ktorý zabezpečuje prístup k viacerým

systémom bez nutnosti opätovného prihlasovania.

Provisioning je časť manažmentu identít, ktorý sa zaoberá riadením a integrovaním

úložísk identít. Zabezpečuje synchronizáciu dát z viacerých zdrojov. Rovnako riadi

mechanizmus vytvárania, modifikovania a rušenia používateľských účtov a prístupov k

systémovým zdrojom. Napríklad v prípade vytvorenia používateľského účtu v jednom

systéme je nutné vytvoriť účty vo všetkých ostatných systémoch.

Zlučovanie v rámci manažmentu identít je proces synchronizácie viacerých úložísk

identít a dátových zdrojov s cieľom poskytnúť centrálny mechanizmus správy identít na

jednom mieste. V rámci zlučovania sa určuje zhodnosť záznamov o identitách z rôznych

systémov.

Korelácia identít

Používateľ môže v rámci organizácie pristupovať k rôznym systémom s rôznymi

používateľskými účtami. Tieto účty môžu obsahovať rôzne atribúty ako napríklad

prihlasovacie meno („tjendek, tomas.jendek, t.jendek“) a iné. Systém na správu identít

musí pracovať s rôznymi používateľskými účtami pre jednu identitu a tak udržovať

spojenia medzi účtami. V prípade, ak si používateľ v jednom systéme zmení heslo, musí sa

táto zmena prešíriť aj do iných systémov. Korelácia identít je proces spájania a validácie

záznamov používateľských účtov, ktoré spája vlastníctvo jednej identity. Samotné spájanie

je realizované pomocou porovnávania hodnôt atribútov používateľského účtu. Na to sa

využívajú zväčša korelačné pravidlá, ktoré spájajú záznamy na základe zhody určeného

atribútu. Takáto korelácia nie je dostačujúca a je nutné manuálne spájanie záznamov v

komplexnejších prípadoch.

Spájanie záznamov je proces pri ktorom sa na základe porovnávania hodnôt atribútov

určí podobnosť záznamov a následne sú určené potenciálne zhody. Existujú dva prístupy

spájania záznamov:

 pravdepodobnostné

 deterministické

Deterministické spájanie sa inak nazýva „presné“ kvôli spájaniu záznamov ktorých

hodnoty atribútov sa úplne zhodujú. Pravdepodobnostné spájanie je založené na

porovnávaní rôznych hodnôt atribútov a ich váh. Podobnosť záznamov je pomocou

spájacích kritérií vyhodnotená ako zhoda, alebo nezhoda. Spájanie záznamov je

komplexný proces ktorý sa skladá z:

 čistenia a štandardizácie dát

73

 porovnávania

 klasifikácie

 vyhodnotenia

V prvom kroku je zjednotený formát dát, sú odstránené nadbytočné medzery. Následne sú

záznamy porovnávané pomocou algoritmov na určovanie podobnosti reťazcov. Po určení

podobnosti nastáva klasifikácia porovnávaných záznamov a vyhodnotenie – overenie

výsledkov.

Algoritmy na hľadanie podobnosti reťazcov sú:

 znakové

 vektorové

Znakové algoritmy a techniky sú založené na modifikačné operácie ako napríklad

odstránenie znaku, výmena znaku a ich rátanie. Znakové algoritmy sú vhodné na určovanie

podobnosti reťazcov v prípadoch, keď obsahujú preklepy, alebo skratky. Pre dlhšie reťazce

sú znakové algoritmy neefektívne. Príkladom znakových algoritmov sú:

 Levenshteinova vzdialenosť

 Damerau-Levenshteinova vzdialenosť

 Bag vzdialenosť

 Smith-Watermant

 Jaro vzdialenosť

 N-gramy

Vektorové techniky sú určené na dlhšie reťazce, pretože reťazce reprezentujú ako tokeny

ktorých poradie nie je dôležité. Reťazce sú reprezentované ako riedke n-dimenzionálne

vektory reálnych čísel, kde každá hodnota patrí tokenu v rámci reťazca. Príkladom je

napríklad TF-IDF metóda.

Strojové učenie

Strojové učenie je oblasť umelej inteligencie ktorá umožňuje počítačovému systému „učiť

sa“ - zlepšovať výsledky na základe predchádzajúcich výsledkov. Strojové učenie objavuje

pravidelnosti a klasifikuje dáta. Klasifikácia je založená na trénovacej množine s

označenými triedami a testovacej, na ktorú sa uplatňuje naučený model. Algoritmy

strojového učenia sú napríklad:

 K najbližších susedov

 Podporné vektory (SVM)

 Neurónové siete

 Rozhodovacie stromy

 Logistická regresia

Návrh metódy

74

Nami navrhovaný metóda je založená na algoritmoch podobnosti reťazcov, ktoré určujú

podobnosť medzi hodnotami atribútov porovnávaných záznamov a algoritmoch strojového

učenia pre automatickú koreláciu. Metóda sa skladá zo základných krokov:

 Príprava dát, normalizácia atribútov a extrakcia atribútov

 Rozdeľovanie záznamov, nastavenie základných váh pre atribúty

 Aplikácia vhodných algoritmov na určovanie podobnosti reťazcov

 Aplikácia klasifikátorov – trénovanie modelu a klasifikácia

 Verifikácia výsledkov

Príprava dát je prvý krok, pri ktorom sa vstupné dáta ukladajú v jednotnom formáte do

databázy. Okrem toho sa jednotlivé atribúty transformujú a štandardizujú. V našej práci

navrhujeme import CSV formátu („comma separated value“ ang.) kde záznamy vyzerajú

napr.“id: first_attribute_value; second_attribute_value”. Normalizácia vstupných dát

spočíva v zmene všetkých znakov na malé písmená, odstránenie interpunkčných

znamienok, nahradenie viacero medzier jednou medzerou a odstránenie medzier pred a za

reťazcom.

Vstupné dáta obsahujú rôzne atribúty , niektoré z nich môžu byť rozdelené na pod-

atribúty, ako napríklad atribút meno môže byť rozdelený na krstné meno, tituly a

priezvisko. Navrhujeme metódy na extrakciu pre atribúty krstné meno, priezvisko, tituly a

emailovú adresu.

Určovanie korelácie pri veľkom množstve záznamov v úložiskách identít môže byť

neefektívne vzhľadom na to, že pri porovnávaní záznamov (karteziánsky súčin) dochádza

k porovnávaniu každého záznamu s každým. V našej metóde navrhujeme rozdeľovací

mechanizmus vďaka ktorému sa na základe frekvencie výskytu atribútu zoradia záznamy a

rozdelia sa na rovnaké skupiny. Tieto skupiny sú navzájom porovnávané. Napríklad 6000

záznamov zoradíme podľa atribútu „krstné meno“ a určíme veľkosť skupiny na 100.

Vznikne tak 60 skupín, ktoré sú porovnávané tak, že 1. skupina z prvého zdroja identít je

porovnávaná s 1. skupinou z druhého zdroja.

Korelácia záznamov je založená na podobnosti hodnôt atribútov. V práci využívame

funkciu sima(attr1, attr2), ktorá pre každú dvojicu atribútov z dvoch záznamov určí

podobnosť. Všetky hodnoty podobnosti atribútov sú uložené vo forme vektora [sima, simb,

simc …]. Každý vektor obsahuje hodnoty od 0 po 1, kde 1 je zhoda a 0 je nezhoda.

Analyzovali sme rôzne algoritmy na určovanie podobnosti a pre jednotlivé atribúty sme

určili jeden algoritmus, ktorý dosahoval najlepšie výsledky. Pre krstné meno je to Jaro-

Winkler algoritmus, pre priezvisko je to Jaro vzdialenosť atď. Po vytvorení vektora s

podobnosťami záznamov prichádza strojové učenie, pomocou ktorého algoritmov sa

natrénuje model, ktorý bude aplikovateľný na nové dáta a klasifikuje porovnávané

záznamy ako zhodu, alebo nezhodu. Proces klasifikácie pozostáva z:

 Rozdelenie záznamov do skupín

 Vytvorenie vektora podobností

 Vytvorenia trénovacej množiny

75

 Aplikovanie modelu na testovaciu množinu

Implementácia metódy

V našej práci sme navrhli a implementovali korelačný rámec na koreláciu identít z rôznych

zdrojov. Cieľom rámca je spraviť tento proces čo najviac automatický. Scenár pre použitie:

 Výber vstupných dát (zdroje údajov o identitách)

 Import dát vo formáte CSV, nastavenie váh atribútov (manuálne/automatické)

 Záznamy sú automaticky zoradené a rozdelené do skupín

 Výpočet podobnostných vektorov

 Trénovanie/aplikácia modelu

 Verifikácia výsledkov

Vstupné dáta sú spracované a normalizované. Vytvoria sa objekty pre reprezentáciu

identity. Pre každý objekt sú vypočítané váhy pre jednotlivé atribúty. Objekty sú rozdelené

do skupín pre následné určovanie podobnosti. Vo fáze vytvárania modelu sú vektory

obohatené o ručne určenú triedu (či vektor označuje zhodné záznamy, alebo nie).

Používateľ vyberie klasifikátor, nastaví parametre a spustí trénovanie modelu. Vytvorený

model následne aplikuje na testovaciu množinu a verifikuje výsledky. V prípade, že je

model už vytvorený, aplikuje ho na dáta.

V práci sme využili dáta o zamestnancoch Slovenskej technickej univerzity v

Bratislave zo zdrojov AIS (Akademický informačný systém). Rovnaké dáta sme získali aj

z webu www.portalvs.sk (portál vysokých škôl). Dáta obsahovali údaje o zamestnancoch

fo formáte: kompletné meno, organizačná jednotka, číslo kancelárie, telefón, email (“Ing.

Marta Ambrová, PhD.;OAT ÚATM FCHPT;SB172;+421 (2) 59 325 783;marta.ambrova [at]

stuba.sk”).

Dáta obsahovali 6625 záznamov a pri experimentoch sme vytvorili rôzne

podmnožiny (50, 100, 150, 200, 500) záznamov, pre ktoré sme vytvorili umelé chyby –

preklepy, vynechania slov, vynechania znakov, zmenu pozície slov atď. Implementácia

korelačného rámca je realizovaná ako webová služba s využitím Ruby on Rails webového

programového rámca a databázy PostgreSQL.

Experimenty

Na vyhodnotenie výsledkov klasifikácie využívame metriky presnosť, pokrytie a F1. V

prvom experimente sme sa zamerali na určenie preddefinovaných váh atribútov. Zisťovali

sme rozlišovaciu schopnosť daného atribútu a podľa toho sme nastavili preddefinované

váhy atribútov. Tie sú vypočítané ako súčet unikátnych výskytov hodnoty atribútu

vydelený počtom záznamov. Na overenie vplyvu automaticky preddefinovaných váh

atribútov sme vyskúšali určovať podobnosť na podmnožine 150 záznamov. Z výsledkov je

vidno, že pri použití preddefinovaných atribútov sa zlepšilo F1 skóre o 4%.

http://www.portalvs.sk/

76

Algoritmy na určovanie podobnosti záznamov boli jednotlivo vyskúšané na každý atribút a

najlepšie výsledky zaznamenali:

 plné meno – Jaro-Winkler vzdialenosť

 krstné meno – Jaro-Winkler vzdialenosť

 plné meno s titulmi – Jaro-Winkler vzdialenosť

 tituly pred menom – Levenshtein vzdialenosť

 tituly za menom – Levenshtein vzdialenosť

 potenciálne priezviská – Jaro

 TEXT – Ngram (N = 2)

 Čísla – Jaro

 doménová prípona – Jaro-Winkler vzdialenosť

 email malým písmom – Levenshtein vzdialenosť

 emailový prefix – Jaro-Winkler vzdialenosť

Vykonali sme experimenty s rôznymi algoritmami strojového učenia a rôznym

nastavenám parametrov pre tieto algoritmy. V prvom experimente sme porovnávali

algoritmus K najbližších susedov s algoritmom podporných vektorov s využitím

preddefinovaných váh atribútov a bez rozdeľovania záznamov. Podporné vektory

zaznamenali o 3% vyššie F1 skóre. Ďalší experiment porovnával algoritmus podporných

vektorov, neurónových sietí a logistickej regresie. Experiment sme realizovali s využitím

rozdeľovania a porovnali sme ho aj bez využitia rozdeľovania. Výsledky ukázali, že

najlepšie klasifikoval algoritmus logistickej regresie s rozdeľovaním. Pre neurónovú sieť

sa nám nepodarilo nastaviť parametre a neuróny v skrytej vrstve tak, aby sme dosiahli

porovnateľné výsledky s ostatnými algoritmami.

Pri práci s veľkým množstvom záznamov (6000) prichádza k porovnaniu 36 000 000-

krát v prípade, že nevyužijeme rozdeľovanie. To má zásadný vplyv na dĺžku a kvalitu

klasifikačného modelu. V našom experimente sme testovali rôzne veľké skupiny a

sledovali sme vplyv na výsledok a dĺžku klasifikácie. Výsledky ukázali, že príliš malé

skupiny sú síce rýchlo klasifikované, avšak presnosť je nízka. Naopak veľké skupiny sú

časovo náročnejšie, avšak presnosť je dobrá. Najlepšiu presnosť sme zaznamenali pri

veľkosti skupiny 40-50 %.

Zhrnutie

V našej práci sme analyzovali problematiku systémov pre správu identít s dôrazom na

prístupy, ktoré spravujú životný cyklus identity a riadenie identít v rámci organizácie.

Zamerali sme sa na oblasť automatickej korelácie záznamov. Zistili sme, že existujúce

prístupy v rámci systémov na správu identít neposkytujú automatické korelačné nástroje, a

tak je nutná manuálna práca. Hlavným cieľom našej práce je navrhnúť a implementovať

automatickú korelačnú metódu. Naša metóda spracúva vstupné údaje o identitách,

normalizuje záznamy a vytvára navyše odvodené atribúty z pôvodných pre lepšie

77

určovanie podobnosti medzi záznamami. Naša metóda používa rôzne algoritmy na

určovanie podobnosti reťazcov a aplikuje ich na konkrétne atribúty. Navrhujeme tiež

mechanizmus na určovanie preddefinovaných váh atribútov na zlepšenie určovania

podobnosti atribútov. Pomocou algoritmov strojového učenia – podporné vektory,

logistická regresia a rozhodovacie stromy vytvárame klasifikačné modely a automaticky

klasifikujeme záznamy o identitách. Naša metóda je súčasť korelačného rámca ktorý

spracúva ako vstup CSV formát, poskytuje možnosť vytvorenia modelu pre jednotlivé

úložiská identít a následne aplikáciu modelu pri klasifikovaní záznamov.

