
Architecture and Design
Documentation

Deliverable D1

Reported by: Evolveum, s.r.o.

Milestone 1 06/2025

Table of Contents
Revision History . 4

1. Introduction. 5

1.1 Purpose . 5

1.2 Document Overview . 5

1.3 Target Audience . 5

1.4 Acronyms and Abbreviations. 6

1.5 Changed Terms . 9

2. Executive Summary . 10

2.1 Project Scope and Outcomes. 10

2.2 Project Milestones and Timeline . 13

3. Current State: Research, Analysis, and Prototypes . 14

3.1 Connector Code Generator . 14

3.1.1 Search & Scraping Solutions . 15

3.1.2 Code Generator Theory and Existing Solutions . 21

3.1.3 Summary Of Existing Solutions . 24

3.1.4 Open Challenges and Future Directions . 26

3.1.5 State of the Art in Evaluation Metrics for Code Generation . 27

3.1.6 Baseline Experiments for Connector Code Generator . 28

3.1.7 Analysis of Current Connector Frameworks and APIs . 36

3.2 Model Mapping Recommendation System . 38

3.2.1 Survey of Schema Matching and Mapping Algorithms . 39

3.2.2 Theoretical Framework for Applying Schema Mapping Techniques 44

3.2.3 Overview of Open-Source and Commercial Tools . 46

3.2.4 Metrics . 48

3.3 Correlation Recommendation . 48

3.3.1 Finding Correlation Attributes . 49

3.3.2 Suggesting Correlation Rules . 50

3.4 Baseline Experiments for Model Mapping/Matching and Correlation Recommendation

System . 51

3.4.1 Experiment 1: Embedding-based Empirical Threshold Optimization with Schema

Matching and Correlation Prediction. 51

3.4.2 Experiment 2: LLM-Based Empirical Prompt-Driven Schema Matching and

Correlation Prediction . 56

3.4.3 Baseline Groovy Code Generation for Schema Mapping . 61

3.4.4 Global Summary & Next Steps . 64

Architecture and Design Documentation Table of Contents

Project code: 09I05-03-V04-00101 Page 1 of 152

3.5 Delineation . 65

3.5.1 Experiments on Delineation Rule Discovery . 65

3.5.2 Results & Next Steps . 66

3.6 UX Research Approach . 67

3.7 AI Development & Testing Tools . 76

3.7.1 Requirements . 76

3.7.2 Key AI Studio Areas. 77

4. Architecture and Design . 83

4.1 Component-Level Diagram . 83

4.2 Component Descriptions . 83

4.3 API Specifications . 88

4.3.1 Codegen Interface . 88

4.3.2 Smart Integration Layer Interface. 91

4.3.3 Smart Integration Service Interface . 93

4.3.4 Integration Catalog Endpoints . 95

4.3.5 Code Validator Interface . 99

4.4 Connector Code Generator . 99

4.4.1 Base Connector Framework . 101

4.5 Mapping Recommendation . 103

4.6 Correlation Recommendation . 103

4.6.1 Suggesting Correlation Attributes . 104

4.6.2 Suggesting Correlation Rules . 104

4.7 Delineation . 105

4.8 User Interface (MidPoint Studio Plugin & Web UI) . 105

4.8.1 Description of Guided Wizards and Integration Catalog UI (User Flow Diagrams) . . 106

4.9 Integration Catalog . 119

4.9.1 Architecture . 119

4.9.2 Function. 120

4.10 Validation Service . 121

XML Validator . 122

Groovy Validator . 123

4.11 AI Studio . 124

4.11.1 Chosen Toolset . 124

4.11.2 Next Steps . 126

4.11.3 Risk Factors. 127

4.12 Security Considerations. 127

4.13 Changes to MidPoint . 128

4.13.1 Complex Attributes . 128

Architecture and Design Documentation Table of Contents

Project code: 09I05-03-V04-00101 Page 2 of 152

4.13.2 Schema Enhancements . 128

4.13.3 Natural (Business) Keys in Item Paths . 129

4.13.4 Support for Advanced Aggregate and Analytical Queries. 129

4.13.5 Safer Scripting Language . 129

4.14 Changes to ConnId Framework . 130

4.15 Changes to MidPoint Studio . 131

5. DevOps & Operational Standards . 132

5.1 Hardware and Infrastructure . 132

5.1.1 Hardware Design. 132

5.1.2 GPU Requirements . 133

5.1.3 Hardware Origin and Risk Assessment . 133

5.2 Kubernetes and Network Infrastructure. 134

5.2.1 Kubernetes Cluster and Supporting Services . 134

5.2.2 Network Segmentation . 134

5.3 CI/CD Pipeline. 135

5.3.1 CI/CD Requirements . 136

5.3.2 Artifact Registry. 136

5.3.3 CI/CD Solution. 137

5.3.4 GPU Workloads . 138

5.4 Operational Architecture . 138

5.4.1 Observability Architecture . 138

5.4.2 Workload Organization and Namespace Strategy. 139

5.4.3 API Gateway and Ingress Management . 140

5.4.4 Workload Standards and Best Practices . 141

5.5 Security Operations . 142

5.6 Backup and Disaster Recovery . 143

6. Compliance & Governance . 146

6.1 AI Governance and ISO/IEC 42001 . 146

6.2 EU AI Act Alignment and Obligations . 147

6.3 GDPR Considerations . 148

Bibliography . 149

Architecture and Design Documentation Table of Contents

Project code: 09I05-03-V04-00101 Page 3 of 152

Revision History
Revision Date Author Description

0.1 2025-05-15 V.Kresnakova Initial version

0.2 2025-05-21 V.Kresnakova Model mapping recommendation system,
Correlation recommendation system

0.3 2025-06-10 T.Chrapovic,
V.Kresnakova

Baseline experiments for model
mapping/matching and correlation
recommendation system, Delineation

0.4 2025-06-17 A.Tkacik,
Z.Kohut,
V.Kresnakova

Connector code generator

0.5 2025-06-18 P.Malinak,
D.Horvath,
L.Skublik

User interface (MidPoint Studio plugin & Web
UI)

0.6 2025-06-19 A.Zan AI development & Testing tools

0.7 2025-06-20 M.Bielik,
D.Horvath,
A.Zan,
L.Skublik,
P.Mederly

Architecture and Design

0.8 2025-06-25 M.Bielik,
P.Mederly,
I.Farinic,
K.Bolemant

Review

0.9 2025-06-27, Whole team Address review comments

1.0 2025-06-30, I.Farinic,
K.Bolemant

Final review

Architecture and Design Documentation Revision History

Project code: 09I05-03-V04-00101 Page 4 of 152

1. Introduction

1.1 Purpose
This document, submitted as Milestone 1 under the VAIA Projects (project code
09I05‑03‑V04‑00101), defines the architecture and high‑level design for our AI‑driven extensions
to midPoint. It establishes the conceptual framework and modular breakdown of the connector
code generator, outlines the recommendation engines for schema mapping and identity
correlation, and specifies the experimental methodology for validating embedding‑based and
LLM‑assisted techniques. The document also describes our approach to automated delineation
rule inference, details proposed UI/UX concepts (web‑based wizards and an IntelliJ IDEA Studio
plugin), and introduces the “AI Studio” MLOps toolchain for developing, testing, deploying, and
monitoring the AI/ML pipelines that will drive subsequent project phases.

1.2 Document Overview
This document is organized into a series of chapters that collectively define the architecture,
design, and research methodology for our AI‑driven extensions to midPoint.

• Chapter 1: Introduction – presents the document’s purpose, scope, organization, target
audience, acronyms and abbreviations, and changed terms

• Chapter 2: Executive Summary – summarizes project scope and outcomes, and outlines
project milestones and timeline

• Chapter 3: System components with embedded AI research approach – details the
connector code generator, model‑mapping recommendation system, correlation
recommendation system, experimental pipeline, automated rule inference, UI concepts, and
the AI Studio toolset

• Chapter 4: Architecture and Design – describes the high‑level architecture via
component‑level diagrams, component descriptions, and API specifications for the smart
integration layer, code‑generation service, code validator, and integration catalog

• Chapter 5: Infrastructure and Operations – outlines workload organization and
namespace strategy, API gateway and ingress management, workload standards and best
practices, security operations, and backup and disaster recovery

• Chapter 6: Compliance&Governance – covers AI governance frameworks (including
ISO/IEC42001), alignment with the EU AI Act, and GDPR considerations

• Bibliography: Compiles all referenced literature, standards, and online resources

1.3 Target Audience
This Architecture and Design document is intended for the following audiences:

Architecture and Design Documentation 1. Introduction

Project code: 09I05-03-V04-00101 Page 5 of 152

• Solution Architects and System Designers – responsible for defining the overall
identity‑governance solution, its major components, and integration patterns.

• IGA Engineers and midPoint Integrators – hands‑on implementers tasked with
configuring, extending and deploying connectors and mapping recommendation systems.

• DevOps and Infrastructure Teams – in charge of provisioning, securing and operating the
underlying infrastructure, CI/CD pipelines and API gateways.

• Security and Compliance Officers – overseeing GDPR, EU AI Act and other regulatory
obligations, and ensuring that the proposed design meets organizational policies.

• Project Managers and VAIA Stakeholders – monitoring milestone progress (Milestone 1:
Architecture & Design), budgets under the Recovery and Resilience Facility, and overall
alignment with Component 9 (research funding) goals.

• Research & Innovation Coordinators – evaluating the use of generative AI for connector
code generation, mapping recommendations and correlation logic, and guiding future R&D
directions.

1.4 Acronyms and Abbreviations
AI

Artificial Intelligence

AI/ML

Artificial Intelligence/Machine Learning

AIMS

Artificial Intelligence Management Systems

API

Application Programming Interface

APU

Accelerated Processing Unit

CD

Continuous Delivery (or Continuous Deployment)

CI

Continuous Integration

CI/CD

Continuous Integration/Continuous Deployment

Architecture and Design Documentation 1. Introduction

Project code: 09I05-03-V04-00101 Page 6 of 152

CIDR

Classless Inter‑Domain Routing

CNCF

Cloud Native Computing Foundation

CRUD

Create, Read, Update, Delete

DoS

Denial of Service

DDoS

Distributed Denial of Service

DNS

Domain Name System

ELK

Elasticsearch, Logstash, Kibana

GPU

Graphics Processing Unit

GUI

Graphical User Interface

HTTP

Hypertext Transfer Protocol

HTTPS

Hypertext Transfer Protocol Secure

IDE

Integrated Development Environment

IEC

International Electrotechnical Commission

IGA

Identity Governance and Administration

ISO

International Organization for Standardization

Architecture and Design Documentation 1. Introduction

Project code: 09I05-03-V04-00101 Page 7 of 152

ISO/IEC 27001

Information Security Management Systems standard

ISO/IEC 42001

Artificial Intelligence Management Systems standard

IPMI

Intelligent Platform Management Interface

JAR

Java Archive

JDK

Java Development Kit

JSON

JavaScript Object Notation

LLM

Large Language Model

ML

Machine Learning

OIDC

OpenID Connect

OCI

Open Container Initiative

ORAS

OCI Registry As Storage

PDF

Portable Document Format

RAG

Retrieval‑Augmented Generation

RBAC

Role‑Based Access Control

RPO

Recovery Point Objective

Architecture and Design Documentation 1. Introduction

Project code: 09I05-03-V04-00101 Page 8 of 152

RTO

Recovery Time Objective

REST

Representational State Transfer

SCIM

System for Cross‑domain Identity Management

SBOM

Software Bill of Materials

SSH

Secure Shell

TLS

Transport Layer Security

UI

User Interface

UX

User Experience

VLAN

Virtual Local Area Network

VM

Virtual Machine

XSD

XML Schema Definition

YAML

YAML Ain’t Markup Language

1.5 Changed Terms

Old term New term

Marketplace Integration catalog

Architecture and Design Documentation 1. Introduction

Project code: 09I05-03-V04-00101 Page 9 of 152

2. Executive Summary
Modern organizations increasingly rely on a wide range of applications to support their daily
operations. As the number of applications grows, so does the complexity of managing identities,
permissions, and access in a secure and efficient manner. Identity Governance and
Administration (IGA) platforms, such as midPoint, are essential for maintaining control over
who has access to what and ensuring compliance with security and regulatory requirements.

While identity governance and administration (IGA) plays a critical role in securing modern
organizations, one of the ongoing challenges is the slow, costly, and often incomplete process of
onboarding applications into centralized IGA platforms. This bottleneck is largely driven by the
need to develop custom integration code, commonly referred to as connectors, for each new
application. Such development can take up to months in some cases, significantly delaying time-
to-value. The applications that need to be integrated are different, typically involving a mix of
cloud-based, on-premise, legacy, and even custom-built applications, each with its own unique
interfaces, protocols, and data structures.

As a result, many organizations suffer from poor visibility across the IT environment, the
emergence of shadow IT, higher operational costs, and an increased attack surface. With an
estimated 80% of cyberattacks now exploiting identity-related vulnerabilities, there is a growing
need for smarter, more efficient and scalable onboarding approaches.

At the same time, recent advances in artificial intelligence, particularly in generative models
and machine learning, have opened new possibilities for automating complex tasks such as code
generation, data mapping, and object correlation. These capabilities can significantly reduce the
manual effort required for application onboarding and help organizations improve their
identity governance posture in a scalable way.

2.1 Project Scope and Outcomes
The scope of the midPilot project includes addressing the critical technical and operational
challenges related to onboarding applications into the midPoint Identity Governance and
Administration (IGA) platform. The following areas are within the scope of the project:

Connector Development with Generative AI Support

The project aims to explore the use of generative AI technologies to reduce the time and manual
effort required to develop connectors for midPoint. This includes support for various identity-
related operations as well as support for different types of authentication and authorization, or
object discovery.

Connectors need to target both cloud-based and on-premise applications, including those using
legacy or proprietary integration protocols. Emphasis is placed on generating connector logic
and configuration using AI models based on available documentation, metadata, and interface
descriptions.

Architecture and Design Documentation 2. Executive Summary

Project code: 09I05-03-V04-00101 Page 10 of 152

Model Mapping Recommendation System

Another key area of the project is the development of an AI-assisted mapping recommendation
system. The scope covers:

• Suggesting attribute-level mappings between applications and midPoint,

• Supporting both simple and complex mapping scenarios, including transformations and
scripted logic,

• Recommending schema extensions when no matching midPoint attribute exists,

• Supporting iterative refinement based on user feedback.

The mapping process is intended to be interactive, allowing users to review and confirm or
adjust recommendations. The system is expected to use a combination of heuristics, machine
learning, and LLMs to suggest mappings based on sample data and common patterns.
Recommendation system should also support iterative refinement based on user feedback,
allowing it to improve over time.

Correlation Recommendation System

The project also includes an assistance with correlating identity data between application and
midPoint. This involves:

• Identifying correlation keys and generating correlation rules for objects such as users,
accounts, roles, and groups,

• Recommending both simple and complex correlation logic,

• Simulating correlation outcomes before execution,

• Supporting iterative refinement based on user feedback.

The aim is to reduce reliance on manual correlation rule design, especially in large-scale or
complex environments.

Consideration of Data Quality Issues

Given that data quality challenges are common during system integration, these issues must be
carefully considered throughout the design and implementation phases. Typical data quality
problems include:

• Typographical errors and inconsistent formatting,

• Missing values or incomplete datasets,

• Ambiguous or conflicting data representations.

The system must be designed to remain robust and effective even in real-world environments
where data may be imperfect or inconsistent.

Architecture and Design Documentation 2. Executive Summary

Project code: 09I05-03-V04-00101 Page 11 of 152

Integration Catalog

The scope also includes the creation of a dedicated Integration Catalog to support collaboration
and reuse of the connectors and configurations. The catalog is intended to enable users to:

• Browse and use available connectors,

• Contribute or request development of a new connector,

• Share mapping configurations and correlation rules,

• Reuse proven integration logic across projects.

The catalog is intended to function as a central repository that can be browsed independently
and is integrated with both midPoint and midPoint Studio.

User Interface and User Experience (UI/UX) Improvements

As part of the project scope, enhancements to the midPoint UI/UX are planned to support AI-
assisted integration workflows. This includes the design and implementation of intuitive user
interfaces for all key functionalities, such as a new wizard for connector code generation, and
an improved wizard for model mapping and correlation configuration.

In addition, enhancements to the midPoint Studio plugin are within scope to support advanced
users and integrators. These include integrated features for generating connector code,
receiving AI-based mapping suggestions, and configuring correlation rules.

Support Tools for AI Development

The scope of the project includes the implementation of essential support tools for the
development and maintenance of AI pipelines. The central component will be AI Studio, which
includes tools for the following purposes:

• Designing and maintaining AI pipelines,

• Creating and maintaining automated test scenarios for verifying the overall AI solution and
its modular components (e.g., suitability of LLM models),

• Executing and validating automated test scenarios,

• Tracing and observability platform to monitor and verify the correct operation of AI-based
functionalities.

Delivery of the Solution

As part of this project, we will focus on a set of key activities to ensure that the final solution is
not only fully functional but also easy to deploy, operate, and share with the wider community.
Following will be key focus areas:

• DevOps and Infrastructure - development of DevOps artifacts required to build, deploy, and
operate the solution in a containerized environment. This includes the implementation of

Architecture and Design Documentation 2. Executive Summary

Project code: 09I05-03-V04-00101 Page 12 of 152

CI/CD pipelines and deployment automation scripts.

• Environment Setup and Component Integration - configuration and deployment of the
development and production environments. This covers the integration of all necessary
components into a cohesive and fully functional system.

• Documentation - preparation of comprehensive documentation covering system
architecture, configuration, deployment procedures, and operational guidelines.

• Open Source Publication - release of the final solution under an open-source license (EUPL
1.2), including the publication of associated artifacts and documentation in public
repositories.

2.2 Project Milestones and Timeline
The official length of the midPilot project is one year, starting April, 1st and ending March 30,
2026. During this period, there will be 3 milestones, as stated in the table below.

Date Milesto
ne

Title

06/202
5

M1 Architecture and design documentation

12/202
5

M2 Implemented end-to-end solution for rapid application onboarding

03/202
6

M3 Tested and delivered solution. Evaluation of AI - how accurate and helpful it
is for the problem.

Architecture and Design Documentation 2. Executive Summary

Project code: 09I05-03-V04-00101 Page 13 of 152

3. Current State: Research, Analysis, and
Prototypes
This chapter presents main components of the proposed solution: the code generator, mapping,
correlation, and delineation recommenders, and development and testing tools. It provides the
current state of the research, analysis of requirements, and evaluation of research prototypes
that were created so far.

3.1 Connector Code Generator
Connectors are a key component of midPoint and other IGA solutions, responsible for
communication and invoking operations on external applications, services, or systems. They
enable midPoint to manage identities, entitlements, and other resources across diverse
environments, such as cloud platforms, databases, and enterprise applications. The
responsibility of connectors is to provide a consistent interface for midPoint to interact with
these external systems, abstracting the underlying complexities of each system’s API or protocol.

Creating a connector for midPoint typically involves the following steps:

1. Obtaining the correct documentation for the target application, which describes the API and
its capabilities.

2. Processing the documentation to understand the API and its capabilities and to identify
concepts and operations that are relevant for the connector.

3. Conceptualizing the connector, which involves defining object classes (e.g., user, group, or
resource) and their attributes, which capture entities and concepts of the application that
midPoint should manage.

4. Implementing basic support for the connector, which involves connecting to the target
application, authenticating, and implementing basic operations such as reading objects.

5. Implementing support for relationship management, which involves defining relationships
between objects and implementing logic to retrieve these relationships.

6. Implementing advanced support for the connector, which involves implementing complex
operations such as creating, updating, and deleting objects.

To address the challenges of this process, in this part of the document the focus is on
investigation of AI/ML research areas that could automate or assist key stages:

• Documentation discovery and web scraping solutions: automatically finding and fetching
API documentation for target applications

• AI/ML-assisted understanding of API documentation: defining object classes, attributes, and
operations

• AI/ML-assisted code generation

Architecture and Design Documentation 3. Current State: Research, Analysis, and Prototypes

Project code: 09I05-03-V04-00101 Page 14 of 152

In parallel, existing applications, their APIs, and their documentation are analyzed to define
requirements, identify common challenges in connector development and to gather examples
for evaluation.

The final connector code generator will be designed and based on the experiments described,
insights derived from their results and the requirements gathered from existing applications
and their APIs.

3.1.1 Search & Scraping Solutions

When building a connector for midPoint, the very first challenge is discovering reliable, up-to-
date API documentation for the target application. Often, a user only knows the application’s
name (for example, “AppX”) and does not have a direct link to its developer guide or REST
reference. In order to generate code that interacts correctly with that application’s API, we must
first find and fetch whatever official, or at least authoritative, documentation is publicly
available.

This process naturally splits into two distinct activities:

1. Documentation Discovery (Search): We automatically generate and submit queries (e.g.,
“AppX API documentation,” “AppX developer guide PDF”) to a search-engine API or
repository search. By filtering and ranking the results, we aim to identify one or two URLs
that point to the application’s official API reference, PDF manual, or developer portal.

2. Web Scraping (Fetch & Structure): Once we have candidate URLs (whether HTML pages or
PDFs), we need to retrieve their contents, check their suitability for task at hand, and
convert them into a structured, machine-readable format (typically JSON). If the candidate
URLs do not contain relevant or sufficient information, we will navigate through the
domain(s) until we arrive at sufficient documentation. The relevant documentation will then
be forwarded to the next step of the pipeline (digesting).

Both steps can be implemented via various open-source libraries, commercial APIs, or turnkey
services. Below is a detailed look at existing solutions for each activity, organized by category,
along with their primary use cases, strengths, and limitations.

In addition, none of these steps are compulsory. For the users who have sufficient knowledge
about the suitable candidate URLs, the Documentation discovery step is skipped. If the users are
able to provide suitable documentation directly, Web scraping is skipped and the documentation
will only be structured into a format suitable for the next pipeline step (digesting).

1. Search & Discovery Solutions

1. Google Programmable Search / Custom Search API: A hosted search-engine API that
returns ranked results for any query you send. You can restrict the search to particular
domains (for example, appx.com), prioritize official sites, and retrieve titles, snippets, and
URLs. It leverages Google’s relevance algorithms, makes it easy to apply domain or site

Architecture and Design Documentation 3. Current State: Research, Analysis, and Prototypes

Project code: 09I05-03-V04-00101 Page 15 of 152

restrictions (for example, only look at docs.appx.com), and returns structured metadata
(title, snippet) for quick filtering. However, it requires an API key and incurs usage costs
beyond the free tier, and it only finds pages that Google has already crawled, so very new
documentation might be missed.

2. Bing Web Search API (Microsoft Azure): Similar to Google’s offering, Bing’s API provides
web-search results with “fresh” filters to find recently published documentation. You can
restrict results by domain and retrieve JSON payloads of titles, URLs, and snippets. It is often
more cost-effective than Google for comparable quotas, and freshness filtering makes it
easier to find the latest version of a rapidly evolving API. However, its index coverage can be
slightly smaller in certain regions, and you still need to manually filter results to identify the
official documentation.

3. DuckDuckGo Instant Answer & API: A privacy-focused search engine whose API returns
unbiased, non-personalized search results. There is no cost for basic queries, and it provides
a clear set of organic URLs without ads. However, it lacks domain-restriction features, you
cannot easily limit the search to a specific site, and its rankings can be less consistent, so you
may need to manually inspect more results.

4. GitHub / GitLab Repository Search: If the target application is open source, its repository
often contains a “docs” folder, a README linking to an API spec (OpenAPI/Swagger), or a
standalone openapi.json. GitHub’s REST or GraphQL search endpoints let you query
repository contents by file name or keyword. This provides direct access to raw markdown,
JSON, or YAML files representing official specs, and you can pinpoint specific versions
(branches or tags) to ensure consistency. However, it only applies to public or open-source
projects, and forks or outdated branches may confuse automated logic unless carefully
checked.

5. Stack Overflow / Stack Exchange API: While not a primary documentation source, many
developers link to, summarize, or excerpt official docs in Q&A threads. By searching
questions tagged with the application name (for example, “appx-api”), you may find links to
the correct endpoint reference. It provides community-tested examples and hints at
undocumented endpoints or edge cases. However, it is not authoritative, answers can be
outdated or incomplete, and requires additional validation before trusting any discovered
links.

6. SearXNG: An open-source metasearch engine that aggregates results from multiple search
engines (Google, Bing, DuckDuckGo, etc.) and returns a unified set of links. It allows us to
configure which sources to query and can be self-hosted for privacy. This provides a single
API endpoint to query multiple search engines simultaneously, increasing the chances of
finding relevant documentation. However, it requires setup and maintenance, and the
quality of results depends on the configured sources.

7. OpenAPI Directory: A community-driven directory of OpenAPI specifications for various
APIs. It allows searching by API name, category, or tags and provides direct links to the
official specs. This is useful for quickly finding well-documented APIs that already have
OpenAPI definitions available. However, it relies on community contributions, so not all
APIs may be listed, and it does not cover non-RESTful APIs.

Architecture and Design Documentation 3. Current State: Research, Analysis, and Prototypes

Project code: 09I05-03-V04-00101 Page 16 of 152

2. Web-scraping & Crawling Frameworks

1. Scrapy (Python): An open-source, asynchronous crawling framework. You create “spiders”
that start from seed URLs (like a docs homepage or sitemap) and automatically follow links
under allowed domains or paths. It has built-in handling of robots.txt, throttling, retries, and
concurrent requests, and is highly extensible so you can define pipelines to convert HTML
fragments and tables into JSON. However, it has a steeper learning curve, you must design
and maintain spider code, and can be overkill for very small or one-off scraping jobs.

2. BeautifulSoup + Requests (Python): A lightweight combination for manually fetching and
parsing a handful of HTML pages. You write simple scripts that use Requests to download a
page and BeautifulSoup to select headings, code blocks, and tables. It is easy to get started
with minimal setup and good for targeted extraction of a few pages, but it lacks concurrency
or automatic link discovery and you must handle error retries, rate limiting, and broken
links yourself.

3. Selenium / Playwright / Puppeteer (Headless Browsers): These tools automate a real (or
headless) browser to load pages, execute JavaScript, click through menus, and wait for
dynamic content. They can also intercept network calls to fetch embedded JSON or OpenAPI
specs directly, handling Single-Page Applications and JavaScript-driven docs (e.g., Swagger
UI, Redoc), and extracting data that only appears after user interactions (e.g., expanding
sections). However, they are resource-intensive (each instance is effectively a browser) and
slower than pure HTML scraping, rendering and waiting for scripts can take several seconds
per page.

4. PDF Parsing Libraries (Apache Tika, PDFMiner, PyPDF2): When official documentation is
only available as a PDF, these libraries extract text, detect font styles, and sometimes
reconstruct tables. If pages are purely image-based, an OCR pass (e.g., Tesseract) may be
needed. They automate offline/manual scraping of PDF guides and can batch-process
multiple PDFs at once, but the structure (headings, tables) often degrades, manual review
may be needed, and OCR can introduce errors in code examples or parameter listings.

5. MarkItDown: MarkItDown is a lightweight Python utility for converting various files to
Markdown for use with LLMs and related text analysis pipelines. MarkItDown currently
supports the conversion from PDF, PowerPoint, Word, Excel, Images (EXIF metadata and
OCR), Audio (EXIF metadata and speech transcription), HTML, text-based formats (CSV, JSON,
XML), ZIP files (iterates over contents), Youtube URLs, EPubs, and others.

6. Import.io / Diffbot / Common Crawl (Commercial & Open-Source Services): Import.io is a
paid, no-code platform where you visually select elements on a page and receive a generated
API or extraction template; Diffbot is an AI-powered service that automatically identifies
semantic objects (articles, tables, code blocks) on any website and returns structured JSON;
and Common Crawl is a publicly available archive of billions of web pages where you can
run big-data queries (via AWS) to find and extract pages for a given domain or pattern.
These services offload maintenance (anti-scraping, selector updates) to the provider,
Diffbot’s ML models can work on sites without writing per-site rules, and Common Crawl
can provide historical snapshots if you need archived docs; however, Import.io and Diffbot

Architecture and Design Documentation 3. Current State: Research, Analysis, and Prototypes

Project code: 09I05-03-V04-00101 Page 17 of 152

require paid subscriptions and Common Crawl is not real-time, you cannot fetch last-week’s
docs if they weren’t in the archive.

7. Point-and-Click Scrapers (Octoparse, WebHarvy): Desktop applications where a user
visually clicks on page elements (headings, code blocks, table rows) to build an extraction
workflow. These tools can handle pagination and basic data cleaning, making them
extremely low barrier to entry, no coding required, and useful for quickly grabbing a few
pages or tables without developer effort; however, they are not easily automated or
integrated into a CI/CD pipeline, and licensing costs and limited flexibility make them
unsuitable for complex or large-scale crawls.

8. LLM-based Web Agents (AutoWebGLM, WebPilot): Tools developed for nagivating the web
and executing web-related tasks using LLMs have been developed, although not with the
specific purpose of web scraping in mind. These tools can navigate complex web aplications
autonomously and thus could prove to be helpful for web crawling and scraping.

3. Summary Table of Existing Solutions

Category Solution Type Primary Use
Case

Key Strength Notable
Limitation

Search-API
(Cloud)

Google Custom
Search API [1]

Hosted Search
API

Broad web
search with
domain
restrictions

High
relevancy
ranking, easy
domain
filtering

Cost, rate
limits

Search-API
(Cloud)

Bing Web
Search API [2]

Hosted Search
API

Similar to
Google, with
“freshness”
filters

Cheaper than
Google, Azure
integration

Slightly
smaller index
coverage

Search-API
(Cloud)

DuckDuckGo
API [3]

Hosted Search
API

Privacy-
focused,
minimal bias

Free, no
tracking

Limited
filtering, less
consistent
results

Code Repo
Search

GitHub /
GitLab Search
API [4]

Repository-
based Search

Discover
“docs/” folders,
OpenAPI
specs, or
README links
in open-source
repos

Direct access
to raw docs or
JSON specs

Only works for
public/open
projects

Architecture and Design Documentation 3. Current State: Research, Analysis, and Prototypes

Project code: 09I05-03-V04-00101 Page 18 of 152

Category Solution Type Primary Use
Case

Key Strength Notable
Limitation

Code Repo
Search

Stack
Exchange API
[5]

Q&A Discovery Find
community
answers that
link to or
reference
documentatio
n

Real-world
examples,
alternative
endpoints

Not
authoritative,
may be
outdated

Open-Source
Scraping

Scrapy [6] Python
Framework

Large-scale
crawling of
multi-page
documentatio
n portals

High
performance,
built-in spider
pipeline

Steep learning
curve, code
maintenance

Open-Source
Scraping

BeautifulSoup
+ Requests [7]

Python
Libraries

Quick, manual
scraping of a
few static
pages

Very simple to
set up

Lacks
concurrency,
no built-in
error handling

Open-Source
Scraping

Selenium /
Playwright /
Puppeteer [8]

Headless
Browser

Dynamic or
JavaScript-
rendered docs
(e.g., Swagger
UI, SPAs)

Renders as a
real browser,
captures AJAX
data

Resource
heavy, slower
scraping speed

Open-Source
Scraping

PDFMiner /
Apache Tika /
PyPDF2 [9]

PDF Parsing
Libraries

Extracting text
and tables
from PDF
manuals

Handles
offline PDFs,
can process
many files
programmatic
ally

Structure
extraction can
be inaccurate

Commercial
Scraping
Services

Import.io [10] Visual Scraper
/ API

No-code
extraction of
tables or code
blocks from
any website

No-code
configuration,
automated
maintenance

Subscription
cost, limited
customization

Architecture and Design Documentation 3. Current State: Research, Analysis, and Prototypes

Project code: 09I05-03-V04-00101 Page 19 of 152

Category Solution Type Primary Use
Case

Key Strength Notable
Limitation

Commercial
Scraping
Services

Diffbot [11] AI-powered
Scraper

Automatically
extract
semantic
objects
(articles,
tables, code
blocks) from
arbitrary sites

ML-driven,
minimal per-
site rules
needed

Paid service,
occasionally
misclassifies
data

Commercial
Scraping
Services

Common
Crawl [12]

Public Web
Archive / Data

Historical or
large-scale
searches over
archived web
content

Free access to
vast archive,
ideal for
research

Requires big-
data tooling,
not real-time

Point-and-
Click Scrapers

Octoparse /
WebHarvy
[13]

Desktop
Application

Quick
extraction of
tables or code
blocks from a
handful of
pages

No coding
required,
handles
pagination
easily

Best for small
scopes; not
easily
scriptable

Point-and-
Click Scrapers

Kofax / Kapow
Katalyst [14]

Enterprise
Data
Extraction

Large
corporate
environments
with complex
workflow
integration
needs

Enterprise-
grade security
and
orchestration

Very
expensive,
heavy
setup/time to
learn

LLM-based
web agents

AutoWebGLM
(Lai et al.
2024),
WebPilot
(Zhang et al.
2024)

LLM agentic
tools

General web-
oriented tasks
such as web
search

LLM-driven,
autonomous

General
shortcomings
of LLMs, high
complexity

Preprocessing Scraped Data

Once the raw search and scraping output has been collected and structured, the next step is to
preprocess these data to ensure consistency, remove noise, and normalize formats before
passing them to the AI-based digestor and code generation stages. Preprocessing typically
involves cleaning HTML artifacts, removing duplicate or irrelevant sections, standardizing field
names, validating that each endpoint description includes required metadata (method, path,

Architecture and Design Documentation 3. Current State: Research, Analysis, and Prototypes

Project code: 09I05-03-V04-00101 Page 20 of 152

parameters), and transforming any tables or code snippets into a uniform internal
representation. This ensures that downstream modules receive high-quality, normalized input
for accurate summarization and reliable connector code output.

3.1.2 Code Generator Theory and Existing Solutions

Generating connector code for midPoint requires translating a high-level specification, often
reconstructed from scraped API documentation, into executable source in a target language
(e.g., Java, Groovy). At a conceptual level, a code generator bridges two domains:

1. Specification Domain: A structured summary of available endpoints, parameter types,
request/response schemas, authentication flows, and data models, typically represented as
JSON objects or intermediate DSLs.

2. Implementation Domain: Concrete API-client code that invokes HTTP endpoints (for
example, via Apache HttpClient or Spring RestTemplate), handles authentication tokens,
marshals request payloads, and parses responses into Java objects.

Under the hood, modern code-generation approaches combine elements of:

1. Program Synthesis: Formal or heuristic search over a grammar or DSL to produce code that
satisfies a declarative specification (for example, an OpenAPI-derived grammar) and passes
validation constraints (type-checking, simple unit tests).

2. Machine Learning: Statistical or neural models that learn patterns from large corpora of
existing “big code” (public GitHub repositories, connector templates) to predict likely code
snippets given a natural-language or structured prompt.

Below is an overview of representative existing solutions, with links to their primary
publications. For each, we summarize the core paradigm, typical use case, and any relevant
caveats.

Program Synthesis and Symbolic Techniques

1. AlphaCode (Li et al., 2022)

◦ Paradigm: Hybrid neural sampling, symbolic filtering. Pretrain a sequence-to-sequence
Transformer on GitHub code, fine-tune on competitive programming problems, then
sample millions of candidate solutions per problem and filter via example-based
clustering and unit tests.

◦ Key Idea: Large-scale sampling from a pretrained model reduces search complexity, and
symbolic test-case filtering guarantees correctness.

◦ Note: Primarily targeted at algorithmic tasks rather than API-client code, and requires
large compute for sampling.

2. Ellis Et Al, 2018

◦ Paradigm: Neural proposal of drawing primitives, symbolic synthesis of loops,

Architecture and Design Documentation 3. Current State: Research, Analysis, and Prototypes

Project code: 09I05-03-V04-00101 Page 21 of 152

conditionals. In “Learning to Infer Graphics Programs from Hand, Drawn Images,” a
small neural network proposes low-level instructions, then a bottom-up synthesizer
builds higher-level constructs.

◦ Key Idea: Decouple perception (neural) from synthesis (symbolic) to efficiently search in
a domain-specific grammar.

◦ Note: Requires a well-defined DSL and domain-specific grammars; not directly
applicable to REST connectors without a custom grammar.

Pretrained Models and Neural Code Generation

1. CodeBERT (Feng et al., 2020)

◦ Paradigm: Bimodal masked-language model (Transformer encoder) pretrained on
parallel “comment, function” pairs and raw code. Fine-tuned for code completion,
summarization, or generation tasks.

◦ Key Idea: Joint NL, PL pretraining fosters alignment between natural language and code
representations.

◦ Note: Encoder-only architecture, requiring a separate decoder or template to generate
full code blocks; primarily excels at understanding rather than freeform generation.

2. GraphCodeBERT (Guo et al., 2020)

◦ Paradigm: Extends CodeBERT by incorporating code structure graphs (data flow edges)
into pretraining.

◦ Key Idea: Leverage code structure information (AST, data flow) to improve semantic
consistency and generate syntactically valid code.

◦ Note: Graph construction adds preprocessing overhead; still an encoder-only model.

3. PLBART (Ahmad et al., 2021)

◦ Paradigm: Denoising sequence-to-sequence pretraining on unlabeled NL and PL
(“Program and Language BART”), supporting both code understanding and code
generation.

◦ Key Idea: Unified encoder-decoder architecture learns to reconstruct corrupted code
snippets (and NL descriptions) and can generate new code from NL prompts.

◦ Note: Requires large-scale pretraining on code, NL; decoder output may still need fine-
tuning for specific API patterns.

4. OpenAI Codex (Chen et al., 2021)

◦ Paradigm: Large autoregressive Transformer (GPT-3 fine-tuned on public GitHub) that
generates code given a docstring or natural-language prompt.

◦ Key Idea: Massive pretrained parameters allow few-shot or zero-shot code synthesis
across languages; can generate full function bodies from a brief description.

◦ Note: Model is closed-source, may hallucinate incorrect API calls without explicit

Architecture and Design Documentation 3. Current State: Research, Analysis, and Prototypes

Project code: 09I05-03-V04-00101 Page 22 of 152

grounding; generation quality varies with prompt design.

5. Commercial LLM-Based Coding Tools

◦ GitHub Copilot [15] – Context-aware code suggestions in IDE, powered by Codex/GPT.

◦ Salesforce CodeGen (Nijkamp et al., 2022) – Generate code conditioned on NL and
repository context, pretrained on large code corpus.

◦ CodeT5 (Wang et al. 2021) – Seq2seq Transformer framework pre-trained on code ↔ NL
pairs, used for tasks such as code generation, summarization, and translation between
natural language and programming languages.

◦ Amazon Q Developer [16] – AI-driven code search and generation focused on AWS
services.

◦ Tabnine [17] – Autocompletion for multiple languages, powered by LLM backends (e.g.,
GPT).

◦ Replit Agent [18] – AI assistant in Replit IDE for snippet generation based on prompts.

◦ Polycoder (Xu et al., 2022) – Open-source autoregressive Transformer trained on C code
for snippet synthesis.

6. StarCoder - BigCode (Li et al., 2023)

◦ Paradigm: Autoregressive code LLM with infilling capabilities, trained on The Stack
dataset.

◦ Key Idea: Supports code completion and infilling with a 15.5B parameter model,
achieving ~40% pass@1 on HumanEval.

7. StarCoder2 - BigCode (Lozhkov et al., 2024)

◦ Paradigm: Autoregressive code LLM trained on The Stack v2 corpus, with extended
context window (up to 16K tokens).

◦ Key Idea: Improved performance on code generation tasks, especially for long-context
scenarios, across model sizes from 3B to 16B parameters.

8. Code Llama - Meta (Roziere et al., 2023/2024)

◦ Paradigm: Instruction-tuned variants of Llama 2 optimized for code, available in 7B,
34B, and 70B parameter sizes.

◦ Key Idea: Free-to-use model family offering strong performance on a variety of code
tasks without licensing fees.

9. WizardCoder (Luo et al., 2024)

◦ Paradigm: Instruction-fine-tuned code LLM using Evol-Instruct to generate complex
code tasks.

◦ Key Idea: Outperforms prior open models on standard benchmarks through curriculum-
like instruction tuning.

10. CodeGen2 (Nijkamp et al., 2023)

Architecture and Design Documentation 3. Current State: Research, Analysis, and Prototypes

Project code: 09I05-03-V04-00101 Page 23 of 152

◦ Paradigm: Unified encoder-decoder prefix-LM combining span corruption and infilling.

◦ Key Idea: Flexible generation modes supporting both complete and partial code
synthesis across 1B–16B parameter variants.

11. USCD (Wang et al., 2024)

◦ Paradigm: Uncertainty-aware selective contrastive decoding as an inference-only plugin
to reduce hallucinations.

◦ Key Idea: Improves pass@1 and reduces output noise for models such as InCoder,
CodeLlama, WizardCoder, and StarCoder.

Probabilistic “Big Code” and Embedding Based Methods

1. Code2Vec (Alon et al., 2019)

◦ Paradigm: Embed code snippets by summarizing AST paths; originally designed for
function name prediction and code understanding, but embeddings can feed into
generation pipelines.

◦ Key Idea: AST path embeddings capture semantic, syntactic structure in a low-
dimensional space.

◦ Note: Not a standalone generator; requires additional decoder logic to map embeddings
back to code tokens.

2. Allamanis Et Al, 2018

◦ Paradigm: Survey of probabilistic models for “big code,” including n-gram, RNN,
Transformer-based models trained on large open-source corpora to predict next tokens
or suggest completions.

◦ Key Idea: Code exhibits “naturalness” enabling statistical language models to perform
tasks like autocompletion and code recommendation.

◦ Note: Early models lacked the contextual capacity of modern LLMs, often limited to
short code fragments.

3.1.3 Summary Of Existing Solutions

Approach Representative Work Key Idea

Symbolic Synthesis AlphaCode (Li Et Al, 2022) Large-scale neural sampling,
symbolic filtering on test cases

Neural Pretraining, Bimodal CodeBERT (Feng Et Al, 2020) Pretrain on paired code, NL
data, fine-tune for NL, code

Neural Pretraining, Graph GraphCodeBERT (Guo Et Al,
2021)

Incorporate data-flow graphs
into pretraining objectives

Architecture and Design Documentation 3. Current State: Research, Analysis, and Prototypes

Project code: 09I05-03-V04-00101 Page 24 of 152

Approach Representative Work Key Idea

Neural Pretraining, Seq2Seq PLBART (Ahmad Et Al, 2021) Denoising autoencoding on
code, NL pairs for generation,
translation

Autoregressive LLM, Fine
Tuning

Codex (Chen Et Al, 2021) Finetune GPT on code, sample
multiple candidates, filter by
tests

Embedding Based Code2Vec (Alon Et Al, 2019) Embed AST paths to represent
code semantics, used for
naming, generation

Probabilistic Big Code ML for Big Code Survey
(Allamanis Et Al, 2018)

Models code with n-grams,
RNNs, Transformers to capture
statistical patterns

Program Synthesis, Graphics Ellis Et Al (2018) Infer drawing primitives with
neural nets, then synthesize
loops, conditionals

LLM Tool, IDE Integration GitHub Copilot [19] Context-aware code
suggestions in IDE, powered by
Codex

LLM Tool, API Service OpenAI Codex (Chen et al.,
2021)

Generate standalone functions
from docstrings or NL prompts

LLM Tool, Code API Salesforce CodeGen (Nijkamp
Et Al, 2022)

Generate code conditioned on
NL and repository context

LLM Tool, Text-To-Text Model CodeT5 (Wang Et Al, 2021) Seq2Seq framework for code
generation, summarization,
translation from NL↔PL

LLM Tool, Commercial
Assistant

Amazon Q Developer [20] AI-driven code search and
generation focused on AWS
services

LLM Tool, Autocompletion Tabnine [21] Autocompletion for multiple
languages, powered by LLM
backends (e.g., GPT)

LLM Tool, IDE Agent Replit Agent [22] AI assistant in Replit IDE for
snippet generation based on
prompts

LLM Tool, Open-Source Model Polycoder (Xu Et Al, 2022) Open-source autoregressive
Transformer trained on C code
for snippet synthesis

Architecture and Design Documentation 3. Current State: Research, Analysis, and Prototypes

Project code: 09I05-03-V04-00101 Page 25 of 152

Approach Representative Work Key Idea

Autoregressive Code LLM StarCoder (Li et al., 2023) Supports code completion and
infilling with a 15.5B
parameter model, achieving
~40% pass@1 on HumanEval

Autoregressive Code LLM StarCoder2 (Lozhkov et al.,
2024)

Improved performance on
code generation tasks,
especially for long‑context
scenarios, across model sizes
from 3B to 16B parameters

Instruction‑Tuned LLM Code Llama (Roziere et al.,
2023/2024)

Instruction‑tuned variants of
Llama 2 optimized for code,
available in 7B, 34B, and 70B
parameter sizes

Instruction‑Tuned LLM WizardCoder (Luo et al., 2024) Outperforms prior open
models on standard
benchmarks through
curriculum‑like instruction
tuning

Unified Seq2Seq LLM CodeGen2 (Nijkamp et al.,
2023)

Flexible generation modes
supporting both complete and
partial code synthesis across
1B–16B parameter variants

Contrastive Decoding Plugin USCD (Wang et al., 2024) Improves pass@1 and reduces
output noise for models such
as InCoder, CodeLlama,
WizardCoder, and StarCoder

3.1.4 Open Challenges and Future Directions

1. Handling complex specifications: Real-world connectors often require multi-step
workflows (authentication, pagination, error handling). Existing LLMs can produce
syntactically valid code but may miss edge cases or usage conventions.

2. Combining symbolic guarantees with statistical power: Methods like AlphaCode show
promise, but research is needed to more tightly integrate constraint solvers with LLMs,
ensuring correctness without exhaustive sampling.

3. Reducing hallucinations: Retrieval, augmented generation and unit-test filtering mitigate
incorrect outputs, but more robust grounding mechanisms (type checkers, static analysis)
are still necessary.

4. Domain adaptation and few-shot learning: Connector code often involves proprietary or

Architecture and Design Documentation 3. Current State: Research, Analysis, and Prototypes

Project code: 09I05-03-V04-00101 Page 26 of 152

less-common APIs; transfer learning and few-shot prompting remain active research areas.

5. Efficiency and latency: Large Transformer models incur high inference costs; lightweight
distilled models or on-device generation could enable real-time connector generation in
production systems.

3.1.5 State of the Art in Evaluation Metrics for Code Generation

Evaluating code produced by large language models remains an open problem: traditional NLP
metrics often fail to reflect functional correctness or deeper semantic quality, and code-specific
metrics still lack extensive validation against human judgment (Evtikhiev et al., 2023; Ren et al.,
2020; Tran et al., 2019).

1. Lexical and Structural Similarity–Based Metrics

Traditional metrics such as BLEU (Papineni et al., 2002), ROUGE (Lin, 2004), METEOR (Banerjee
& Lavie, 2005; Denkowski & Lavie, 2014), ChrF (Popović, 2015), edit distance, and exact match
measure n-gram or character overlap and raw edit operations. They are rapid and easy to
compute, making them useful for quick sanity checks and early-stage comparisons, but they
correlate poorly with functional correctness and cannot account for semantically equivalent
code that is lexically different (Papineni et al., 2002; Lin, 2004; Banerjee & Lavie, 2005;
Denkowski & Lavie, 2014; Popović, 2015).

Code-specific metrics like CodeBLEU (Ren et al., 2020) and RUBY (Tran et al., 2019) extend n-
gram scoring with Abstract Syntax Tree and data-flow matching or program-dependency-graph
comparison. These methods improve on surface-level matching and show better correlation
with human judgments in some studies, but they still struggle to predict execution errors or
fully recognize semantic equivalence. They also introduce additional computational overhead
and have not been proven to consistently outperform traditional metrics across diverse tasks
(Ren et al., 2020; Tran et al., 2019).

2. Execution-Based Metrics

Execution-based evaluation begins by ensuring syntactic validity through compilation or
interpretation success (Austin et al., 2021). This check is very fast and guarantees that the
generated code adheres to language rules, but it provides no insight into runtime behavior or
logical correctness.

The unit-test pass rate, and in particular the pass@k metric, validates generated code against
predefined test suites (Chen et al., 2021). Pass@k measures the probability that at least one out
of k sampled code outputs successfully passes all tests, directly assessing whether the code
fulfills its specification. Benchmarks such as HumanEval report pass@1, pass@10, and so on.
However, pass@k depends heavily on the quality and coverage of the test suite and may
overestimate a model’s practical usefulness if users sample fewer than k times.

Performance and efficiency metrics-measuring runtime, memory usage, or energy consumption

Architecture and Design Documentation 3. Current State: Research, Analysis, and Prototypes

Project code: 09I05-03-V04-00101 Page 27 of 152

offer insight into real-world resource utilization (Austin et al., 2021; Chen et al., 2021).
Frameworks such as EffiBench and Mercury enable these evaluations, but they require
carefully controlled benchmarks, instrumentation, and management of variability across
execution environments.

3. Human-Centric Evaluation

Human-centric evaluation relies on expert reviewers to judge aspects like readability,
maintainability, and usability of generated code. Methods include blind peer reviews and real-
world integration tests, which reveal issues automated metrics miss (Yu et al., 2024; Wu et al.,
2024; Dibia et al., 2023). While this approach provides deep insights into code quality, it is time-
consuming, expensive, and can vary due to reviewer subjectivity.

4. LLM-as-a-judge

An emerging trend is to enlist a separate language model to act as a proxy evaluator. By crafting
prompts that guide the model to critique or score generated code examples include the ICE-
Score framework researchers aim for scalable, explainable evaluation (Jiang et al., 2024; Zhuo,
2024; Zheng et al., 2024). Early results suggest that LLM-based evaluation can provide useful
feedback at scale, but this technique remains experimental. Its reliability depends heavily on
prompt design, the judge model’s inherent biases, and its ability to reason about complex code
constructs (Jiang et al., 2024; Zhuo, 2024; Zheng et al., 2024).

Open Challenges and Trends

Despite these developments, no single metric consistently aligns with human judgment across
languages and domains. There is a pressing need to move beyond isolated-function benchmarks
toward whole repository or system-level evaluation, capturing cross-file dependencies and
architectural concerns. Improving test-suite adequacy to detect logical and security flaws
remains critical. Future directions include exploring multimodal and context-aware evaluation
pipelines, integrating with CI/CD workflows, and fostering human-AI collaboration in
assessment.

3.1.6 Baseline Experiments for Connector Code Generator

The experiments conducted focused on exploring and evaluating three key areas: scraping,
digesting, and code generation. These areas were selected based on prior research and analysis
of the typical steps involved in developing connectors for midPoint. They are expected to
represent the core functionality required in most real-world scenarios.

The Search and Discovery phase, while part of the broader conceptual framework, was
considered supplementary. Its primary purpose is to improve usability for non-expert users
with minimal input. Due to its supportive role, it was excluded from the first phase of
prototyping. The following sections summarize the results and insights gained from the
experimental evaluation of the three core components.

Architecture and Design Documentation 3. Current State: Research, Analysis, and Prototypes

Project code: 09I05-03-V04-00101 Page 28 of 152

Experiment: Scraper Component - General Approach and Current Development

General Approach

The role of Scraper within the pipeline is to use the links provided by either the user or from
automated Search and Discovery, to scrape and navigate across a provided domain or domains,
in order to find and download the documentation relevant and necessary for the Digestion and
Code Generation. Specifically, the target of Scraper component is to provide the inputs for
Digester.

Scraper is intended to principally perform the following three high-level tasks:

1. Scraping - to scrape the content of the web pages provided

2. Sufficiency Evaluation - to evaluate whether the content scraped so far is sufficient as an
input for the Digester. If it is evaluated as sufficient, the search is over and no further
scraping is required. If the opposite is the case, the third task is performed.

3. Reference Selection - to select further references for scraping that might require further
evaluation. The steps 1. and 2. are then repeated.

The three-step process described above is repeated until it 'closes the loop', i.e., until the
Sufficiency Evaluation results in a positive answer or the process ends by different means (e.g.,
reaches the maximum number of loop repeats, amount of time, has nothing else to scrape
further, etc.). In addition, as a link between the Scraper and Digester, another LLM tool might be
required for pruning of the scraped documentation of the irrelevant content which might
accumulate in the process of repeated scraping. This would effectively be a post-processing step
outside of the main Scraper loop.

Current Development

The current prototype of Scraper addresses the three main steps described in the General
approach section, with the main focus being on the LLM-related steps (i.e., Sufficiency
evaluation and Reference Selection).

1. Scraping

The provided urls are scraped using RecursiveUrlLoader, a class native to the LangChain
python package. The scraped content is then parsed using the BeautifulSoup package. This is
roughly equivalent to the BeautifulSoup + Requests (Python) combination described
previously, as the RecursiveUrlLoader wraps the Requests library. The upside of
RecursiveUrlLoader is that it allows to set scrape depth (and thus extending the search by
scraping subdomains within set depth), and although we do not use this feature in the
current prototype for simplicity reasons we see a potential for this to be of potential benefit
in the more advanced prototype scenarios.

The scraped content of each page is converted to markdown format, and chunked into
smaller pieces, which are then stored in a vector storage (LangChain’s implementation of

Architecture and Design Documentation 3. Current State: Research, Analysis, and Prototypes

Project code: 09I05-03-V04-00101 Page 29 of 152

Chroma). These steps are performed because LLMs have limited context size (i.e., the
amount of input they can ingest as part of a prompt is limited) and using a chunked vector
storage allow them to pull only the relevant parts from the storage and use those (an
approach called Retrieval Augmented Generation - RAG). In both following steps we are
currently using RAG.

2. Sufficiency Evaluation

In this step, the LLM is tasked with the task of provided a simple yes or no answer to a
question of whether the documentation scraped so far is sufficient for the goal of writing a
connector. The 'yes' answer ends the scraping process, while the 'no' answer triggers the nex
step.

The current design of this step uses a single LLM call with the access to the vector storage
(RAG). The potential issue is the failure to provide the 'yes' answer even under the
circumstances where the process is sufficient.

3. Reference Selection

In this step, the LLM is tasked with the selection of the urls to select for further scraping.
This steps employs RAG, just like the previous step, with an addition to the context where the
LLM is provided with the list or urls to choose from. Based on the parameters of a test, we
supply it with either a) only the urls selected from the pages scraped in the current iteration
of the loop (url_method = 'current'), or b) with all urls selected from all scraped pages
(url_method = 'all').

The explicit provision of urls to the LLM as part of the context is not be a fixed choice as we
might opt to let the LLM to choose the url based on its own context parsing. Currently, it is
an operational choice, which allows us to keep track about whether the process is going in
the expected direction through the expected search path and will be a subject to further
experimentation.

Prototype Evaluation

The evaluation process in the case of Scraper seeks to evaluate two principal aspects of the tool,
which are operationalised into two binary metrics:

• Target Identification - this metric establishes whether the target documentation was found
or not

• Loop Closure - this metric establishes whether the scraped content was evaluated as
sufficient

Note that there is a degree of conditionality, between the two metrics in the sense that Loop
closing is relevant only after Target Identification was successful. In the scenario where the loop
is closed before the target is identified, this is considered a failure. Thus, for the purpose of our
evaluation, we establish a Composite Score metric out of the two metrics above where we assign

Architecture and Design Documentation 3. Current State: Research, Analysis, and Prototypes

Project code: 09I05-03-V04-00101 Page 30 of 152

100% if a model succeeds in both tasks, 50% if it succeeds in the Target Identification only, and
0% if loop was closed but no target was identified or if it succeeds in none. This Composite Score
is calculated per application and then averaged, resulting in a single value per model and per
url_method.

The 50% score in the cases where the target is correctly located and scraped but is not
recognised as such, models an expected real-life scenario, where the user will be able to
override the machine-generated judgement about the scraped content insufficiency, and to
proceed to the next steps based on their own evaluation and judgement.

Thus far, these tool were tested on five different LLMs, with three coming from the LLama
family 'meta-llama/llama-3.3-70b-instruct:free', 'meta-llama/llama-4-scout:free', 'meta-
llama/llama-4-maverick:free'. While the first one is a rather large model with dense architecture
(70b in total), the other two rely on mixture-of-experts architecture (both 17b per expert),
differing in the number or experts (scout: 16E vs. maverick: 128E) as well as other important
parameters such as context length. The other two LLMs we have used are from mistral family,
'mistralai/magistral-small-2506' and 'mistralai/magistral-medium-2506' which are much lighter
in terms of the amount of parameters (24b). We included these smaller models because such
models are more suitable for running in environments with limited hardware resources.

The tests were performed over two applications, Forgejo and Authress. The results of the llama-
family show mixed performance, with 'meta-llama/llama-4-maverick:free' showing the worst
performance. This is not surprising since this model is not only smaller in terms of total
parameter size but is also limited in terms of context size, compared to the other two llama
models. Quite surprisingly, the mistral-family models have show solid performance with
'mistralai/magistral-medium-2506' being the top performer with url_method = 'all'. The
downside of these smaller models was their tendency to close the loop before having scraped
sufficient documentation. Regardless, this provides a motivation to not narrow our focus on
large LLMs only but to also further explore the suitability of smaller LLMs for the current
purpose.

Model Performance Summary with url_method = 'all'

Model Composite Score (average)

'meta-llama/llama-3.3-70b-instruct:free ' 25%

'meta-llama/llama-4-maverick:free' 0%

'meta-llama/llama-4-scout:free' 50%

'mistralai/magistral-medium-2506' 75%

'mistralai/magistral-small-2506' 25%

Model Performance Summary with url_method = 'current'

Architecture and Design Documentation 3. Current State: Research, Analysis, and Prototypes

Project code: 09I05-03-V04-00101 Page 31 of 152

Model Composite Score (average)

'meta-llama/llama-3.3-70b-instruct:free ' 50%

'meta-llama/llama-4-maverick:free' 0%

'meta-llama/llama-4-scout:free' 25%

'mistralai/magistral-medium-2506' 0%

'mistralai/magistral-small-2506' 50%

Further Considerations and Challenges

1. Addressing the url Selection Method

The parameter url_method described above appears to be a significant factor of success, we
will therefore seek to implement more dynamic strategies and fall-back mechanisms,
potentially not intervening in the process of selection by simply providing no url_method to
the LLM.

2. Extending Toward Dynamic Web Scraping Abilities

For the purposes of prototyping, we have chosen a simpler scraping approach
(RecursiveUrlLoader + BeautifulSoup), which limits our testing abilities to the extent that we
are not able to properly test dynamic web sites which is becoming a limiting element. Tools
such as Selenium will be further considered and implemented in the in order to cover a
wider scope of test cases.

3. Extending the Test Application Set

Relating to the previous challenge, we aim to extend our set of test applications, since in the
current prototype we limited the test scope to two example applications. This will enable us
to test the used models and methods more reliably with respect to a wider range of cases.

4. Parameter Testing and Optimization

There are various parameters that will be attended to in order to maximise the success of
the tool. These are, for example, the RAG-related parameters such as the search type and the
particular type’s parameters, the size of the text chunks stored in the vector store, the
embedding model and its interaction with the main LLM. Other parameters include more
operational characteristics such as the maximum number of rounds or other stopping rules
if the search is not succesful or needs to fall back to a different method.

Experiment: Digester Component - General Approach and Current Development

General Approach

The purpose of digesting in the current pipeline, as mentioned above, is to extract definitions

Architecture and Design Documentation 3. Current State: Research, Analysis, and Prototypes

Project code: 09I05-03-V04-00101 Page 32 of 152

and specifications from the provided or scraped documentation. For this task it is assumed use
of LLM, which should help with identification of types of objects in the application, as well as
determining whether or not a given object type is relevant for IDM/IGA. In addition to object
type identification, the LLM should be able to identify the corresponding API endpoints and the
object type schema, i.e. a list of object attributes and their types. Moreover, the LLM is also
responsible for identifying and describing object relationships, which includes detecting which
objects are related to each other (e.g., users and groups) and providing definitional information
about these relationships (e.g. who is the owner of the relationship).

The digesting procedure is as follows:

1. Identification of the type (technical documentation in natural language or machine-readable
structured documentation) and format of the documentation (PDF, HTML, MD, JSON, YAML,
…)

2. Loading documentation from provided URL(s) into memory.

3. Extracting the list of endpoints

4. Identification of object types, and relationships between them

5. Extracting object types schemas

6. Extracting user documentation for endpoints (query parameters, request type, etc…)

Current Development

The current prototype of the digester component focuses on extracting information from JSON
and YAML files according to the OpenAPI specification.

In the first step, we detect if the supplied URL points to a JSON or YAML file and then, using json
and PyYAML libraries, we load the file into a python dictionary.

Next, we extract the list of endpoints and their descriptions from the dictionary.

We provide this list to the LLM, which we ask to identify Object Classes, fetch-all and fetch-by-id
endpoints and whether it is an IDM/IGA related object. To implement the LLM we use the
langchain framework and specifically its structured output capabilities.

It should be noted that some models sometimes fail to provide their responses in the correct
structured form, so we repeat the call to LLM on a failed attempt until we get the output in the
requested form, but no more than 5 times.

Prototype Evaluation

In evaluating the digester prototype, we evaluate the model’s ability to correctly identify Object
Classes, fetch-all and fetch-by-id endpoints, as well as endpoint complexity.

For evaluation purposes, we have manually prepared a set of test cases against which we
compare the results of the model. This set contains test data for the following applications:

Architecture and Design Documentation 3. Current State: Research, Analysis, and Prototypes

Project code: 09I05-03-V04-00101 Page 33 of 152

• Forgejo (swagger json)

• Github (openapi yaml)

• Gitlab (swagger yaml)

• OpenProject (openapi json)

• Zoom (openapi json)

The actual evaluation for the chosen model and application is performed in the following steps:

1. Comparison of the list of Object Classes predicted by LLM and the expected list

2. Comparison of the list of endpoints predicted by LLM and the expected list

3. Comparison of the complexity of the endpoints predicted by the LLM and the expected
values

It should be noted that these comparisons are interdependent. Therefore, in the final evaluation
of the model, the metrics from the individual steps will be multiplied together.

We have tested the prototype performance of several state of the art models as seen in the table
below:

Model Precision Recall F1

google/gemini-2.0-
flash-001

0.717 0.643 0.664

openai/gpt-4.1 0.446 0.850 0.558

mistralai/devstral-
small

0.497 0.783 0.520

deepseek/deepseek-
chat:free

0.460 0.817 0.494

mistralai/devstral-
small:free

0.480 0.517 0.468

deepseek/deepseek-
chat

0.344 0.817 0.454

qwen/qwq-32b:free 0.269 0.717 0.367

qwen/qwen3-235b-
a22b:free

0.269 0.550 0.339

qwen/qwen3-32b:free 0.181 0.663 0.240

qwen/qwen3-30b-
a3b:free

0.050 0.150 0.075

qwen/qwen3-14b 0.043 0.150 0.067

Architecture and Design Documentation 3. Current State: Research, Analysis, and Prototypes

Project code: 09I05-03-V04-00101 Page 34 of 152

Model Precision Recall F1

qwen/qwen3-14b:free 0.036 0.283 0.063

Further Considerations and Challenges

1. Addressing Endpoint Complexity Identification

None of the models evaluated were consistently able to correctly identify endpoint
complexity. It will therefore be necessary to find a good formulation of the LLM prompt that
leads to better results.

2. Implementing Natural Language Documentation Digesting

For the purposes of the prototype, we implemented the documentation digesting in a
machine-readable form that conforms to the OpenAPI (or swagger) specification. Since such
documentation is not always available, it will be necessary to extend the implementation to
include natural language documentation digesting.

3. Implementation of the Extraction of Information about Relations between Class Objects

In the prototype we did not focus on the implementation of the extraction of relationship
information between Class Objects. However, this aspect is crucial for understanding the
interactions and dependencies in the system and will therefore need to be included in the
next phases of the implementation.

Experiment: Code Generator

The role of the code generator is to generate scripts using LLM, from the definitions and
specifications extracted by the digester component, which will be linked with the skeleton code.
These scripts contain the definitions of the native schema of the application, the mapping of the
native schema to the ConnId schema, the definitions of the relationships between objects and
the implementation of specific parts of the operations with the application. The main goal in the
initial phases of the project is to focus on the implementation of fetch-all and fetch-by-id
operations of individual objects from the application. In addition, the generated code will be
validated using the code validator service, in order to ensure quality and security.

The code generation process generally follows these steps:

1. Preparation of the context for the generator (documentation for the code skeleton, object
specifications, endpoint definitions, files generated so far, etc.)

2. Defining the task for LLM

3. Generating code using LLM

4. Validation of the generated code using the validation service

5. In case of a negative feedback from the validation service, define a new task for LLM, which

Architecture and Design Documentation 3. Current State: Research, Analysis, and Prototypes

Project code: 09I05-03-V04-00101 Page 35 of 152

will contain the message from the validation service and proceed back to step 3.

This general procedure is adapted to specific requirements for generating specific scripts (e.g.:
User.native.schema.groovy, Team.connid.schema.groovy, Organization.search.groovy, etc.).

3.1.7 Analysis of Current Connector Frameworks and APIs

In order to determine the best approach for code generation, existing open-source connector
base frameworks for ConnId connectors and API documentation were evaluated. The analysis
was done based on the list of popular cloud applications, used in enterprise space, their
European counterparts and open-source alternatives.

Observations from Existing Cloud Applications

The key observations from API documentation analysis are:

• Authentication & Authorization: Most applications use OAuth 2.0 or API keys for
authentication, with some supporting JWTs.

• Protocol, Data Schema & API Design: More applications are starting to using SCIM 2.0 for
identity management, while RESTful APIs still remain dominant, usually accompanied by
OpenAPI specifications.

◦ SCIM 2.0 - is a standard for identity management, providing a common schema for user
and group management, allows programatic schema discovery and management of
users, groups, and other identity resources.

▪ Most of the applications do not support full SCIM 2.0, but rather a subset of it.

▪ Naming of attributes in application differs from the SCIM 2.0 standard. Usually they
provide mapping table in their documentation to ease manual integration and user
understanding.

▪ Some applications do not provide enough information using SCIM 2.0, so fallback to
RESTful APIs seems necessary in such cases.

◦ REST - is the most common protocol for API communication, used for any general
purpose, not specific only to identity management.

▪ Most applications provide OpenAPI specification for their REST APIs.

▪ Most applications use common patterns for REST API design, which differs only in
naming conventions and some specific parameters.

◦ Few applications do not provide any common machine-readable documentation.

• Data Formats: JSON is the most common data format for request and response payloads,
with some applications supporting only YAML.

Architecture and Design Documentation 3. Current State: Research, Analysis, and Prototypes

Project code: 09I05-03-V04-00101 Page 36 of 152

On-Premise Applications

Similar observations apply to modern on-premise (non-cloud) applications, which we will need
to support in the future, as they are still widely used in enterprise space.

Older on-premise applications require support for other approaches. We are planning to
support these application using connectors with direct SQL database connections with multi-
table support.

Observations from Existing ConnId Connectors

Existing open-source ConnId connectors follow two distinct approaches:

• Pure ConnId Implementation: Connectors are manually implemented using only ConnId
framework and its API. This approach requires deep knowledge of the ConnId framework
and the target application API.

• Connector Framework Based Implementation: Connectors are implemented using a
common framework that provides a set of base classes and methods to simplify the
implementation. This approach allows for faster development and easier maintenance, but
no solution supporting mix of SCIM & REST was observed.

Base Connector Framework Requirements

Based on key observations, existing ConnId connectors, their complexity, and software
development best practices we have identified the following requirements for the connector
framework:

• Support for Authorization and Authentication: The framework should provide a way to
implement various authentication and authorization mechanisms, such as OAuth 2.0, API
keys, and JWTs.

• Support for SCIM 2.0: The framework should provide out-of-the box support allowing for
easy implementation of SCIM 2.0 connectors.

◦ SCIM 2.0 support should be optional, as not all applications provide full SCIM 2.0 support.

◦ Schema could be discovered using SCIM 2.0 protocol and its translation to ConnId should
be supported by built-in algorithm to ensure consistency.

▪ Schema attribute name mapping should be customizable, as some applications use
different naming conventions, in order to minimize manual mapping effort. This
allows also for interoperability with REST part, by using common names.

◦ Several strategies for searching, retrieving, creating, updating and modifying users,
groups and custom resources.

▪ Some analyzed applications do not support relative updates for all attributes, only for
some of them, so framework should provide a way to configure which update
strategy should be used.

Architecture and Design Documentation 3. Current State: Research, Analysis, and Prototypes

Project code: 09I05-03-V04-00101 Page 37 of 152

• Support for REST APIs: The framework should provide a way to implement operations
using REST APIs, allowing for easy integration with applications that do not support SCIM 2.0
or have limited SCIM 2.0 support.

◦ REST API support should be optional, as some applications provide only SCIM 2.0
support.

◦ Framework should support custom mapping of REST API endpoints to ConnId
operations, allowing for flexibility in implementation.

◦ Framework should provide common strategies for retrieving data, such as pagination,
filtering, and sorting.

◦ Framework should provide easy way to implement filter mapping, allowing for easy
mapping of ConnId filters to REST API calls.

• Framework should provide a way to implement custom operations, allowing for easy
implementation of custom logic that is not covered by the framework.

• Framework design should minimize boilerplate code, need to write custom code, and allow
for easy customization of the connector implementation.

• Framework design should prefer declarative approach over imperative, allowing for easy
configuration of the connector behavior, minimizing the need for custom code.

• Optionally framework should be easily extended to support new features, such as additional
authentication mechanisms, new data formats, or new protocols.

◦ Based on our research, modern on-premises applications should be covered by existing
requirements.

◦ Framework should be extendable to support other protocols, such as SQL (multitable
database connector) for support of older on-premise applications, which is planned for
the future.

Based on analysis of existing ConnId connector frameworks and the requirements we have
identified, we have concluded that there is no existing framework that meets all of the
requirements outlined above. Therefore, we have decided to design and implement our own
base connector framework that will support SCIM 2.0, REST APIs and SQL connections and will
be designed to meet the identified requirements outlined above, providing a solid foundation
for generating connectors for various applications.

3.2 Model Mapping Recommendation System
The system should help users by suggesting how to map attributes from connected application
to their counterparts in midPoint.

This section presents the theoretical foundations and provides an overview of existing solutions,
highlighting their key advantages and limitations. The final recommendation pipeline will be
composed based on the experiments described and the insights derived from their results.

Architecture and Design Documentation 3. Current State: Research, Analysis, and Prototypes

Project code: 09I05-03-V04-00101 Page 38 of 152

3.2.1 Survey of Schema Matching and Mapping Algorithms

Schema matching is the problem of finding potential associations between elements (most
often attributes or relations) of two schemas. Given two schemas S1 and S2, a solution to the
schema matching problem, called a schema matching (or more often a matching), is a set of
matches. A match associates a schema element (or a set of schema elements) in S1 to (a set of)
schema elements in S2. Research in this area focuses primarily on the development of
algorithms for the discovery of matchings. Existing algorithms are often distinguished by the
information they use during this discovery. Common types of information used include the
schema dictionaries and structures, the corresponding schema instances (if available), external
tools like thesauri or ontologies, or combinations of these techniques. Matchings can be used as
input to schema mappings algorithms, which discover the semantic relationship between two
schemas (Kementsietsidis, 2009).

While schema matching finds correspondences between elements of two schemas, a schema
mapping goes one step further by describing how data conforming to one schema (the source)
can be transformed into data conforming to another (the target). The problem of establishing
associations between data structured under different schemas is at the core of many data
integration and data sharing tasks. Research on schema mapping has focused on the formal
specification of schema mappings, the semantics of mappings, along with techniques for
creating schema mappings (Fuxman and Miller, 2009).

Based on the provided sources, none of the papers specifically focus on schema matching or
data integration techniques for Identity Governance and Administration (IGA), identity
directories, or access management systems. All papers discuss schema matching and data
integration within a general context. Therefore, we will categorize the papers solely based on
whether they represent traditional or advanced approaches within this general domain.

Summary of Key Algorithms and Approaches

The sources describe a variety of key algorithms and approaches for schema matching and data
integration:

• Similarity Flooding (SF): This is a structural graph matching algorithm designed to
match diverse data structures by converting them into directed labeled graphs. It uses an
iterative fixpoint computation to determine the similarity between nodes in the graphs. SF
can be used as a generic matching algorithm across application areas and is implemented as
an operator in schema manipulation tools. It produces a mapping between corresponding
nodes, which is then filtered (Melnik et. al, 2002).

• Cupid: Described as a hybrid schema matcher, Cupid discovers mappings based on
element names, data types, constraints, and schema structure. It integrates linguistic and
structural matching, biases towards leaf structures, and uses context-dependent matching.
It parses compound names, categorizes elements by data type and linguistic content, and
calculates linguistic similarity. Structural similarity is computed bottom-up based on schema
trees (Madhavan et. al, 2001).

Architecture and Design Documentation 3. Current State: Research, Analysis, and Prototypes

Project code: 09I05-03-V04-00101 Page 39 of 152

• COMA: A system designed for the flexible combination of schema matching
approaches. It provides an extensible library of individual and hybrid matchers and a
framework for combining their results. COMA supports matchers based on element names,
data types, structural properties, data instances, and auxiliary sources. It distinguishes
between hybrid and composite combination approaches, focusing on the composite
approach for flexibility. COMA also includes a reuse-oriented approach for leveraging
previous match results (Do and Rahm, 2002).

• iMAP: This system focuses on the challenging problem of discovering complex semantic
matches between database schemas, which are often not one-to-one (1:1). iMAP is semi-
automatic and combines searching through candidate matches with methods for evaluating
them. It utilizes domain knowledge, such as overlap data and external data mining, and
provides explanations for its decisions (Dhamankar et. al, 2004).

• Un-interpreted Matching (Opaque Data): This technique addresses schema matching
when element names and data values are "opaque" or difficult to interpret. It does not rely
on the interpretation of data elements or schema elements. The approach involves two
steps: measuring pair-wise attribute correlations to construct a dependency graph and then
using a graph matching algorithm to find corresponding nodes (Kang and Naughton, 2003).

• Machine Learning (ML) / Deep Learning (DL) Methods: ML techniques have been
explored for schema matching, sometimes using instance-level information. ADnEV (Shraga
et. al, 2020), DITTO (Li et al., 2020) and SMAT (Zhang et. al, 2021) are examples of deep
learning models used for schema-level matching. SMAT is noted for capturing rich text
information.

• Large Language Model (LLM) Methods: Recent work leverages LLMs like GPT-4 for schema
matching (Feng et. al, 2024). KARMA is an example of a multi-agent LLM framework
applied to knowledge graph enrichment, which involves schema alignment. Its Schema
Alignment Agents are tasked with aligning entities and relations to KG schemas (Lu and
Wang, 2025).

Taxonomy of Approaches

Based on the surveys and descriptions in the sources, schema matching approaches can be
classified along several dimensions (Sutanta, 2016; Rahm and Bernstein, 2001; Kang and
Naughton, 2003):

1. Level of Information Exploited:

• Schema-level: Uses only schema information (names, descriptions, data types, constraints,
structure). Examples: Linguistic matchers, Constraint-based matchers, structural matchers
like SF (when applied to schema graphs), Cupid (schema-based aspects), SMAT.

• Instance-level: Uses actual data values within the schema attributes (e.g., data patterns,
distributions).

• Auxiliary Information: Uses external resources such as dictionaries, thesauri, taxonomies,

Architecture and Design Documentation 3. Current State: Research, Analysis, and Prototypes

Project code: 09I05-03-V04-00101 Page 40 of 152

or ontologies.

2. Granularity of Matching:

• Element-level: Matches individual schema elements (e.g., attributes, columns, classes).

• Structure-level: Matches based on the relationships, context, or structure of schema
elements (e.g., hierarchical structure, relational links, dependency graphs). Examples:
Similarity Flooding, Opaque Matching (dependency graphs), structural aspects of Cupid.

3. Matching Criteria/Technique:

• Linguistic/name-based: Compares names and textual descriptions of schema elements.

• Constraint-based: Compares elements based on schema constraints like data types, keys
(primary/foreign), uniqueness, and cardinality.

• Graph-based: Converts schemas into graphs and applies graph matching algorithms.
Examples: Similarity Flooding, Opaque Matching.

• Learning-based (ML/DL/LLM): Uses machine learning, deep learning, or Large Language
Models to learn matching patterns or generate matches. Examples: SMAT, ADnEV, KARMA
(for schema alignment).

• Statistical/Dependency-based: Analyzes statistical relationships or dependencies between
attributes, particularly useful for opaque data. Example: Opaque Matching.

• Semantic: Focuses on the meaning of schema elements and relationships, often leveraging
ontologies or external knowledge. Example: iMAP (for complex semantic matches).

• Reuse-oriented: Leverages results from previous matching operations.

4. Combination Strategy:

• Individual/Stand-alone: A single matching algorithm is used.

• Hybrid: Multiple matching criteria or techniques are combined within a single algorithm.
Example: Cupid.

• Composite: The results from several independently executed match algorithms are
combined. Example: COMA supports this approach.

5. Automation Level:

• Manual: Matching is performed entirely by human experts.

• Semi-automatic: Tools assist human users by proposing candidate matches, which are then
reviewed and adjusted by the user. Example: iMAP.

• Automatic: Algorithms attempt to find matches without human intervention. Often requires
subsequent human verification and refinement.

6. Complexity of Matches:

Architecture and Design Documentation 3. Current State: Research, Analysis, and Prototypes

Project code: 09I05-03-V04-00101 Page 41 of 152

• Simple (1:1): Matches are typically one-to-one correspondences between elements.

• Complex (m:n): Matches can involve combinations or transformations of multiple elements
(e.g., concatenation, arithmetic). Example: iMAP.

7. Evolutionary Aspect:

• Traditional: Earlier heuristic, rule-based, or simple statistical methods.

• Advanced: Methods employing machine learning, deep learning, complex statistics, or
LLMs.

Comparative Analysis of Characteristics

Comparing the main characteristics of traditional and advanced schema matching approaches
based on the sources:

1. Traditional Methods (e.g., SF, Cupid, COMA framework, Linguistic, Structural,
Constraint-based):

Strengths:

• Well-understood and foundational, providing the basis for more complex systems.

• Effective for common matching scenarios where names, structures, or constraints are
consistent and informative.

• COMA provides a flexible framework for combining various matchers.

• SF is versatile for matching graph-like structures.

Weaknesses:

• Often struggle with significant schematic heterogeneity, including differing names,
structures, and constraints across schemas.

• May fail when schema element names or data values are opaque or uninterpretable.

• Generally limited in their ability to discover complex, non-1:1 matches.

• Performance can be highly dependent on careful parameter tuning.

Degree of automation: Varying, often providing semi-automatic support by suggesting
candidates. Purely automatic execution exists but results require verification.

Need for human feedback: Significant. Human experts are crucial for evaluating, verifying,
and adjusting the proposed matches. This manual effort can be time-consuming.

2. Advanced Methods (e.g., ML/DL, LLM, Dependency-based):

Strengths:

Architecture and Design Documentation 3. Current State: Research, Analysis, and Prototypes

Project code: 09I05-03-V04-00101 Page 42 of 152

• Can potentially capture more complex patterns and semantic relationships between schema
elements and data.

• Capable of handling opaque or semi-opaque data where traditional linguistic methods fail.

• Show promise in tackling complex match discovery.

• Modern techniques like Deep Learning and LLMs have demonstrated strong performance on
various text and data-related tasks. LLMs can potentially interpret complex natural language
descriptions in schemas.

Weaknesses:

• ML/DL methods often require substantial training data, which may not always be available.

• Can be computationally expensive and require specialized hardware or expertise.

• LLMs require careful prompt engineering and can also be resource-intensive.

• Interpretability of results from complex models can be challenging.

• Some techniques are specialized for particular problems (e.g., opaque data, complex
matches).

Degree of Automation: Generally higher in the process of generating matches.

Need for Human Feedback: Still present, though potentially shifted. Human feedback is
essential for evaluating the quality of results, resolving ambiguities, refining the models or
prompts, and handling cases beyond the model’s capabilities. Improving user interaction
mechanisms remains important.

Research Gaps and Challenges

The sources highlight several research gaps and challenges in schema matching (Rahm and
Bernstein, 2001; Feng et. al, 2024, Kang and Naughton, 2003):

• Lack of Consistent Superiority: There is no single schema matching method that
consistently performs better than others across all datasets and scenarios.

• Need for Parameter Tuning: Many algorithms require complex parameterization, and real-
world performance suffers when parameters are not finely tuned. Auto-tuning remains an
open problem.

• Handling Complex Matches: Most previous work has focused solely on 1:1 matches,
neglecting the important class of complex matches that are prevalent in practice.

• Combining Matchers: How to best combine different match algorithms (hybrid and
composite approaches) still requires further work. Fully utilizing the flexibility of composite
approaches is a challenge.

• Underutilization of Information: More attention should be given to effectively utilizing
instance-level information and opportunities for reusing previous match results. Exploring

Architecture and Design Documentation 3. Current State: Research, Analysis, and Prototypes

Project code: 09I05-03-V04-00101 Page 43 of 152

semantic relationships at entities or instances as a basis for mapping is also a direction.

• Opaque Data: Schema matching with opaque column names and data values is a specific
problem class that traditional methods do not address.

• Improved User Interaction: While human feedback is crucial, current approaches have
limited means of effectively capturing user interaction. Designing comprehensive ways to
incorporate user feedback is needed.

• Generalizability and Domain Adaptation: Developing generic matchers usable across
application areas and adapting techniques to specific domains (like bioinformatics
mentioned for COMA) or handling cross-domain matching remain relevant. The source
mentions evaluating generalizability using benchmark datasets.

• Addressing Schematic Heterogeneity: Overcoming the problems caused by different
naming, types, formats, precision, structures, and semantic interpretations in schemas is
fundamental.

• Handling Multilingual/Opaque Labels: Schema elements or data values may be expressed
in different natural languages (e.g., “ime” vs. “name” vs. “nombre”). Effective matching
requires integrating translation dictionaries, domain-specific glossaries, or language models
to bridge lexical gaps and recognize semantically equivalent labels across languages.

• LLM Integration Challenges: While promising, integrating LLMs requires considering
costs, prompt engineering, and handling potential inconsistencies or errors inherent in
generative models.

3.2.2 Theoretical Framework for Applying Schema Mapping Techniques

This section outlines a simplified, four-step cascade for schema mapping. Each step represents a
core mapping strategy, moving from the simplest identity checks to full code generation. In
practice, we will experiment with combinations of these steps and use initial tests to guide our
direction.

1. Direct Mapping

If the values of the attribute match exactly, we can assume trivial "as-is" mapping between these
attributes.

2. Static Lookup (Mapping Table)

A static lookup table provides a simple dictionary-based mapping. It is often used for value
translations (e.g., code→description).

Description Maintain a predefined table (CSV, spreadsheet, or database) with two primary
columns:

Architecture and Design Documentation 3. Current State: Research, Analysis, and Prototypes

Project code: 09I05-03-V04-00101 Page 44 of 152

Source value Target value

M Male

F Female

Advantages

• Very fast, constant-time lookup.

• High precision for known, stable mappings.

• Easy to review, update, and version-control.

Limitations

• Cannot handle unseen values.

• Requires ongoing maintenance as code lists evolve.

• Does not perform dynamic transformations (e.g., string concatenation or date-formatting).

• Requires mapping of a single application and a single midPoint attribute.

3. Heuristic Transformations

When identity mapping and static lookup both fail, we can apply a series of deterministic
heuristics. These heuristics include a normalization step plus various string-, date-, and value-
level functions. The examples below draw from built-in functions typically found in integration
platforms such as Adeptia AIMap. If application and midPoint attribute values still don’t match
after identity or lookup, first normalize them by lowercasing, stripping diacritics, removing
punctuation, and collapsing spaces; next, compute fuzzy-matching scores (e.g., Levenshtein
distance or Jaccard token overlap) to catch near-misses; and finally, chain targeted
transformations—string operations (substring, replace, normalize-space, case conversion), date
functions (date-format, date-difference, current-date), math functions (add, multiply,
ceiling/floor), aggregation functions (sum, count, average), conditional logic
(if/when/selectQuery), axis/navigation functions for nested JSON/XML, boolean predicates, and
context functions for metadata tagging—to systematically align even the most stubborn fields
and values. In Adeptia AIMap, for example, this exact sequence is implemented as a best-
practice reference and can serve as an inspiration.

Procedure

1. Normalize the attribute values.

2. If there is an exact match, or a fuzzy string similarity threshold is met, consider the
mapping.

3. Otherwise, attempt to chain built-in functions to transform the values.

4. If nothing is found, escalate to LLM-assisted code generation (Step 4).

Architecture and Design Documentation 3. Current State: Research, Analysis, and Prototypes

Project code: 09I05-03-V04-00101 Page 45 of 152

Advantages

• Built-in functions cover a wide range of common data transformations without writing
custom code.

• Deterministic and transparent when pipelines are simple.

• Handles cases where minor variations exist (typos, abbreviations, punctuation).

Limitations

• Complex multi-input transformations can become unwieldy.

• Requires careful ordering and parameter tuning.

• Some transforms (e.g., joining multiple disparate fields) may still be out of reach.

4. LLM-Assisted Code Generation

When direct mapping, static lookups, and heuristic transformations all fail to produce a
satisfactory mapping, a Large Language Model can be invoked to generate custom
transformation code. This is particularly useful for scenarios with complex logic, multiple
attributes at the source side, or domain-specific rules.

In this approach, the LLM receives column values for the attributes and produces code that
maps between them.

Advantages

• Can express arbitrarily complex transformations (joins, lookups, loops, nested conditions).

• Adaptable to various output programming languages.

Limitations

• Potential for hallucinations—code may have subtle bugs or missing edge-case handling.

• Safety concerns: generated code needs to be checked that it’s harmless.

• May introduce additional dependencies (third-party libraries).

3.2.3 Overview of Open-Source and Commercial Tools

In addition to the literature review presented above, we conducted a comprehensive survey of
both open-source and commercial schema-matching tools. Below, we summarize our findings
and provide an overview of these tools.

Table 1. Comparison of selected tools

Architecture and Design Documentation 3. Current State: Research, Analysis, and Prototypes

Project code: 09I05-03-V04-00101 Page 46 of 152

Aspect FlexMatc
her [23]

COMA++
[24]

Adeptia
AIMap
[25]

KARMA
[26]

FlatFile
[27]

PSM [28] PMFSM
[29]

Automati
on

Semi-
automatic
ML; needs
labeled
data

Semi-
automatic,
user-in-
loop

AI/ML
with LLM-
assisted
suggestion
s

ML +
multi-
agent LLM
alignment

AI/ML
with LLM-
augmente
d NL
interface

ML
(embeddin
gs +
classifier)

Primarily
LLM-
driven

Scalabilit
y

Small–me
dium
schemas
(training-
bound)

Large
match jobs
via
workflows

Enterprise
/cloud
scale

Distribute
d LLM
pipelines
(high
scale)

Enterprise
/cloud
scale

Moderate
(local
compute/e
mbedding
s)

Scales
with LLM
service
limits

Data
Requirem
ents

50–100
labeled
pairs

Schema
metadata
+ optional
instances

Historical
mappings
+ sample
files

Ontologies
+ sample
data for
LLM
prompts

Billions of
historical
examples

Labeled
pairs +
embeddin
g corpora

Few-
shot/zero-
shot with
retrieval

Semantics String &
instance
features
(KNN, LR)

String +
structural
+ ontology
reuse

NLP +
metadata
+ LLM
inference

Ontology +
embeddin
gs + LLM
reasoning

Embeddin
gs + NLP +
LLM for
NL rules

Embeddin
gs
(sentence
transform
ers,
XGBoost)

Pure LLM
semantic
reasoning

Short Summary of Findings:

• Commercial Platforms (Adeptia AIMap, FlatFile) blend ML and LLM techniques to offer
intuitive UIs, confidence scoring, and wide integrations, but are tied to proprietary licenses
and historical-data quality.

• Emerging Open-Source projects (KARMA, PSM, PMFSM) experiment with transformer
embeddings and LLM-driven mappings; they are innovative yet still maturing in popularity
and documentation.

• Classic Frameworks (COMA/COMA++, FlexMatcher) remain the backbone for academic
benchmarking, providing modular, extensible matchers based on string- and statistic-based
heuristics, but require manual tuning and training data.

The industry trend is clearly toward richer AI-driven mapping workflows—leveraging
embeddings, generative models, and multi-agent architectures to enhance automation, semantic
depth, and scalability. We expect traditional methods to struggle with following the context and
semantics of our tasks so we will focus on the newer methods (transformer based models).

Architecture and Design Documentation 3. Current State: Research, Analysis, and Prototypes

Project code: 09I05-03-V04-00101 Page 47 of 152

3.2.4 Metrics

We will evaluate the recommendation system using the following metrics:

• Confusion Matrix: A contingency table reporting true positives (TP), false positives (FP),
false negatives (FN) and true negatives (TN) for the predicted vs. actual matches.

• Precision: the proportion of predicted matches that are correct.

• Recall: the proportion of true matches that are recovered.

• F₁-score: The harmonic mean of precision and recall: .

• Matthews Correlation Coefficient (MCC):

a balanced measure that accounts for all four cells of the confusion matrix.

• Accuracy: the fraction of correct predictions overall.

• LLM Hallucination Count:: The number of LLM-generated match proposals that do not
correspond to any valid ground-truth mapping, indicating over-confident or spurious
suggestions.

3.3 Correlation Recommendation
Correlation in midPoint is a mechanism to correlate identity data in an application to existing
identities in midPoint. It works in two steps:

• First, data from the application are mapped (transformed) into midPoint format. For
example, first_name in the application is mapped into givenName in midPoint. Or, DOB in the
application is mapped into extension/dateOfBirth in midPoint, including e.g. date format
conversion.

• Second, a set of correlation rules is applied with the goal of finding an identity in midPoint
that matches the (transformed) application data. For example, a rule can state that "if the
family name, date of birth, and the national-wide ID all match, then the identity is
matching". Another rule can state that "if (only) the national-wide ID matches, then the
identity is matching with the confidence level of 0.7". Rules can compare attribute values
exactly, using some normalization (like ignoring case, diacritics, or whitespaces), or by using
fuzzy matching.

For more information, please see the midPoint documentation on correlation.

The goal of this section is to research potential mechanisms for identifying correlator attributes
and assessing their value‐comparison strategies. In this stage, we describe various theoretical
approaches - ranging from predefined domain‐knowledge lists and lightweight pattern‐based
heuristics to LLM‐assisted suggestions - and outline exact, normalized, string‐similarity, and

Architecture and Design Documentation 3. Current State: Research, Analysis, and Prototypes

Project code: 09I05-03-V04-00101 Page 48 of 152

https://docs.evolveum.com/midpoint/reference/support-4.9/correlation/

phonetic‐matching matching strategies. These descriptions serve purely as a conceptual design:
actual implementations will be validated and refined later.

3.3.1 Finding Correlation Attributes

The first issue is to identify which attributes will serve for correlation. Let’s call them
correlation attributes.

Predefined Attribute List (Domain Knowledge)

In many organizations, certain attributes are known a priori to serve as reliable correlation
ones. These are attributes like emailAddress, uid, employeeNumber, or cn. One approach is to
maintain a small, configurable lookup (CSV or database table) that lists common attribute
names (and any synonyms) that should automatically be considered as correlation ones.

Advantages:

• Low false‐positive rate when domain knowledge is correct.

• Extremely fast to check (constant‐time lookup).

Limitations:

• Fails to detect less obvious correlators (e.g., telephoneNumber).

• Requires maintenance as new use cases arise.

Heuristic‐Based Selection (Pattern Matching)

When an attribute name is not in the predefined list, we will consider lightweight heuristics to
flag other potential correlation attributes. Examples include:

• Name patterns:: Check for substrings like email, id, uid, login, user (case‐insensitive); or
check for application-specific attributes, like dn or cn for LDAP; in HR systems,
employeeNumber or staffID is frequently unique.

• Data type check:: If an attribute has a specific data type and/or value format (e.g., it is a
string of length ≤ 254 and its format resembles an email or UUID), it becomes a candidate.

These heuristics assign a preliminary score (e.g., 0–1) to each candidate. Attributes scoring
above a threshold (e.g., 0.7) are promoted to "correlation attribute" status.

LLM‐Assisted Suggestion

If neither domain knowledge nor heuristics confidently identify a correlation attribute, we can
invoke a lightweight prompt to an LLM to propose the likely ones. The prompt can include:

• Attribute descriptions or any available schema metadata (e.g., “emailAddress: user’s email”).

Architecture and Design Documentation 3. Current State: Research, Analysis, and Prototypes

Project code: 09I05-03-V04-00101 Page 49 of 152

• Contextual note:: “Find the top attributes most likely to uniquely identify or correlate
objects.”

The LLM’s response can be parsed into a ordered list.

3.3.2 Suggesting Correlation Rules

The other part of the solution is the determination of specific correlation rules: how should be
the selected attributes used to find matching objects. Each rule references one or more
correlation attributes, each with the description of the way of comparing its value while finding
the matching objects (e.g., exact match, fuzzy match, or match on normalized data, like ignoring
diacritics or whitespaces, case-insensitive match, and so on).

A typical approach consists of trying some of the following approaches. (They serve just for an
inspiration here. More on selecting specific techniques is in Section 4.)

Exact Matching

This approach requires exact match of the correlation attribute values. A typical example is
personal number.

NOTE
Some attribute are inherently not suitable for exact matching. For example,
many LDAP attributes have specified matching rule of caseIgnoreMatch, so they
must be matched ignoring case, as described below.

Normalization-Based Matching

This is a comparison of normalized versions of the values. Examples:

• Ignoring case: "John.Doe@Example.COM" matches "john.doe@example.com".

• Ignoring whitespace at start and end of a value and collapse multi-spaces: "
user@example.com " matches "user@example.com".

• Ignoring diacritics: "josé@example.com" matches "jose@example.com".

String Similarity Matching

In this approach, we compare string values approximately:

• Levenshtein distance: indicates how many operations (insertion/deletion/substitution) are
needed to transform a value to another value.

• Jaccard token similarity: Split on common delimiters (@, ., _) and compute token overlap.

We consider a value to match if the similarity is equal or above a given threshold.

Architecture and Design Documentation 3. Current State: Research, Analysis, and Prototypes

Project code: 09I05-03-V04-00101 Page 50 of 152

mailto:John.Doe@Example.COM
mailto:john.doe@example.com
mailto:user@example.com
mailto:user@example.com
mailto:josé@example.com
mailto:jose@example.com

Phonetic Matching

For attributes like fullName, displayName, or even name (login name), where spelling variants or
diacritical differences could occur, this approach computes and matches a phonetic code (e.g.,
Soundex or Metaphone) for both application and midPoint values. This is particularly useful for
names (e.g., “Müller” vs. “Mueller”).

NOTE
The human user should approve all recommendations for correlation rules, as
there may be situations when automatically determined rule is too weak or too
strong.

3.4 Baseline Experiments for Model
Mapping/Matching and Correlation
Recommendation System
In this section, we establish performance baselines for both schema-mapping and correlator-
identification in tandem, focusing exclusively on the “user” entity type (which we find most
complex) while planning to extend our approach to other types such as roles and associations.
Rather than treating correlator discovery as a standalone experiment, we jointly evaluate
schema matching and correlator identification on user schemas. In both Experiment 1 and
Experiment 2, alongside schema matching, we also measure how well a simple embedding-
threshold or a raw LLM prompt can recover our static, domain-standard correlator list
(emailAddress, uid, employeeNumber, cn, etc.). We then proceed to Experiment 3, a proof-of-
concept for Groovy code generation in schema mapping. Each experiment is accompanied by a
clear description of its methodology, datasets, and evaluation metrics, allowing us to directly
compare these basic baselines. We will compare open-source models against top SOTA
commercial models, with the ultimate goal of demonstrating that an open-source solution can
come close to, or even match, the performance of proprietary alternatives. We also plan to
augment those AI-driven recommendations with existing mappings and metadata drawn from
our integration catalog, to further improve accuracy and consistency.

3.4.1 Experiment 1: Embedding-based Empirical Threshold Optimization
with Schema Matching and Correlation Prediction

Attribute-level schema matching is an inherently complex m:n retrieval problem. Each attribute
in an external schema must be compared against every attribute in a reference schema, and
correct correspondences often hinge on subtle semantic cues. Here, we focus on an embedding-
based approach, mapping attribute names and descriptions into a shared vector space and
using cosine similarity as our core signal. A subsequent experiment will explore complementary
LLM-based strategies that leverage contextual reasoning.

Phases of the Embedding-Based Schema Matching

Architecture and Design Documentation 3. Current State: Research, Analysis, and Prototypes

Project code: 09I05-03-V04-00101 Page 51 of 152

In this experiment, we evaluated the ability of embedding-based technologies to address
increasingly complex tasks including:

• Identifying top k=1 matches for each attribute (1:1 matching),

• Identifying multiple potential matches for a single attribute (m:n matching),

• Narrowing the candidate space using static thresholding tailored to each model,

• Evaluating the success of discovered correlation matches.

This experiment represents the fourth iteration of our embedding-based schema matching
pipeline:

• v0 – 1:1 matching: Initial phase with simple one-to-one attribute matching, based on a top-k
thresholding approach.

• v1 – m:n matching: Introduced support for many-to-many attribute matching as we’ve
identified scenarios where multiple suggestions per attribute are appropriate. This leverages
using standard deviation (STD) and Z-score thresholding.

• v2 – m:n with empirical thresholding: Added empirically optimized thresholds to filter out
low-confidence matches and improve accuracy. Trained on synthetically generated data.

• v3 – correlator integration: Final phase involving integration of correlation analysis to
evaluate the identified correlation matches.

Each phase reflects the gradual improvement in both the accuracy and flexibility of the
matching process, addressing limitations encountered in earlier versions.

Below we focus on the final version (v3), which represents the most current optimized
procedure.

Embedding-Based Methodology

1. Embedding Generation

◦ Convert each attribute’s name and optional description into dense vectors using a
variety of pre-trained models.

◦ Four different approaches are used for embedding generation:

▪ property_embeddings: Only the property values are embedded.

▪ description_embeddings: Only the description values are embedded.

▪ combined_embeddings: Both property and description values are embedded and
combined by averaging them, with a configurable weighting factor (default 0.3 for
property, 0.7 for description).

▪ linked_embeddings: Property and description values are concatenated and then
embedded together, allowing the model to learn from both simultaneously.

2. Similarity Matrix Computation

Architecture and Design Documentation 3. Current State: Research, Analysis, and Prototypes

Project code: 09I05-03-V04-00101 Page 52 of 152

◦ Compute cosine similarity for every external–reference attribute pair, forming an
|external|×|reference| matrix.

3. Empirical Threshold Optimization

◦ Sweep a grid of 500 thresholds in [0.0, 1.0].

◦ For each threshold, binarize similarities (≥ threshold ⇒ match), compute TP, TN, FP, FN,
then derive precision, recall, F1, accuracy, and MCC.

◦ Select the threshold that maximizes F1 for each model–schema pairing.

4. Schema Matching

◦ Apply the optimal threshold to extract candidate matches, rank them by similarity, and
label each as correct or incorrect against ground truth.

5. Correlator Analysis

◦ Use evaluate_schema to build two binary matrices per schema: one from predicted
“Resource” matches and one from ground-truth “Correlator” flags.

◦ Compute corr_recall: the overall recall across all correlator-flagged schemas, defined as

Parameter Selection

• Embedding Approach: combined_embeddings approach, which combines property and
description embeddings with configurable weighting.

• Property Weighting: 0.3

• Description Weighting: 0.7

• Threshold Optimization: Empirical threshold optimization is performed for every source
attribute against a synthetically generated dataset containing approx. 100 positive matches
and 3300 negative matches per each source valid attribute.

Model Selection

We evaluated 16 models spanning diverse categories:

• Multilingual: sentence-transformers/LaBSE, intfloat/multilingual-e5-large-instruct,
hkunlp/instructor-xl

• Open Source LLM-Derived: Alibaba-NLP/gte-Qwen2-7B-instruct

• Sentence Transformers: all-MiniLM-L6-v2, all-mpnet-base-v2, sentence-transformers/nli-
mpnet-base-v2, paraphrase-MiniLM-L6-v2, all-distilroberta-v1, msmarco-MiniLM-L6-cos-v5,
intfloat/e5-large-v2, BAAI/bge-large-en

• T5-Based: sentence-t5-xxl

• OpenAI Embeddings: text-embedding-ada-002, text-embedding-3-small, text-embedding-3-
large

Architecture and Design Documentation 3. Current State: Research, Analysis, and Prototypes

Project code: 09I05-03-V04-00101 Page 53 of 152

This selection ensures coverage of multilingual capacity, LLM-derived embeddings, popular
sentence-transformers, and the latest OpenAI embedding engines.

Results

Below is the summary of performance metrics for each embedding model. Inference time is
averaged over all schema pairs.

Model MCC Precision Recall F1 Hallucina
tions

Corr
Recall

Inference
Time Avg
(s)

text-
embeddin
g-3-large

0.369 0.265 0.565 0.349 0 0.663 1.66

sentence-
t5-xxl

0.366 0.264 0.563 0.345 0 0.685 12.427

hkunlp/ins
tructor-xl

0.363 0.328 0.538 0.333 0 0.584 2.116

text-
embeddin
g-3-small

0.363 0.291 0.574 0.333 0 0.596 1.702

text-
embeddin
g-ada-002

0.349 0.245 0.557 0.327 0 0.573 1.496

all-
distilrober
ta-v1

0.343 0.251 0.538 0.322 0 0.494 0.547

BAAI/bge-
large-en

0.333 0.256 0.547 0.301 0 0.618 0.321

paraphras
e-MiniLM-
L6-v2

0.318 0.270 0.540 0.278 0 0.640 0.077

intfloat/e5-
large-v2

0.301 0.233 0.506 0.272 0 0.562 0.562

all-
MiniLM-
L6-v2

0.298 0.182 0.564 0.264 0 0.629 0.604

all-mpnet-
base-v2

0.293 0.189 0.562 0.259 0 0.551 0.727

Architecture and Design Documentation 3. Current State: Research, Analysis, and Prototypes

Project code: 09I05-03-V04-00101 Page 54 of 152

Model MCC Precision Recall F1 Hallucina
tions

Corr
Recall

Inference
Time Avg
(s)

msmarco-
MiniLM-
L6-cos-v5

0.276 0.189 0.472 0.256 0 0.539 0.078

sentence-
transform
ers/nli-
mpnet-
base-v2

0.277 0.200 0.505 0.246 0 0.596 0.250

intfloat/m
ultilingual-
e5-large-
instruct

0.270 0.188 0.510 0.242 0 0.551 0.754

sentence-
transform
ers/LaBSE

0.257 0.200 0.424 0.240 0 0.404 0.495

Alibaba-
NLP/gte-
Qwen2-7B-
instruct

0.083 0.052 0.430 0.076 0 0.382 4.560

Summary of Findings:

• Top Performers: The OpenAI embedding models (text-embedding-3-large, -3-small)
achieved the highest F1 (0.349 and 0.333) and MCC (0.369 and 0.363).

• Competitive Alternatives: sentence-t5-xxl matched closely on F1 (0.345) but at a much
higher inference cost (~12 s per schema pair).

• High Precision vs. Latency: hkunlp/instructor-xl led on precision (0.328) with moderate
speed (~2.1 s), suggesting a good trade-off for precision-sensitive tasks.

• Fast & Lightweight: paraphrase-MiniLM-L6-v2 and msmarco-MiniLM-L6-cos-v5 offered
very low latency (<0.1 s) with respectable recall but lower precision and F1.

• Multilingual & LLM-derived: Multilingual models (LaBSE, e5-large-instruct) showed solid
recall but moderate overall F1; the large LLM-derived gte-Qwen2-7B lagged in both
performance and speed.

Architecture and Design Documentation 3. Current State: Research, Analysis, and Prototypes

Project code: 09I05-03-V04-00101 Page 55 of 152

3.4.2 Experiment 2: LLM-Based Empirical Prompt-Driven Schema
Matching and Correlation Prediction

Building on our embedding-based retrieval, Experiment 2 uses large language models (LLMs) to
directly reason over attribute pairs and decide matches via structured prompts. We also track
correlator flags and parsing errors to measure robustness.

1. Prompt Design & Inference

◦ Construct a JSON-based prompt containing external attribute name/description,
reference attribute name/description, and example match labels.

◦ Send the prompt to each LLM and parse its JSON response into binary match/non-match
predictions.

2. Batch Processing & Error Handling

◦ Process attribute pairs in batches per schema to optimize throughput.

◦ Count invalid_jsons when the model’s response cannot be parsed as valid JSON.

◦ Record hallucinations for any predicted matches not present in ground truth.

3. Evaluation & Correlator Analysis

◦ Use evaluate_model (with include_correlator=True) to aggregate per-schema results into
model-level metrics.

◦ Compute standard metrics (MCC, precision, recall, F1), plus:

◦ corr_recall: overall recall on correlator-flagged matches.

◦ invalid_jsons and hallucinations as described above.

Quantitative Results

Model MCC Precisio
n

Recall F1 Hallucin
ations

Corr
Recall

Invalid
JSONs

Inferenc
e Time
Avg (s)

google/ge
mini-2.5-
flash-
preview-
05-20

0.662 0.672 0.669 0.663 31 0.82 0 3.254

openai/o
4-mini

0.660 0.678 0.666 0.659 0 0.798 0 22.928

anthropi
c/claude-
sonnet-4

0.652 0.620 0.707 0.651 10 0.809 1 7.161

Architecture and Design Documentation 3. Current State: Research, Analysis, and Prototypes

Project code: 09I05-03-V04-00101 Page 56 of 152

Model MCC Precisio
n

Recall F1 Hallucin
ations

Corr
Recall

Invalid
JSONs

Inferenc
e Time
Avg (s)

qwen/qw
en3-14b

0.643 0.719 0.592 0.639 16 0.685 0 31.742

meta-
llama/lla
ma-4-
maverick

0.640 0.684 0.623 0.637 19 0.753 0 6.431

deepseek
/deepsee
k-r1-0528

0.640 0.660 0.637 0.639 0 0.753 1 97.709

x-ai/grok-
3-mini-
beta

0.622 0.608 0.670 0.618 2 0.719 0 13.251

qwen/qw
en3-32b

0.606 0.646 0.592 0.603 21 0.640 0 55.972

qwen/qw
en-2.5-
72b-
instruct

0.600 0.652 0.580 0.598 82 0.730 0 12.058

meta-
llama/lla
ma-4-
scout

0.589 0.730 0.495 0.575 19 0.629 1 6.458

google/ge
mini-2.5-
pro-
preview-
05-06

0.586 0.406 0.897 0.546 0 0.921 0 70.486

openai/g
pt-4.1

0.582 0.495 0.721 0.573 69 0.854 0 7.816

qwen/qw
en-2.5-
coder-
32b-
instruct

0.579 0.564 0.629 0.573 257 0.674 1 12.792

Architecture and Design Documentation 3. Current State: Research, Analysis, and Prototypes

Project code: 09I05-03-V04-00101 Page 57 of 152

Model MCC Precisio
n

Recall F1 Hallucin
ations

Corr
Recall

Invalid
JSONs

Inferenc
e Time
Avg (s)

google/ge
mma-3-
27b-it

0.539 0.663 0.458 0.530 190 0.685 0 20.429

microsoft
/phi-4

0.486 0.555 0.461 0.478 255 0.640 1 13.153

mistralai/
devstral-
small

0.470 0.433 0.563 0.457 225 0.640 3 9.911

mistralai/
mistral-
nemo

0.334 0.336 0.368 0.331 177 0.449 6 9.153

microsoft
/phi-3.5-
mini-
128k-
instruct

0.025 0.027 0.027 0.026 25 0.045 20 2.713

Summary of Findings:

• Best Overall: google/gemini-2.5-flash-preview-05-20 achieved the highest F1 (0.663) and MCC
(0.662) with moderate latency (3.25s), but exhibited a notable number of hallucinations (31).

• Strong Precision: openai/o4-mini led on precision (0.678) with robust recall (0.666) and zero
parsing errors.

• Highest Recall: google/gemini-2.5-pro-preview-05-06 achieved exceptional recall (0.897) but
suffered in precision (0.406) and latency (70.5s).

• Latency vs. Accuracy Trade-Off: lighter models like anthropic/claude-sonnet-4 offered
balanced performance (F1 0.651) with lower latency (~7s).

• Parsing Robustness: most LLMs produced zero invalid JSONs, though some large-coder and
smaller open-source models had parsing failures (e.g., phi-3.5-mini).

• Correlation Performance: highest corr_recall was observed for google/gemini-2.5-pro-
preview-05-06 (0.921) and other top LLMs (>0.80).

3.4.2.1 Experiment 2 (Continued): Multilingual Data Evaluation

To assess the robustness of our prompt-driven LLM pipeline across languages, we translated the
original English schemas into eight target languages:

• Slovak: 7 schemas

Architecture and Design Documentation 3. Current State: Research, Analysis, and Prototypes

Project code: 09I05-03-V04-00101 Page 58 of 152

• French: 4 schemas

• German: 3 schemas

• Portuguese: 2 schemas

• Spanish: 2 schemas

• Italian: 2 schemas

• Chinese: 2 schemas

• Japanese: 1 schema

All 23 multilingual schemas were processed with the same JSON-based prompt format as in the
English experiment, replacing attribute names/descriptions with their localized equivalents.

model mcc precisio
n

recall f1 hallucin
ations

corr_rec
all

invalid_j
sons

inferenc
e_time_a
vg

openai/o
4-mini

0.683 0.689 0.695 0.681 2 0.864 0 23.716

anthropi
c/claude-
sonnet-4

0.673 0.642 0.731 0.670 3 0.886 0 8.054

deepseek
/deepsee
k-r1-0528

0.649 0.657 0.661 0.649 31 0.818 0 101.360

google/ge
mini-2.5-
flash-
preview-
05-20

0.639 0.664 0.636 0.639 40 0.841 0 3.499

As illustrated in Image 1, the F1, recall, and precision scores remain largely consistent between
English and multilingual inputs across all evaluated models.

Architecture and Design Documentation 3. Current State: Research, Analysis, and Prototypes

Project code: 09I05-03-V04-00101 Page 59 of 152

Qualitative Analysis:

Based on inspection of true positives, false positives, and false negatives for a representative
LLM (e.g., google/openai/gpt-4.1), we observed:

1. Multi-Mapping Dependencies

◦ Ground truth includes three mappings for organization:

organization → customerId
organization → orgUnitPath
organization → organizations

◦ But the LLM mapped costCenter → customerId and orgUnitPath → organizationalUnit,
surfacing valid relationships that the annotations omitted.

2. Naming Alias Mismatches

◦ Ground truth: emailAddress → icfs:name

◦ The LLM mapped emailAddress → email, showing correct semantic alignment despite
differing labels.

3. Unannotated Valid Matches

◦ The LLM predicted telephoneNumber → phones, a logical correspondence absent from
ground truth, indicating annotation gaps.

Data-Quality Implications

These examples expose annotation and naming inconsistencies. Harmonizing aliases,
expanding valid mapping sets, and normalizing attribute names would better reflect model
capability and improve practical performance.

Summary

• The embedding-based approach (Experiment 1) underperformed:

◦ Best model (text-embedding-3-large) achieved F₁≈0.35, MCC≈0.37, latency ~1.7 s, zero
hallucinations.

• The LLM-based approach (Experiment 2) outperformed embeddings by a wide margin:

◦ google/gemini-2.5-flash-preview-05-20: F₁≈0.663, MCC≈0.662, latency ~3.3 s, 31
hallucinations.

◦ openai/o4-mini: highest precision (0.678), recall≈0.666, zero parsing errors.

• Multilingual robustness (Experiment 2.1):

◦ All top LLMs processed 23 translated schemas across 8 languages with an average F₁
drop of < 0.02.

Architecture and Design Documentation 3. Current State: Research, Analysis, and Prototypes

Project code: 09I05-03-V04-00101 Page 60 of 152

◦ openai/o4-mini slightly improved on multilingual data (F₁ 0.681 vs. 0.659 English).

◦ google/gemini-flash maintained F₁ within 0.02 points (0.663 → 0.645).

◦ No invalid JSON remained 1.0 for all models on multilingual inputs.

• Key conclusion:: State-of-the-art LLMs clearly surpass embedding methods in precision,
recall, F₁ and overall robustness.

Next Steps

1. Switch to an exclusively LLM-based pipeline

2. Perform data cleansing and normalization based on qualitative findings

3. Select primary model

4. Refine prompt engineering

a. Experiment with JSON-structured prompts and few-shot examples

b. Implement fallback heuristics for any parsing failures

5. Build and deploy an end-to-end prototype

a. Integrate LLM calls into both model-mapping and correlator selection modules

b. Capture user feedback (accept/override) to inform and improve subsequent versions of
our matching and correlator-identification algorithms

3.4.3 Baseline Groovy Code Generation for Schema Mapping

As part of the initial exploration phase, we conducted a series of baseline experiments focused
on schema mapping – the task of transforming structured input attributes into a target textual
format, based on a small number of examples. The goal was to evaluate whether modern LLMs
(including SOTA and open-source models) are capable of inferring transformation logic purely
from few-shot examples, without task-specific fine-tuning.

The primary aim was to test LLMs' ability to:

• Interpret the semantics of synthetic but realistic input samples

• Generate transformation functions in Groovy format (def transform(context) { … })

• Produce output matching the expected target string based on a test source dictionary

• Run the generated function in a secure Groovy sandbox and compare the output with the
expected one

The models were not trained on the task and relied solely on prompt instructions and examples.

Dataset

The evaluation dataset consists of small synthetic samples derived from real-world

Architecture and Design Documentation 3. Current State: Research, Analysis, and Prototypes

Project code: 09I05-03-V04-00101 Page 61 of 152

configurations (e.g., inbound/outbound mappings). Care was taken to select realistic yet safe
samples (i.e., no sensitive business data). Each row contains:

• source: A dictionary with input attributes

• target: The expected output string after transformation

The inputs contain only attributes relevant to prediction, simplifying the task compared to
production use-cases, where attribute filtering or preprocessing may be necessary.

Evaluation Procedure

Each LLM was prompted with few-shot examples and asked to generate a transform(context)
function in Groovy. The function was:

1. Executed in a Groovy sandbox on the provided input context

2. Its return value was compared to the expected target string (after normalization)

3. The results were categorized into correct, incorrect, and error (e.g., broken syntax)

We collected runtime information (duration and latency) for each model to evaluate efficiency.

Results

The following table summarizes the model performance:

Model Success
Rate

Correct Incorrect Errors Avg
Duration
(sec)

openai/o4-mini 0.90 27 2 1 14

openai/gpt-4.1 0.87 26 4 0 2

anthropic/claude-sonnet-4 0.83 25 5 0 3

qwen/qwen3-14b 0.80 24 5 1 4

x-ai/grok-3-mini-beta 0.77 23 5 2 7

google/gemini-2.5-pro-05-06 0.77 23 6 1 30

google/gemini-2.5-flash-
preview-05-20

0.77 23 5 2 4

deepseek/deepseek-r1-0528 0.77 23 6 1 52

qwen/qwen3-235b-a22b 0.73 22 5 3 67

qwen/qwen3-32b 0.73 22 5 3 55

qwen/qwen2.5-72b-instruct 0.73 22 7 1 3

meta-llama/llama-4-scout 0.70 21 8 1 2

Architecture and Design Documentation 3. Current State: Research, Analysis, and Prototypes

Project code: 09I05-03-V04-00101 Page 62 of 152

Model Success
Rate

Correct Incorrect Errors Avg
Duration
(sec)

google/gemma-3-27b-it 0.70 21 7 2 4

meta-llama/llama-4-
maverick

0.67 20 8 2 1

qwen/qwen2.5-coder-32b-
instruct

0.63 19 10 1 2

mistralai/dev-4-small 0.63 19 8 3 2

microsoft/phi-4 0.57 17 9 4 2

mistralai/mistral-nemo 0.33 10 11 9 2

microsoft/phi-3.5-mini-128k 0.17 5 7 18 8

Observations

• Both state-of-the-art (SOTA) and smaller open-source (OSS) models demonstrated solid
performance on this task.

• Smaller OSS models like qwen3-14b and gemma-3-27b-it achieved competitive results
compared to top proprietary models.

• Surprisingly, qwen3-14b outperformed qwen3-32b, a trend also seen in earlier experiments,
suggesting better efficiency-latency trade-off.

• SOTA models such as GPT-4.1 and Claude-Sonnet-4 performed as expected with minimal or
no sandbox errors.

• Variability in results was observed between runs due to non-deterministic generation,
especially with open-source models.

• Execution latency varied widely, with large reasoning models averaging 1+ minutes, which
can impact scalability. However, infrastructure differences (e.g., server vs. local deployment)
make direct comparison imprecise.

Summary

• LLMs can successfully infer schema transformations from few-shot samples even without
domain-specific fine-tuning.

• Results show that open-source models are viable options for deployment in cost-sensitive
environments.

• Careful prompt design and consistent validation improve reliability and reduce errors.

• Evaluation on synthetic, semi-realistic data provides valuable insights, but further testing on
full samples is needed.

Architecture and Design Documentation 3. Current State: Research, Analysis, and Prototypes

Project code: 09I05-03-V04-00101 Page 63 of 152

Next Steps

We identified several directions for future improvement:

• Data: Curate more evaluation data with realistic complexity; define which transformations
are in-scope

• Model usage: Evaluate latency and consistency across OSS models on self-hosted
infrastructure

• Prompting: Explore reflection loops and retry strategies for failed transformations

• Validation: Develop automated test harness for scoring transformations across model
versions

3.4.4 Global Summary & Next Steps

Global Summary

Across our baselines, embedding-based schema matching peaked at F₁≈0.35 (MCC≈0.37) and
recovered all “obvious” correlators via a fixed threshold, while LLM-based matching more than
doubled performance—hitting F₁≈0.66 (MCC≈0.66) with robust correlator recall. Our proof-of-
concept Groovy code generation also demonstrated that modern LLMs, even without fine-
tuning, can correctly infer transformation logic ~80–90% of the time.

Next Steps

• Adopt an LLM-Centric Pipeline:

◦ As the experiments show, using LLM for both schema matching and correlators
suggestions outperformed embedding-based approaches. Therefore, we will focus on
LLM-based approaches in the next steps. We will select the best-performing LLM and use
it for both schema matching and correlator suggestion. In this step, only data sent to LLM
are schemas describing attributes in application and midPoint, no personal data are used
here.

◦ Despite the very good performance of modern LLMs at generating transformation
scripts, concerns remain—hallucinations, security and compliance issues around
sending personally identifiable information, and regulatory constraints. To mitigate
these, we’ll first develop and integrate supporting algorithms (data normalization,
heuristic rules, alias mapping, etc.) for suggesting mappings; only if they yield no
satisfactory candidate will we optionally invoke the LLM. This staged approach reduces
noise, preserves privacy, and confines LLM use to genuinely complex case

• Algorithmic Pre-Processing: Develop and integrate supporting algorithms like data
normalization, heuristic rules, alias mapping, etc. to reduce noise and improve input quality
before prompting.

• Core Algorithm Tuning: Experiment with different prompting strategies, prompt formats,
and where feasible, model fine-tuning.

Architecture and Design Documentation 3. Current State: Research, Analysis, and Prototypes

Project code: 09I05-03-V04-00101 Page 64 of 152

• Prototype End-to-End Integration: Build a minimal working system integrating LLM calls
into mapping and correlation modules.

• Expand Evaluation: Test on larger, more diverse real-world schemas and mappings;
include semantic edge cases and complex multi-field correlators.

• Validation & Monitoring: Integrate XML/Groovy validators into the pipeline and set up
observability to track hallucinations, parsing errors, and user overrides.

• Iterate with User Feedback: Deploy early to a pilot group, collect accept/override actions,
and feed them back into prompt tuning and model fine-tuning cycles.

3.5 Delineation
Delineation is the process of clearly defining the boundaries and criteria by which a system
classifies or segments objects within its data source. In midPoint this is configured via a single
<delineation> element inside each <objectType> definition. It determines:

• Which Resource Objects (e.g., LDAP entries) belong to a specific type (such as accounts,
groups, or entitlements).

• How and Where these objects should be searched (e.g., filtering by objectClass, baseContext,
organizational unit paths, or custom filters).

The goals of delineation are to ensure that:

1. Input Data is accurately segmented according to its intended purpose (for example, regular
vs. admin vs. test accounts, all of which share the same objectClass but must be kept separate
for policy reasons).

2. Processing Flows operate on the correct subset of objects (for instance, synchronizing only
those that meet specific criteria).

3.5.1 Experiments on Delineation Rule Discovery

To evaluate how reliably our system—and even a non-expert—can infer midPoint delineation
rules, we conducted two complementary experiments:

Experiment 1: Single developer inference without domain knowledge: Determine whether a
developer with no prior midPoint or identity governance domain knowledge could reconstruct
the same <delineation> criteria as an expert.

Experiment 2: Statistical profiling and LLM-assisted rule generation: Use data-driven
insights to guide the creation of delineation rules and test whether an LLM, given these insights,
can generate rules comparable to expert specifications. For each objectClass, we computed:

1. Cardinality & Unique-Value Ratios for all attributes

2. Missing-Value Counts to identify low-information fields

Architecture and Design Documentation 3. Current State: Research, Analysis, and Prototypes

Project code: 09I05-03-V04-00101 Page 65 of 152

3. Top Value Counts for low-cardinality attributes

4. Prefix/Suffix Distributions of text columns

5. Frequent 2-grams and 3-grams in attribute values

6. Numeric Quantiles & Histograms for numeric fields

7. Data Pattern Distributions (digit-only, alpha-only, alphanumeric, hex-only)

The statistical data is computed in the midPoint itself and then sent to the smart integration
service. Some of these statistical data can contain personal information. There will be an opt-out
mechanism to avoid sending them out. We will explore possibilities how to suggest delineation
without them.

We also generated global crosstabs between objectClass and the lowest-cardinality attributes to
highlight strong alignments.

LLM Prompt & Pipeline A Markdown report containing the above statistics was passed to an
LLMChain (model: qwen/qwen3-32b) with the instruction: "Based on the provided statistics,
generate detailed delineation rules for each objectClass. Each rule should include identification
criteria, value-based classification rules, location-based filters, and any additional conditions.”

3.5.2 Results & Next Steps

In our experiments, we found that basic delineation rules could be discovered successfully in
the majority of cases in both experiments. Some rules mapped directly to expert annotations,
while others reached the same outcomes by applying different rules. However, discovering
business-specific delineation rules proved too reliant on domain context to infer reliably from
data alone. As a result, our evaluation pipeline in its current form cannot depend exclusively on
raw delineation annotations; some annotations must be simplified standardized, or
supplemented with expert knowledge to become automation-ready. We also observed that
similar schemas often diverge in practice. For example, one AD resource might use a groupType
attribute to separate security groups from distribution groups, whereas another uses entirely
different conventions for this. Based on this we need evaluate delineation rules both
quantitatively - measuring how often objects landed in the correct ObjectType, and qualitatively
- checking whether the rules rested on the real business ideas, not on accidental data
characteristics.

Also, we observed that the LLM sometimes focused on mutable fields, such as ‘manager’, which
are unsuitable for stable delineation; true delineation attributes should be immutable over time.
We will address this through prompt engineering. The next phase will involve consulting a
domain expert to capture their “go-to” criteria and audit processes, enabling us to refine our
analytical steps and prompt designs.

We acknowledged that hidden business rules cannot be assumed and must be encoded explicitly
via best-practice heuristics or elicited from domain experts. Although the task remains
challenging, in areas of data quality, evaluation design, and algorithmic complexity, we

Architecture and Design Documentation 3. Current State: Research, Analysis, and Prototypes

Project code: 09I05-03-V04-00101 Page 66 of 152

concluded that the overall approach is viable when expectations are grounded in domain
realities.

3.6 UX Research Approach

This chapter focuses on research in the areas of UI and UX for the more complex components of
the project—specifically, the connector generator and interactions with the AI assistant within
the MidPoint Studio environment.

The goal of this research is to identify user needs, design challenges, and potential
improvements in usability and user interaction. These insights will help inform the
development of intuitive and efficient workflows, especially in parts of the system that involve
dynamic content generation and intelligent assistance.

3.6.1 Code Generator

We carried focused UX research with an eye toward how users interact with AI-assisted
configuration tools in order to help to create a user-friendly and effective connector generator.
N atural language input, automated inference, and structured configuration combined to create
special design problems that needed careful study.

Our method integrated heuristic assessments, internal design observations, and a comparison of
newly developing UX patterns in generative artificial intelligence systems. Across a multi-step
wizard-like flow, we investigated how to lower user friction, improve openness, and preserve a
clear sense of control and progress.

The motivation behind the research, important challenges found, pertinent AI UX field findings,
and how these realizations affected our design decisions for the Web UI and the Studio plugin
are compiled in this chapter.

UX Motivation and Context

The introduction of AI into the connector generation process significantly transformed the way
users interact with configuration tools in midPoint. Unlike traditional wizards with predefined,
deterministic steps, the AI-enhanced approach interprets partial user input and dynamically
generates elements such as scripts, mappings, or endpoint structures.

AI assistance within configuration tools creates a fundamentally different interaction model —
one where users no longer manually define each detail, but instead guide the system using
intent-level inputs (e.g., prompts or incomplete forms). This shift introduces several key
challenges:

• Preserving user orientation and process clarity when the system dynamically injects AI-
generated steps.

• Avoiding the “black box” effect by making AI actions transparent and explainable.

Architecture and Design Documentation 3. Current State: Research, Analysis, and Prototypes

Project code: 09I05-03-V04-00101 Page 67 of 152

• Balancing structured inputs (forms, tables, selection cards) with AI-driven suggestions and
auto-fill derived from documentation and metadata.

• Reducing user anxiety around unpredictable or partially automated outcomes.

• Integrating natural language inputs alongside structured configuration controls and task
descriptions.

• Designing for trust by enabling users to easily override or correct AI suggestions.

• Seamlessly integrating error-handling steps into the wizard flow without disrupting user
momentum.

• Supporting interruption recovery and draft continuity to help users pause and resume
complex configurations without losing context.

Key UX/UI Challenges and Insights

The development of the connector code generator revealed several UX challenges, both
observed during internal prototyping and supported by research in human-AI interaction. This
section outlines specific problems encountered in the user interface layer of the multi-step
wizard and describes key decisions made to improve clarity, control, and user trust.

1. Flow and User Orientation

Challenge: Users often lost orientation during configuration when parts of the UI were
suddenly filled by the AI. Without clear context, they were unsure whether they had
completed a step, whether the AI had acted, or if further user action was needed. This
contradicts the UX principle of visibility of system status, leading to lower confidence and
increased hesitation.

Observations: Users rely on linear progression and will confused if the system populates
fields unexpectedly [30], users expect clear status indicators and predictable behavior, sudden
jumps or unlocked steps may break user focus and lead to missed actions, and lack of visual
differentiation between AI-generated and user-entered values may reduce trust.

Design Decisions and Recommendations

◦ Introduce a stepper component with visual progress and active step status

◦ Mark AI-suggested fields with subtle labels and info icons

◦ Add tooltips or light callouts explaining system-generated content [31]

◦ Enforce a straight linear flow, preventing premature step access or skipping

2. Dynamic Step Insertion and Flow Continuity

Challenge: Users may lose confidence if the flow appears inconsistent or unpredictable.
New steps being added "on the fly" can lead to confusion about where they are, why a step
exists, or whether they missed something earlier.

Architecture and Design Documentation 3. Current State: Research, Analysis, and Prototypes

Project code: 09I05-03-V04-00101 Page 68 of 152

Observations: Users expect a linear and predictable flow in wizards, percieve dynamically
inserted steps create anxiety or friction if not explained clearly, misunderstand the process
logic and get to cognitive overload when steps are skipped or injected, and feeling about
completness may be reduced when dynamic UI breaks ("did I really finish this part?").

Design Decisions and Recommendations

◦ Group steps by category (e.g., Basic settings, Connection, Object Types) to maintain
mental model [32]

◦ Implement light transitions or highlights to signal that a new step was added

◦ Ensure that drawer prompt assistant is available in complex steps to reduce perceived
friction [33]

3. Documentation Relevance and Uncertainty

Challenge: Users may be unclear how documentation affects the generator or whether
issues are caused by documentation or system limitations.

Observations: Users may interpret AI silence as failure and overloaded documentation (too
many sources) may reduce precision [34].

Design Decisions and Recommendations

◦ Provide contextual warning when too many sources are added without structure [35]

◦ Display basic info about each source (e.g., format, parsing success, number of endpoints
found, quality, etc.)

4. Object Type Interpretation and Overload Risk

Challenge: Users may not know what each object type represents, especially when labels are
vague. If many options are shown without explanation, decision paralysis or incorrect
selection may occur.

Observations: Too many object types with unclear or missing context can cause cognitive
overload [36], users might not realize they can return and configure other types later, and get
stuck at configuration if unsure from description which type is critical [37].

Design Decisions and Recommendations

◦ Use card layout with short, descriptive subtitles per object type [38]

◦ Keep the list short (4-5 items) and use the ones with the strongest confidence only

◦ If detection is weak, showing AI confidence level about found results would likely to
improve trust and decision speed [39]

5. Trust and Progressive Disclosure Across the Flow

Architecture and Design Documentation 3. Current State: Research, Analysis, and Prototypes

Project code: 09I05-03-V04-00101 Page 69 of 152

Challenge: Overconfident automation or missing validation lowers trust. Users need clarity
on what was suggested, confirmed, and what remains editable or revertible.

Observations: Users feel uneasy about black-box generation, especially in security or
schema steps [40], and the lack of editing options reduces their perceived control [41].

Design Decisions and Recommendations

◦ Use progressive disclosure to hide advanced options until needed

◦ Store version history or allow backtracking in critical steps (e.g., schema editing)

6. Saving, Drafts and Interruption Recovery

Challenge: When supporting saving at any point, there is no persistent mental model for
what’s saved, what’s incomplete, or what will happen when user returns.

Observations: Users often forget what they’ve already done and tend to restart the flow
instead of continuing a saved draft [42]

Design Decisions and Recommendations

◦ Introduce draft status indicators (e.g. “Schema not completed”, “2 object types pending”)

◦ On re-entry, consider adding/showing summary about what is done and what is
remaining

◦ As the process may take long time to finish, consider auto-save function in unplanned
occasions

7. Two-Column Layout Overload in Complex Steps

Challenge: Too many editable fields, AI suggestions, and controls in a two-column layout
can overwhelm users and harm clarity.

Observations: Dense layout hides key elements (e.g., validation, buttons) and poor
responsiveness on medium screens increases scrolling

Design Decisions and Recommendations

◦ Use progressive disclosure (collapsibles, tabs)

◦ Split complex tasks into smaller chunks [43]

◦ Apply asymmetric layout (e.g., 2/3 config, 1/3 context) [44]

8. Lack of Customization for Technical vs. Non-Technical Roles

Challenge: Users have opposing needs: some prefer a quick, guided flow, others need full
control and insight into AI behavior.

Architecture and Design Documentation 3. Current State: Research, Analysis, and Prototypes

Project code: 09I05-03-V04-00101 Page 70 of 152

Observations: Technical users will be frustrated by the limitations of the AI (lack of display
of raw details) and less experienced users will be frightened by the terminology or the
possibility of “messing everything up” [45]

Design Decisions and Recommendations

◦ Add options for advanced user for discovering more details like (How and why this
decision for specific step was made by AI)

◦ Add functions like "undo" or "revert previous action" where it is possible

◦ Add and adjust task information to be more descriptive where possible [46]

9. Structured Input vs. Rich Context

Challenge: Simple forms may lead users to underestimate their importance, resulting in
vague or skipped inputs and weaker documentation matching.

Observations: Users often ignore or vaguely fill fields like Description, assuming they’re
optional [47] — especially since this step gives no immediate feedback. Adding suggestions or
prompts too early may reduce approachability, and as shown in a Google x DeepMind study,
unguided free text can lead to overthinking.

Design Decisions and Recommendations

◦ Keep structured input fields (e.g., Name, Description) with strong step description text
explaining their purpose

◦ Avoid full prompt concept at initial stage and allow natural-language interactions to later
phases for correcting AI outputs

◦ Postpone any AI-driven assistance to the next step (documentation selection), where the
input is used to suggest links

10. Drawer vs. Main Flow Conflict

Challenge: The AI drawer may feel disconnected or compete with main content, confusing
users about when and how to use it.

Observations: Users overlook it unless the drawer is clearly triggered, visual hierarchy
issues arise when it resembles a separate app [48] and chat may reference elements that
aren’t visible on screen

Design Decisions and Recommendations

◦ Anchor drawer to specific steps, not globally.

◦ Usage of semantic headers in the drawer (e.g., “Schema Assistant: User object”) should be
applied to improve its understandability [49]

◦ Avoid chat-style full-width responses.

Architecture and Design Documentation 3. Current State: Research, Analysis, and Prototypes

Project code: 09I05-03-V04-00101 Page 71 of 152

11. Inconsistent Component Styles Across Steps

Challenge: Components like buttons, headers or cards may behave differently across steps
(e.g., different spacing, icon usage, button alignment), which disrupts visual rhythm.

Observations: Inconsistent styling lowers learnability (users must re-learn patterns) [50], and
reduces trust in the UI’s quality [51].

Design Decisions and Recommendations

◦ Define and reuse UX micro-patterns (e.g., selection cards, confirmation blocks)

◦ Validate consistency in header typography, divider spacing, and component stacking

12. Wizard Memory and Navigation

Challenge: Users are unsure what changes when navigating back — they fear losing AI
output or overwriting manual input [52].

Observation: This fear leads to reluctance to edit or total resignation [53]. Users may
unintentionally destroy progress without warning.

Design Decisions and Recommendations

◦ Show contextual notes on backward navigation (e.g., re-fetching clears endpoint) [54].

◦ Visually indicate which data is AI-controlled or at risk of change (e.g., colored borders
around AI-controlled sections).

Design Decisions and Patterns Selected

Based on the challenges identified during the design and testing of the connector code
generator, several UX principles and interface patterns were consciously applied to ensure
clarity, user control, and confidence in the AI-assisted configuration process. The goal was to
support a dynamic yet understandable user flow while maintaining flexibility for both technical
and non-technical users.

Layout

Usage of a two-column layout with an integrated drawer for additional support actions — a
natural and non-intrusive structure that supports prompt-assisted editing, preserves context,
enables iteration and feedback, and remains scalable [55]

• Splitting panel/layout into 3 main regions [56]

◦ Navigation and contextual overview – A narrow left-hand section providing
orientation and indicating the user’s current position in the process

◦ Main interactive area – The central and dominant section dedicated to completing core
tasks and interactions

Architecture and Design Documentation 3. Current State: Research, Analysis, and Prototypes

Project code: 09I05-03-V04-00101 Page 72 of 152

◦ Supplementary drawer – A right-hand, collapsible panel that offers additional tools,
explanations or any other functionality to support user or current step without
disrupting the main flow

• Usage of prompt like chat as tool inside drawer to allow additional form of correcting/using
AI

• Potential usage of AI as tool inside drawer for further task details (e.g. providing help for
user where to find something/for elaboration)

• Centered main flow with generous padding/margins to highlight main task to help reduce
visual stres and enhance readability and focus [57]

• Clear structural design for gathering content using four key presentation types:

◦ Tabular – For structured data which needs table to work with [58]

◦ Selection cards (decision skeletons) – Used in steps where the user must choose
between strategic paths or configuration directions. Cards represent distinct decision
options, helping users quickly compare and commit to a direction (e.g., choosing a
connector type, integration method, or template variant)

◦ Form fields – For direct input values with AI-powered pre-fill, enabling quick
completion of standard configuration parameters such as names, endpoints, or
identifiers

◦ Tabbed views for complex content – For displaying and editing more advanced or
multi-faceted outputs, such as scripts alongside their resulting attribute structures or
request payloads

• Contextual callouts will be used within the dynamic area to indicate AI actions, such as auto-
filled values, success/failure of system operations, or important system feedback — helping
users stay informed without disrupting the flow

Navigation and Progress

• Use of grouped steps for major configuration phases (e.g., "Connection", "Schema",
"Operations", "Object type", etc.)

◦ Once all sub-steps within a group are completed, the group collapses into a single
summarized step in the navigation to maintain a clear high-level structure

◦ Each collapsed step includes a status indicator (e.g., "Completed", "In Progress") to help
users track their progress

◦ Reopening the grouped step reveals all inputs in a consolidated view, enabling efficient
review and edits while supporting full traceability and reusability

◦ Reduction of navigation depth to a maximum of two levels to minimize cognitive
overload and improve clarity

• To preserve flow continuity, navigation progresses only forward; if an issue arises, a fix step
is dynamically inserted rather than navigating backward

Architecture and Design Documentation 3. Current State: Research, Analysis, and Prototypes

Project code: 09I05-03-V04-00101 Page 73 of 152

• Backtracking is avoided (but allowed) in favor of corrective steps that appear in-line when
needed, keeping the user in a guided forward path

3.6.2 MidPoint Studio Plugin

Research within the midPoint studio plugin focused on the possibilities of integrating AI tools
into development environments. In our case, we focused on the IntelliJ IDEA development
environment from JetBrains. We focused on existing open source plugins with the ability to be
extended for our purposes.

The possibility of implementing process wizards and dialog windows in the IntelliJ IDEA
development environment was also investigated.

This assistance concept is required in the development environment to support the integration
of connector generation and configuration suggestions provided by the AI assistant.

MidPoint Studio AI Assistant

The research focused on existing AI tools and assistance in development environments that are
freely available. The research process is described in the following points.

• Implementation of AI assistant in IntelliJ IDEA: AI Assistance for midPoint studio plugin

◦ At this point, we focused ourselves on the conceptual design and prototypical integration
of an AI assistant, into the midPoint studio plugin for IntelliJ IDEA. The goal was to
increase the productivity of administrators and system integrators by providing
recommendations for configuration mappings, correlation rules, and overall midPoint
development tasks through intelligent, context-aware code suggestions.

• Best Practices for Integration and UX Control

◦ Effective integration of AI assistant of midPoint studio plugin requires close alignment
with established developer workflows in IntelliJ IDEA. Following GitHub Copilot’s
example, UX design must minimize disruption, offering contextual assistance without
obstructing the editor interface. This includes leveraging inline code completions, ghost
text suggestions, and popup-based tooltips. AI generated responses should be non-
intrusive, with clearly distinguishable suggested code that can be accepted, ignored, or
modified by the user.

• Full integration with Editor of code and AI code generation

◦ Full editor integration is achievable by implementing support for IntelliJ’s Language
Server Protocol (LSP), which allows standard communication between the IDE and AI
based code suggestion services. AI assistant can harness this protocol to deliver real-time
completions, syntax-aware suggestions, and contextual feedback based on the e.g., XML
or YAML configurations currently open in the editor. Leveraging LSP, it can access editor
states, file structure, and cursor position to enhance the relevance of its suggestions.

• Handling unclear responses and missing context

Architecture and Design Documentation 3. Current State: Research, Analysis, and Prototypes

Project code: 09I05-03-V04-00101 Page 74 of 152

◦ In cases where the AI cannot confidently generate a response, the system should:

▪ Prompt the user for missing context or highlight ambiguous input.

▪ Offer guided questions or show previous examples relevant to the current file type or
schema.

▪ Provide navigation aids or quick links to documentation or previous working
examples within the project.

▪ This layered fallback design improves the robustness and reliability of the assistant
in professional environments.

Relevant plugins for IntelliJ IDEA:

Plugin name Positive features Negative features

JetBrains AI Assistant[59] Official plugin by JetBrains
offering chat-based AI, code

completion, refactoring
suggestions, and

documentation generation

Built-in support for OpenAI,
Anthropic, and others, though
it uses hosted services under a
JetBrains license, it’s not self-

hosted

Craftspire GPT Assist[60] Open source, possible extends
(customizable), chat inside

IntelliJ, Simple UI

limitations within the of AI
Models integration, there have

been no changes for a long
time

AI Coder[61] Apache-2.0 open source, patch-
based transformation and

request logging, nice
implementation for our

potential extents, current
plugin support

Less documentation, fewer
community users (as of now)

Summary

For our needs, there is one open source plugin solution available that was developed to
integrate AI assistant and LLM into IntelliJ IDEA called AI Coder. This plugin provides the ability
to connect to an API providing an AI model. It is also possible to extend and customize the
plugin, but due to the necessary such far customization for our needs, for example, panels that
provide selection of supported object classes and operations for the generated connector, adding
necessary menu actions associated with connector generation, etc., it is not enough. For this
reason, it is necessary to implement the integration into our midPoint Studio plugin.

Enhancing midPoint Studio plugin with AI assistant, once fully integrated, would become a
central assistive feature for integrating midPoint tool within the midPoint Studio plugin
bridging AI-powered assistance with the professional IntelliJ IDEA functionality. The design
proposal should focus on the experience of using artificial intelligence assistants in

Architecture and Design Documentation 3. Current State: Research, Analysis, and Prototypes

Project code: 09I05-03-V04-00101 Page 75 of 152

development environments that are currently freely available, and should also take into
account the method of integration into the midPoint web application. These innovations
contribute to a more intelligent and efficient midPoint configuration experience.

MidPoint Studio Wizard

IntelliJ IDEA by JetBrains offers a general Project Wizard that facilitates the creation of new
projects through a series of guided steps. This wizard can be customized and extended via
plugins to support various project types and configurations. For example, primary dialog
windows and tooltips are used to navigate project creation, configuration or other processes.
This solution for general wizard in IntelliJ IDEA can also be used in specific scenarios of
lightweight wizard for midPoint configuration needs.

3.7 AI Development & Testing Tools
As part of the project, we have to provide tools that support MLOps by facilitating, and
potentially automating, the day-to-day work of our ML engineers, DevOps engineers, and
developers.

MLOps is a methodology, or set of practices, combining DevOps, Machine Learning, and Data
Engineering (Kreuzberger D. et al., 2023). One way to think about MLOps is through its five
"pillars" (MLOps at a Reasonable Scale [The Ultimate Guide], 2024):

• Data ingestion (and optionally a feature store)

• Pipeline and orchestration

• Model registry and experiment tracking

• Model deployment and serving

• Model monitoring

Each pillar can be implemented in various ways, from simple scripts to sophisticated enterprise
solutions. Many tools can be mapped to these pillars (AI Infrastructure Landscape, 2023).

The main obstacle we faced was the broad scope of MLOps and the vast landscape of MLOps
tools. To overcome this, we focused on identifying our requirements to narrow the scope.
Discussions with our ML teams resulted in several key requirements (mentioned in the previous
section), dramatically reducing the scope.

Another important constraint is our focus on open source tools. This offers the advantage of
fewer tools to evaluate but the disadvantage of potentially fewer features.

3.7.1 Requirements

During discussions with our AI/ML team, we identified the following requirements.

Architecture and Design Documentation 3. Current State: Research, Analysis, and Prototypes

Project code: 09I05-03-V04-00101 Page 76 of 152

High Level Requirements:

• R1: Provides observability and monitoring of AI/ML pipelines and models.

◦ Includes a GUI that allows visualization of collected traces at individual AI/ML pipeline
node granularity.

• R2: Provides a means to run tests/evaluations of existing AI/ML pipelines and models, as well
as pipelines and models under development.

◦ Includes a GUI that allows running tests/evaluations manually.

• R3: Provides a means to maintain existing AI/ML pipelines and models.

◦ Deployment of new pipelines and models.

◦ Rollbacks to previous versions.

◦ Deployment automation.

Specific Requirements from AI/ML Teams:

• R4: Supports the creation, maintenance, and execution of experiments.

• R5: Integrates seamlessly with JupyterLab.

• R6: Provides ways to run experiments utilizing GPU resources.

• R7: Supports experiment tracking and evaluations.

• R8: Supports end-to-end testing and evaluation of the AI/ML pipeline.

• R9: Live production tracing and evaluations with simple statistics such as:

◦ Number of requests

◦ Latency

◦ Number of failures

◦ Number of LLM retries

◦ Number of LLM hallucinations

These requirements indicate that we need to introduce some level of MLOps.

3.7.2 Key AI Studio Areas

By evaluating our requirements, we identified two areas with different (but overlapping) needs:

• Production Area: Requires mainly observability and continuous evaluation (calculation of
various performance metrics) of running AI pipelines.

• Development Area: Requires tools for developing, testing, and experimenting on AI/ML
pipelines and algorithms.

These areas are connected by the deployment process, which takes built artifacts from

Architecture and Design Documentation 3. Current State: Research, Analysis, and Prototypes

Project code: 09I05-03-V04-00101 Page 77 of 152

development and deploys them to the production environment.

We also identified another area, not very relevant in the current project stages but potentially
useful in the future:

• Data Area: Covers the collection, transformation, and labeling of production data.

Automated data collection and transformation are not currently relevant because of the limited
amount of available data. Our engineering team processed the data manually faster than we
could provide relevant tooling. We also lack an automated data ingestion source for
transformation (apart from our support channels, which contain little useful data).

Production Area

For the production side of the AI Studio, good observability and monitoring are key
(Chandrachood A., 2023; AI Observability: Ensuring Trust and Transparency in Machine
Learning Pipelines, 2025). We focused on observability tools aimed at LLM-based AI pipelines, as
this is the most probable technology our ML/AI team will use.

We began by researching available open source LLM observability tools. We evaluated seven
tools:

• Weights and Biases

• LangTrace

• LangWatch

• LangFuse

• Lunary

• Phoenix

• Opik

We disqualified Weights and Biases (commercial license for on-premise use), LangWatch
(commercial license), and Lunary (enterprise license required for pre-built container images).

LangTrace, LangFuse, Phoenix, and Opik provide almost the same functionality:

• Tracing at the AI pipeline "node" level

• Evaluations of collected traces

• Prompt management

• Dataset management

We will choose one of these four tools after practical evaluation based on:

• Ease of use

Architecture and Design Documentation 3. Current State: Research, Analysis, and Prototypes

Project code: 09I05-03-V04-00101 Page 78 of 152

• Deployment complexity

• Maintainability

• Supported integrations

Development Area

For our purposes, let’s define a few terms related to experimentation in the AI Studio context:

• Experiment: The execution of an evaluation pipeline with specified inputs and expected
outputs, while collecting various execution traces.

• Experiment Evaluation: The process of calculating different metrics based on the expected
experiment output and collected traces. Specific metrics are defined by the executed
evaluation pipeline.

• Pipeline: A set of connected steps forming an execution flow. Pipeline definition depends on
the specific toolset. We differentiate three types of pipelines:

◦ Evaluation (or testing) Pipeline: Defines the various steps of the evaluation process,
potentially including input preparation, calls to the system under test (e.g., a particular
AI pipeline or LLM model), response evaluation, metric calculation, etc. The evaluation
pipeline can be considered an "experiment" definition.

◦ AI Pipeline: In our context, a pipeline utilizing AI and providing business value.

◦ Data Pipeline: A pipeline that processes input data and provides processed data as
output. Data loading and saving may also be part of the pipeline. Data pipelines are not
currently in scope but may be introduced later.

• Experiment Tracking: The process of collecting results and potentially other metadata of
run experiments. Tools providing experiment tracking often support visualizing individual
experiment results and sometimes allow experiment comparison.

Note: Term "evaluation" is more common than "testing" in AI/ML contexts, but we use them
interchangeably.

We can summarize our development requirements as follows:

• Main emphasis on experimenting and testing, including experiment orchestration and
tracking.

• Support for JupyterLab for writing (defining) and running experiments.

• Ability to run evaluation/testing pipelines from a GUI, ideally with parameterized input.

Many MLOps tools relate to experimentation, testing, and pipeline orchestration (AI
Infrastructure Landscape, 2023). We found several open source tools that meet our needs (some
only partially):

• MLflow

Architecture and Design Documentation 3. Current State: Research, Analysis, and Prototypes

Project code: 09I05-03-V04-00101 Page 79 of 152

• ClearML

• Kubeflow

• Apache Airflow

• ZenML

• Polyaxon

These are not "all-in-one" solutions and often need to be combined. Below are brief descriptions:

• MLflow: Provides tracing, evaluations, experiment tracking, a model registry, etc., but does
not orchestrate evaluation pipeline execution or allow GUI-based experiment execution.

• ClearML: A platform providing workflow orchestration, experiment tracking, observability,
dataset management, a model registry, and more.

• Kubeflow: A Kubernetes-native set of tools for orchestrating ML workflows,
hyperparameter tuning, model serving, Jupyter Notebook integration, etc., primarily focused
on traditional ML and requiring Kubernetes knowledge.

• Apache Airflow: A platform primarily for workflow orchestration. Insufficient on its own
for our requirements.

• ZenML: A framework for workflow orchestration, experiment tracking, etc. The open-source
version has limitations.

• Polyaxon: A platform for workflow orchestration, experiment tracking, a model registry,
etc. Development seems to have slowed. It is fairly complex.

The observability tools mentioned earlier also provide some experimentation functionalities,
particularly experiment tracking combined with dataset management. However, they cannot
run experiments; they only collect traces and potentially calculate predefined metrics.

After further research, including tool deployment, we chose ClearML as the best fit for our
needs. The main reasons are:

• Tight Git integration.

• Fulfills all our requirements.

• Powerful GUI with the ability to run experiments directly.

• Simple SDK that will be easy for our AI/ML engineers to learn.

[1] https://developers.google.com/custom-search/v1/overview

[2] https://learn.microsoft.com/en-us/bing/search-apis/

[3] https://duckduckgo.com/api

[4] https://docs.github.com/en/rest/search

[5] https://api.stackexchange.com/

[6] https://scrapy.org/

[7] https://www.crummy.com/software/BeautifulSoup/

Architecture and Design Documentation 3. Current State: Research, Analysis, and Prototypes

Project code: 09I05-03-V04-00101 Page 80 of 152

https://developers.google.com/custom-search/v1/overview
https://learn.microsoft.com/en-us/bing/search-apis/
https://duckduckgo.com/api
https://docs.github.com/en/rest/search
https://api.stackexchange.com/
https://scrapy.org/
https://www.crummy.com/software/BeautifulSoup/

[8] https://www.selenium.dev/, https://playwright.dev/, https://pptr.dev/

[9] https://pdfminersix.readthedocs.io/, https://tika.apache.org/, https://pypdf2.readthedocs.io/

[10] https://www.import.io/

[11] https://www.diffbot.com/

[12] https://commoncrawl.org/

[13] https://www.octoparse.com/, https://www.webharvy.com/

[14] https://www.kofax.com/products/rpa

[15] https://github.com/features/copilot

[16] https://aws.amazon.com/q/developer/

[17] https://www.tabnine.com/

[18] https://replit.com/

[19] https://github.com/features/copilot

[20] https://aws.amazon.com/q/developer/

[21] https://www.tabnine.com/

[22] https://replit.com/

[23] https://github.com/biggorilla-gh/flexmatcher?tab=readme-ov-file

[24] https://dbs.uni-leipzig.de/research/projects/coma

[25] https://docs.adeptia.com/articles/!ac-professional/use-a-mapping-function

[26] https://github.com/YuxingLu613/KARMA

[27] https://flatfile.com/product/mapping/

[28] https://github.com/fireindark707/Python-Schema-Matching

[29] https://github.com/flyingwaters/prompt-matcher-for-schema-matching

[30] https://www.nngroup.com/articles/wizards/

[31] https://www.nngroup.com/articles/ten-usability-heuristics/

[32] https://www.nngroup.com/articles/mini-ia-structuring-information/

[33] https://www.nngroup.com/articles/wizards/

[34] https://www.smashingmagazine.com/2016/09/reducing-cognitive-overload-for-a-better-user-experience/

[35] https://www.nngroup.com/articles/minimize-cognitive-load/

[36] https://uxpsychology.substack.com/p/lost-in-navigation-overcoming-the

[37] https://www.nngroup.com/videos/ux-visualization-techniques/

[38] https://www.nngroup.com/articles/cards-component/

[39] https://arxiv.org/html/2402.07632v3

[40] https://arxiv.org/abs/1811.02164

[41] https://www.nngroup.com/articles/user-control-and-freedom/

[42] https://www.mdpi.com/2414-4088/6/1/2

[43] https://www.nngroup.com/articles/content-dispersion-methodology/

[44] https://www.uxpin.com/studio/blog/symmetry-vs-asymmetry-in-design/

[45] https://www.nngroup.com/articles/flexibility-efficiency-heuristic/

[46] https://www.nngroup.com/articles/ux-copy-sizes

[47] https://www.nngroup.com/articles/web-form-design/

[48] https://www.nngroup.com/articles/visual-hierarchy-ux-definition

[49] https://www.interaction-design.org/literature/topics/visual-hierarchy

[50] https://www.nngroup.com/articles/consistency-and-standards/

[51] https://uxmag.medium.com/consistency-in-ui-ux-design-the-key-to-user-satisfaction-60ab598ec42c

[52] https://baymard.com/blog/back-button-expectations

[53] https://www.smashingmagazine.com/2022/08/back-button-ux-design/

Architecture and Design Documentation 3. Current State: Research, Analysis, and Prototypes

Project code: 09I05-03-V04-00101 Page 81 of 152

https://www.selenium.dev/
https://playwright.dev/
https://pptr.dev/
https://pdfminersix.readthedocs.io/
https://tika.apache.org/
https://pypdf2.readthedocs.io/
https://www.import.io/
https://www.diffbot.com/
https://commoncrawl.org/
https://www.octoparse.com/
https://www.webharvy.com/
https://www.kofax.com/products/rpa
https://github.com/features/copilot
https://aws.amazon.com/q/developer/
https://www.tabnine.com/
https://replit.com/
https://github.com/features/copilot
https://aws.amazon.com/q/developer/
https://www.tabnine.com/
https://replit.com/
https://github.com/biggorilla-gh/flexmatcher?tab=readme-ov-file
https://dbs.uni-leipzig.de/research/projects/coma
https://docs.adeptia.com/articles/!ac-professional/use-a-mapping-function
https://github.com/YuxingLu613/KARMA
https://flatfile.com/product/mapping/
https://github.com/fireindark707/Python-Schema-Matching
https://github.com/flyingwaters/prompt-matcher-for-schema-matching
https://www.nngroup.com/articles/wizards/
https://www.nngroup.com/articles/ten-usability-heuristics/
https://www.nngroup.com/articles/mini-ia-structuring-information/
https://www.nngroup.com/articles/wizards/
https://www.smashingmagazine.com/2016/09/reducing-cognitive-overload-for-a-better-user-experience/
https://www.nngroup.com/articles/minimize-cognitive-load/
https://uxpsychology.substack.com/p/lost-in-navigation-overcoming-the
https://www.nngroup.com/videos/ux-visualization-techniques/
https://www.nngroup.com/articles/cards-component/
https://arxiv.org/html/2402.07632v3
https://arxiv.org/abs/1811.02164
https://www.nngroup.com/articles/user-control-and-freedom/
https://www.mdpi.com/2414-4088/6/1/2
https://www.nngroup.com/articles/content-dispersion-methodology/
https://www.uxpin.com/studio/blog/symmetry-vs-asymmetry-in-design/
https://www.nngroup.com/articles/flexibility-efficiency-heuristic/
https://www.nngroup.com/articles/ux-copy-sizes
https://www.nngroup.com/articles/web-form-design/
https://www.nngroup.com/articles/visual-hierarchy-ux-definition
https://www.interaction-design.org/literature/topics/visual-hierarchy
https://www.nngroup.com/articles/consistency-and-standards/
https://uxmag.medium.com/consistency-in-ui-ux-design-the-key-to-user-satisfaction-60ab598ec42c
https://baymard.com/blog/back-button-expectations
https://www.smashingmagazine.com/2022/08/back-button-ux-design/

[54] https://www.nngroup.com/articles/reset-and-cancel-buttons/

[55] https://m3.material.io/foundations/layout/understanding-layout

[56] https://developer.apple.com/design/human-interface-guidelines/split-views

[57] https://uxplanet.org/the-power-of-whitespace-a1a95e45f82b

[58] https://www.nngroup.com/articles/tabs-used-right/

[59] https://www.jetbrains.com/ai-assistant/

[60] https://github.com/MateuszZozulinski/CraftspireGPTAssist

[61] https://github.com/SimiaCryptus/intellij-aicoder

Architecture and Design Documentation 3. Current State: Research, Analysis, and Prototypes

Project code: 09I05-03-V04-00101 Page 82 of 152

https://www.nngroup.com/articles/reset-and-cancel-buttons/
https://m3.material.io/foundations/layout/understanding-layout
https://developer.apple.com/design/human-interface-guidelines/split-views
https://uxplanet.org/the-power-of-whitespace-a1a95e45f82b
https://www.nngroup.com/articles/tabs-used-right/
https://www.jetbrains.com/ai-assistant/
https://github.com/MateuszZozulinski/CraftspireGPTAssist
https://github.com/SimiaCryptus/intellij-aicoder

4. Architecture and Design
This chapter presents the proposed architecture of the solution, in the form of component
diagram, detailed descriptions of individual components, and their interfaces. Afterwards, it
describes the current state of the design of individual components and their functions. This
includes identified necessary changes in midPoint, ConnId Framework, and midPoint Studio.

4.1 Component-Level Diagram
The diagram below outlines the high-level architecture and its main components, omitting
details on the infrastructure and supporting tools.

4.2 Component Descriptions
MidPoint

• Description: MidPoint is an identity management and governance platform that will use the
Smart Integration Layer and Codegen service to simplify the process of integrating a new
application.

• Type: Web application

• Internal architecture: MidPoint is composed of several subsystems, each subsystem contains
several components.

◦ User interface subsystem implements web-based administration and configuration
interface.

Architecture and Design Documentation 4. Architecture and Design

Project code: 09I05-03-V04-00101 Page 83 of 152

◦ Repository subsystem is storing authoritative identity data, pointers to identity objects in
other systems (such as accounts), definition of roles, expressions, synchronization
policies, configuration and almost all the persistent data structures in the system. The
data are stored in a relational database.

◦ Provisioning subsystem can talk to other systems, can read data and modify the data. It is
doing so by using the connectors.

◦ IDM model Subsystem is gluing everything together. It is a component through which all
activities pass, therefore it is an ideal place to enforce policies, fill-in missing data, map
attributes and properties, govern processes and do all the identity management logic.
Smart integration layer is part of the IDM model Subsystem.

◦ Infrastructure system provides common data structures, code and specifications that are
used by all other components. This is the place where midPoint data model (schema) is
defined.

• Responsibilities related with project:

◦ Offers panels for managing applications, including the full lifecycle of created
applications.

◦ Allows users to add new applications using a list retrieved from the Integration catalog.

◦ Supports the creation of connectors, during which the GUI communicates with the
Codegen service. Includes the ability to manage incomplete connectors.

◦ Enables users to upload connectors and configurations to the Integration catalog.

◦ Applies configuration suggestions provided by the Smart integration layer. These
suggestions include delineation, mappings, correlation rules, and association
configurations, which can be incorporated into the current configuration.

◦ Can submit requests for creating application connector and also display a list of
requested application connectors retrieved from the Integration catalog.

◦ Provides validation of the connector to determine whether it can be used in midPoint
based on a signed list of application connectors obtained from the Integration catalog.

◦ Offers API endpoints that use the Smart Integration Layer and expose its functionality to
midPoint studio.

• Dependencies

◦ Dependence on the Integration catalog and Smart integration layer for data provision.

• Data requirements:

◦ Requests Integration catalog for existing application connectors in order to be displayed
in GUI.

◦ Use the signed list of supported connectors retrieved from the Integration catalog.

◦ Requires configuration suggestions from the Smart Integration Layer.

Architecture and Design Documentation 4. Architecture and Design

Project code: 09I05-03-V04-00101 Page 84 of 152

MidPoint Studio

• Description: MidPoint Studio is an integrated development environment (IDE) to develop
solutions based on midPoint. The primary purpose of MidPoint Studio is to support process
of creating, developing and maintaining midPoint configurations.

• Type: plug-in for IntelliJ

• Responsibilities related with project:

◦ Supports working with application objects directly via XML files.

◦ Allows users to modify connectors retrieved from the Integration catalog directly using
scripts.

◦ Supports the creation of connectors with the help of the Codegen service, including the
ability to manage incomplete connectors.

◦ Enables users to upload connectors and configurations to the Integration catalog.

◦ Applies configuration suggestions provided by the Smart Integration Layer. These
suggestions include delineation, mappings, correlation rules, and association
configurations, which can be incorporated into the XML file of the current configuration.

• Dependencies

◦ Both, midPoint and midPoint Studio depends on the Integration catalog and Smart
integration layer for data provision.

Codegen

• Description: Codegen is a service designed to assist with the generation of fully functional
connector code for integrating applications with midPoint. It streamlines the process of
creating connectors by generating declarative configuration and scripts using the base
connector framework.

• Type: Service / Microservice

• Responsibilities:

◦ Provides an API for accessing algorithms related to code generation, including
documentation handling and the actual code generation.

◦ Generates declarative configuration and scripts according to the needs of base connector
framework.

◦ Integrates with the Smart integration service to apply "mappings" between ConnId
schema and the native schema of the application.

◦ Ensures the quality, security of generated scripts by integrating Code validator service

◦ Discovers and extracts documentation from web sources to allow non-technical users to
integrate applications with midPoint.

• Data requirements:

Architecture and Design Documentation 4. Architecture and Design

Project code: 09I05-03-V04-00101 Page 85 of 152

◦ Requires information about application to integrate, e.g. name of the application, (URL
to) technical documentation, (URL to) the API specification

Smart Integration Layer

• Description: Entry point to the smart delineation, mapping and correlation features in
midPoint and midpoint Studio

• Type: Java package

• Responsibilities:

◦ Provides a clean interface to the smart features used by midPoint and midPoint Studio

◦ Implements the business logic needed for integration with the UI

◦ Prepares data for the ML/AI algorithms and for the communication with Smart
integration service

◦ Implements algorithms and heuristics on top of core algorithms of the Smart integration
service

◦ Utilizes existing data from the Integration catalog to improve recommendations

• Data requirements:

◦ Queries and processes data directly from midPoint database (accounts, groups, users,
etc.) in order to be passed to the underlying algorithms

◦ Requests Integration catalog for existing data in order to be analyzed for improving
recommendations

Smart Integration

• Description: Service providing "core" integration AI algorithms for the delineation, mapping
and correlation functionality in midPoint

• Type: Stateless microservice

• Responsibilities:

◦ Provides an API for accessing "core" algorithms and their variations depending on the
use case

◦ Core algorithms are schema matching, correlator recommendation, mapping script
generation, and delineation recommendation

◦ Ensures the quality and security of generated scripts by integrating Code validator
service

◦ Provides a configuration mechanism that will allow to plug in custom LLM models.

• Data requirements:

◦ Requires complete data schemas as input for the schema matching and correlator
recommendation algorithms

Architecture and Design Documentation 4. Architecture and Design

Project code: 09I05-03-V04-00101 Page 86 of 152

◦ Requires a few correlated data samples (accounts, groups, users, etc.) as input for the
script generation algorithm

◦ Requires a few data samples as input for focus type suggestion (optional)

◦ Requires structured data analysis results on the resource’s dataset (like value counts,
prefix analysis, etc.) as input for the delineation algorithm

Integration Catalog

• Description: Integration catalog is a centralized service designed to manage, present, and
facilitate interaction with application connectors. Its core purpose is to provide a clear
overview of all available application connectors and streamline their usage.

• Type: Stateless microservice (REST API), Stateful web application (GUI)

• Responsibilities:

◦ Provides both API and GUI to:

▪ View available application connectors with metadata.

▪ Filter and search connectors by criteria.

▪ Upload new integrations, either connectors or configuration, with relevant metadata.

▪ Download individual connectors for use in midPoint.

▪ Access a digitally signed list of connectors as a verified, tamper-proof snapshot.

▪ Request missing application connectors and view the list of requested ones.

▪ Provided integration configurations to the Smart Integration Service to improve AI
assistant suggestions.

◦ Ensures security and accountability through user registration and authentication,
allowing only authorized users to upload connectors.

• Data requirements:

• Requires connectors and configuration that is uploaded by midPoint, midPoint Studio or
directly by GUI of the Integration catalog.

• Dependencies:

◦ Integration catalog will utilize the Code Validator to ensure the quality, correctness, and
security of uploaded content.

Code Validator

• Description: Service providing code validation and security scanning for the
generated/created code

• Type: Stateless microservice

• Responsibilities:

Architecture and Design Documentation 4. Architecture and Design

Project code: 09I05-03-V04-00101 Page 87 of 152

◦ Validates AI-generated code related to connectors and mapping scripts (checks for
compilation errors, etc.)

◦ Scans code generated by AI or being published to the Integration catalog for
vulnerabilities and misuse

• Data requirements:

◦ Requires code and configuration that is being produced by Codegen and Smart
integration services or published to the Integration catalog

4.3 API Specifications

4.3.1 Codegen Interface

Method: Discover a Technical Documentation for the Application

Parameters:

• Application name

Returns:

• list of found documentation URLs for the application

Method: Get a Type of Connector for the Application

Parameters:

• Application name

Returns one of:

• type of connector for the application

• error: connector type can not be found in the documentation

• error: unknown connector type

• error: missing documentation for the application

Method: Get a Base URL for the Application

Parameters:

• Application name

Returns one of:

• base URL for the application

Architecture and Design Documentation 4. Architecture and Design

Project code: 09I05-03-V04-00101 Page 88 of 152

• error: base URL can not be found in the documentation

• error: missing documentation for the application

Method: Get an Authentication Method(s) for the Application

Parameters:

• Application name

Returns one of:

• (list of) authentication method(s) for the application

• error: authentication method can not be found in the documentation

• error: missing documentation for the application

Method: Get a List of Object Classes for the Application

Parameters:

• Application name

Returns one of:

• list of Object Classes for the application

• error: missing documentation for the application

Method: Get an Object Class schema (list of attributes and types) for the application

Parameters:

• Application name

• Object Class name

Returns one of:

• schema (list of attributes and types) for the application

• error: missing documentation for the application

Method: Generate a Native Schema Script for the Object Class of the Application

Parameters:

• Application name

• Object Class name

Returns one of:

Architecture and Design Documentation 4. Architecture and Design

Project code: 09I05-03-V04-00101 Page 89 of 152

• native schema script for the Object Class of the application

• error: missing documentation for the application

Method: Generate a search all script for the Object Class of the application

Parameters:

• Application name

• Object Class name

Returns one of:

• search script for the Object Class of the application

• error: missing documentation for the application

Method: Upload Technical Documentation for the Application

Parameters:

• Application name

• URL(s) and/or file(s) with technical documentation for the application

Method: Upload list of (confirmed) Object Classes for the application

Parameters:

• Application name

• list of Object Classes for the application

Method: Upload (confirmed) schema (list of confirmed attributes and types) for the
application

Parameters:

• Application name

• list of Object Classes for the application

Method: Upload (confirmed) native schema script for the ObjectClass of the application

Parameters:

• Application name

• native schema script for the Object Class of the application

Method: Upload (confirmed) search all script for the ObjectClass of the application

Architecture and Design Documentation 4. Architecture and Design

Project code: 09I05-03-V04-00101 Page 90 of 152

Parameters:

• Application name

• search all script for the Object Class of the application

4.3.2 Smart Integration Layer Interface

Smart integration layer provides midPoint and midPoint Studio with intelligent mapping and
correlation capabilities. It exposes Java interface that will be used by midPoint GUI as well as
REST adapter for the same functionality used by midPoint Studio.

Method: Suggest Delineation

Suggests delineations for the application (resource) object class. Each suggestion consists of the
type identifier (kind/intent) and the delineation (base context, attribute filter, condition).

Parameters:

• resource oid (required)

• object class (required)

Returns:

• delineation suggestions: kind/intent, delineation (base context, attribute filter, condition)

Method: Suggest Focus Type

Suggests a discrete focus type for the application (resource) object type.

Parameters:

• resource oid (required)

• kind/intent (required)

Returns:

• focus type

Method: Suggest Correlation

Suggests correlation mappings and correlation rules following existing XSD schema. Provides
statistics on the expected correlation rule quality. Interaction metadata contains information on
user interaction (e.g. rejected suggestions that won’t be recommended again).

Parameters:

• resource oid (required)

Architecture and Design Documentation 4. Architecture and Design

Project code: 09I05-03-V04-00101 Page 91 of 152

• kind/intent (required)

• focus type (required)

• interaction metadata

Returns:

• correlation rule and mapping suggestions (XML config)

• correlation statistics

Method: Suggest Attribute Mapping

Suggests mappings for the application attributes: to existing midPoint attributes (standard,
extension), plus suggests creation of new extension attributes. Provides statistics on the
expected mapping quality when suggesting mapping to existing attributes. Mappings are
suggested for the whole object class schema or for selected attributes. Interaction metadata
contains information on user interaction (e.g. rejected suggestions that won’t be recommended
again).

Parameters:

• resource oid (required)

• kind/intent (required)

• focus type (required)

• filter

◦ midpoint attributes

◦ application (resource) attributes

◦ "inbound/outbound" selector

• interaction metadata

Returns:

• mapping suggestions related to the standard midPoint schema and existing extension
attributes (XML config)

• new extension attribute mapping suggestions (XML config)

• mapping statistics

NOTE

The application object class schema can be quite large, having hundreds of
attributes. We assume that the recommender will not recommend mappings for
all of them. The reason for this assumption is that most probably we won’t have
hundreds of extension attributes in midPoint, so the recommender will not have
enough counterparts for all these application attributes. (Regarding suggesting

Architecture and Design Documentation 4. Architecture and Design

Project code: 09I05-03-V04-00101 Page 92 of 152

new extension attributes, we assume at most a few of them being suggested, e.g.,
only for candidate correlation attributes.)

Method: Suggest Associations

Suggests all associations for the application (resource) or for a specific object type following
existing XSD schema. Provides statistics on the expected mapping quality. Interaction metadata
contains information on user interaction (e.g. rejected suggestions that won’t be recommended
again).

Parameters:

• resource oid (required)

• filter

◦ set of subject types (kind/intent)

◦ set of object types (kind/intent)

• interaction metadata

Returns:

• association suggestions (XML config)

• mapping statistics

4.3.3 Smart Integration Service Interface

Smart integration service provides "core" integration AI algorithms for the delineation, mapping
and correlation functionality. It exposes RESTful API and it is primarily used by "Smart
integration layer" that further combines these algorithms with business logic and custom
heuristics.

Method: Suggest Delineation

Suggests delineations for the application (resource) object class. Each suggestion consists of the
type identifier (kind/intent) and the delineation (base context, attribute filter, condition).

Parameters:

• object class (required)

• application schema for given object class (required)

• structured analysis and statistics on the application’s data (required)

Returns:

• delineation suggestions: kind/intent, delineation (base context, attribute filter, condition)

Architecture and Design Documentation 4. Architecture and Design

Project code: 09I05-03-V04-00101 Page 93 of 152

Method: Suggest Focus Type

Suggests a discrete focus type for the application object type.

Parameters:

• kind/intent (required)

• application schema for object class (required)

• N data samples

Returns:

• focus type

Method: Match MidPoint Schema

Suggests which application’s attribute to map to which midPoint’s attributes. Application
schema contains attribute names and types, and optionally attribute descriptions.

Parameters:

• application schema for given object class (required)

• midPoint schema (required)

Returns:

• list of application attribute suggestions for each midPoint attribute

Method: Match ConnId Schema

Suggests which application’s attribute to map to which ConnId’s attributes. Application schema
contains attribute names and types and optionally attribute descriptions.

Parameters:

• application schema for given object class (required)

• ConnId schema (required)

Returns:

• list of application attribute suggestions for each ConnId attribute

Method: Suggest Correlation Attributes

Suggests attributes suitable for correlation (focused on extension attributes).

Parameters:

Architecture and Design Documentation 4. Architecture and Design

Project code: 09I05-03-V04-00101 Page 94 of 152

• list of attributes (required)

Returns:

• list of correlation attributes

Method: Suggest Mapping Script

Generates and suggests a mapping transformation script or a complex attribute from a few data
samples.

Parameters:

• N samples of the input data and the expected output (required)

Returns:

• Mapping script or a complex attribute

4.3.4 Integration Catalog Endpoints

Method: Search Connectors

List all possible application connectors in the Integration catalog available to use in midPoint
and midPoint Studio.

Authentication:

• without authentication

Parameters:

• filter

• paging

Returns:

• list of application connectors with attributes (probably JSON)

Method: Get Connector Versions

Showing possible versions with version’s attributes of one application connector in midPoint
and midPoint Studio.

Authentication:

• without authentication

Architecture and Design Documentation 4. Architecture and Design

Project code: 09I05-03-V04-00101 Page 95 of 152

Parameters:

• identifier of application connector

Returns:

• list of application connector versions with attributes (probably JSON)

Method: Download Connector

Download the connector to integrate a new application with the midPoint, or continue
developing the connector in the midPoint or midPoint Studio, if it is possible.

Authentication:

• without authentication

Parameters:

• identifier of application connector

Returns:

• connector file

Method: Request a Connector

Request a connector to be developed and added into the Integration catalog.

Authentication:

• without authentication

Parameters:

• application name

• application version (relevant for on-prem apps)

• Think about other parameters, such as description

Returns:

• success or an error with details

Method: Request Extension of the Connector

Request an extension of the connector capabilities or support of some object class. Connector is
in Integration catalog, but some needed capability or object class missing.

Architecture and Design Documentation 4. Architecture and Design

Project code: 09I05-03-V04-00101 Page 96 of 152

Authentication:

• without authentication

Parameters:

• identifier of application connector

• missing capability

• description of missing object class

Returns:

• success or an error with details

Method: Search Requested Connectors and Extensions of the Connectors

If someone from the community would like to contribute, we will show the requested
connectors and extensions of the connectors in midPoint and Studio.

Authentication:

• without authentication

Parameters:

• filter

• paging

Returns:

• list of requested connectors and extensions of the connectors with attributes (probably
JSON)

Method: Upload of New Connector

Upload the new connector that was created in either midPoint or Studio.

Authentication:

• only authenticated users

Parameters:

• in-progress connector structure

Returns:

• new connector

Architecture and Design Documentation 4. Architecture and Design

Project code: 09I05-03-V04-00101 Page 97 of 152

Method: Upload of Resource Configuration

Upload the resource configuration—primarily focusing on the Schema Handling section (e.g.,
mappings, correlation rules)—associated with the application used in midPoint or Studio.

Authentication:

• only authenticated users

Parameters:

• resource configuration

• identifier of application connector

Returns:

• success or an error with details

Method: Search Resource Configurations

Using by Smart integration service to reflect the resource configurations in suggestions. The
Smart Integration service needs to retrieve the stored configurations for the corresponding
Resource Object Type. Since this type is defined based on the object class, we need to obtain the
object class as a parameter. This parameter will be used to filter the available configurations for
the given application, ensuring that only the relevant ones are selected and processed.

Authentication:

• behind authentication, allowed only for Smart Integration service

Parameters:

• identifier of application connector

• object class

Returns:

• list of resource configurations for the given application connector and object class

Method: Get Signed Sheet of Application Connectors

Used by midPoint to check whether the use of the connector is permitted.

Authentication:

• without authentication

Parameters:

Architecture and Design Documentation 4. Architecture and Design

Project code: 09I05-03-V04-00101 Page 98 of 152

• timestamp (optional)

Returns:

• signed sheet of application connectors added after timestamp

4.3.5 Code Validator Interface

Method: Validate Code

Validates code snippet for errors (e.g. compilation errors) in a given context. The type parameter
specifies the context in which to run validation for example: mapping script, codegen specific
methods.

Parameters:

• code snippet (required)

• type (required)

Returns:

• success or an error with details

Method: Scan Code

Scans code snippet for potential security issues in a given context. The type parameter specifies
the context in which to run for example: mapping script, codegen.

Parameters:

• code snippet (required)

• type (required)

Returns:

• success or an error with details

4.4 Connector Code Generator
The connector code generator is a proposed component intended to streamline development of
connectors for midPoint, specifically targeting applications that lack existing integration. The
design focuses on simplifying the connector creation process by leveraging AI-assisted tooling
and reusable architectural patterns, particularly for users with limited programming expertise
or limited knowledge of the target system’s API.

Connector development is typically a complex, multi-step process (outlined in Section 3.1),

Architecture and Design Documentation 4. Architecture and Design

Project code: 09I05-03-V04-00101 Page 99 of 152

involving documentation analysis, data model mapping, endpoint handling, and relationship
logic. The generator component is designed to abstract and modularize this process, allowing
users to progress through guided steps while automated components handle lower-level tasks.

The component is structured into the following subsystems:

1. Search and Discovery (Optional): This module will initiate queries based on application
name or keywords to identify likely sources of technical documentation. It will return a list
of candidate URLs for user review. Once the user has made a selection, the chosen URLs will
be passed to the Scraper module as input. If no suitable documentation is found
automatically, the user may also provide URLs manually.

2. Scraper: Starting from user-provided or discovered URLs, this module will navigate through
documentation portals to extract relevant content. It will handle semi-structured HTML,
Markdown, OpenAPI specs, and other common documentation formats. The goal is to
identify API reference material containing endpoints, object types, and usage examples.

3. Digester: The task of the digester will be processing of the scraped or user-supplied
documentation to extract structured API metadata. This includes:

◦ Identification of object types (e.g., users, groups, memberships)

◦ Schema definitions (attribute names, types, cardinality)

◦ Endpoint definitions (HTTP methods, paths, authentication requirements)

◦ Relationship semantics (e.g., ownership between objects)

The digester serves as a bridge between unstructured input and formal models used by
the generator.

4. Code Generator: It will consume the digested API metadata and generate connector code
targeting the ConnId connector framework and its integration with midPoint. Generated
code will leverage a pre-defined base connector framework for consistency (described in
Section 4.4.1) The generated output is intended to be executable and testable out-of-the-box,
with optional hooks for interactive user confirmation or correction (e.g., during object
schema alignment).

Connector code generation will be performed in small, well-defined steps to avoid producing
large, unmanageable code blocks at once. The goal is to generate specific operations for specific
object types incrementally. For example, the process may begin by generating a schema
operation for the user object type, followed by a search operation for the same type. This
incremental approach simplifies validation and helps maintain a strong focus on security. Each
step will be independently testable, enabling partial verification and correction before
progressing to the next stage. Users will be actively involved throughout the process — at each
step, they will have the opportunity to review, confirm, modify, or reject generated outputs. This
user-in-the-loop approach enhances the overall robustness, transparency, and security of the
generated code.

Architecture and Design Documentation 4. Architecture and Design

Project code: 09I05-03-V04-00101 Page 100 of 152

4.4.1 Base Connector Framework

The base connector framework is a support component for connector code generator, designed
to provide a flexible and extensible base, implementing common reusable functionality for
supported protocols and technologies, reducing the amount of generated code and boilerplate
code in connectors.

The base connector framework will be designed to meet the requirements identified in analysis.

The framework will consist of the following components:

• Base Connector Framework Support:

◦ Set of base classes necessary to integrate with ConnId framework.

• Schema Mapping & Schema Builder APIs:

◦ Provides a way to define and manage schema mappings protocols and ConnId schema.

◦ Allows for easy customization of attribute names and types regardless of protocol used.

◦ Allows for specifying object classes, attributes, relationships in declarative way.

• Authentication & Authorization:

◦ Common configuration model for authentication and authorization mechanisms, such as
OAuth 2.0, API keys, and JWTs.

◦ Providing initialized REST client with authentication and authorization headers, tokens,
and other required parameters to REST and SCIM Support classes.

• ConnId Support & Operation Builders:

◦ Support for ConnId operations using strategy design pattern, where based on ConnId
request, the appropriate strategies are selected to handle the request.

▪ Strategies are configured & provided by protocol specific parts and custom scripts.

• REST Support:

◦ Declarative support for calling, retrieving, creating, updating and deleting data using
REST APIs.

◦ Endpoint-based strategies for handling ConnId search, update, create, and delete
operations.

◦ Support for custom strategies for handling non-standard cases such as complex updates,
splitting operations into multiple sub-operations, indirect searches.

• SCIM Support:

◦ Supports automatic schema discovery using SCIM 2.0 protocol.

◦ Contributes to schema mappings and provides strategies based on discovered SCIM 2.0
schema, so there is no need to manually define schema mappings for SCIM 2.0 compliant
applications.

Architecture and Design Documentation 4. Architecture and Design

Project code: 09I05-03-V04-00101 Page 101 of 152

◦ Built-in strategies for handling ConnId search, update, create, and delete operations
based on SCIM 2.0 protocol.

▪ Multiple strategies for update operations, delete operations.

▪ Support for custom strategies to be defined for handling non-standard cases such as
complex updates, splitting operations into multiple sub-operations, indirect searches.

• Scripting Support:

◦ Custom Groovy DSL for configuring & defining custom schema mappings, logic,
strategies, and operations.

◦ Scripting support is intended to implement custom connectors using Groovy with intent
to minimize boilerplate code.

• SQL Support:

◦ Supports automatic schema discovery using SQL database metadata.

◦ Contributes to schema mappings and provide strategies based on discovered SQL
schema, so there is no need to manually define schema mappings for database tables.

◦ Support for customization of naming, attribute mappings and table relationships.

◦ Built-in strategies for handling ConnId search, update, create, and delete operations.

◦ Support for custom strategies for handling non-standard cases such as complex updates,
splitting operations into multiple sub-operations, indirect searches.

Connector Packaging

The generated connector configuration and code will be packaged as a ConnId connector,
following the ConnId packaging guidelines. The connector is packaged as a ZIP file, which can
be easily deployed to the ConnId framework.

The package will contain the following:

• Connector Manifest - Required by ConnId to correctly identify package as a connector,
provides metadata about base connector entry points.

• Connector Framework JAR - the base connector framework JAR file, which contains the
base classes, support for ConnId framework, support of loading declarative configuration of
connector frameworks.

• Configuration Loader - a manifest / class responsible for listing all declarative
configurations available in the connector package.

• Declarative Configuration - the generated connector configuration, which contains the
connector implementation, schema mappings, and custom scripts.

The packaged generated connectors will be uploaded to Integration catalog in order to allow
users to easily discover and use them, minimizing the need to regenerate the connector code
multiple times for the same application.

Architecture and Design Documentation 4. Architecture and Design

Project code: 09I05-03-V04-00101 Page 102 of 152

4.5 Mapping Recommendation
The goal of the Model-Mapping Recommendation System is to help users by suggesting how to
map attributes from connected application to their counterparts in midPoint. The system should
be able to generate various types of recommendations, starting with the simplest one and
extending to the more complex ones. An example of the simple mapping might involve direct
linking from an attribute in the connected application to a midPoint attribute, without a need of
any other transformation of the value. More complex cases may require transformation, such as
scripts to convert or combine values before they’re mapped. As a result, the recommender
should be able to recommend single, most likely mapping while also offering alternative
suggestions and allowing users to select the most suitable one. The system could leverage
lightweight heuristics, statistical and transformer-based models, and large language models
(LLMs) to generate its recommendations to maximize precision and minimize manual
correction effort.

In addition to these core matching and mapping algorithms, the final solution will also include a
simple “Suggest focus type” method, which recommends the appropriate midPoint focus type
for a given application object type. Because there is only a small and fixed set of midPoint focus
types (user, role, org, service), this is quite a simple classification task: to guess e.g. whether
given application object type is rather a user account or a group belonging to a role. We assume
(without detailed technical analysis) that a LLM will be able to do this.

The Model-Mapping Recommendation System will also suggest creating new extension
attributes in midPoint. For example, potential correlation attributes can be suggested here.

The four-step cascade described in section 3.2.2, i.e., direct identity mapping, static lookup
tables, heuristic transformations, and LLM-assisted transformation code generation—provides a
robust theoretical foundation for schema mapping. In our prototype, we will first implement the
direct, lookup, and LLM-assisted phases, then conduct experiments and quantitative analysis to
pinpoint the value patterns and attributes where the LLM underperforms. Based on these
findings, we’ll introduce targeted heuristic transformations (e.g., normalization, fuzzy matching,
and string/date functions) ahead of the LLM step to reliably cover predictable cases. For
scenarios involving sensitive or personal outbound data, where sending values to an external
LLM may not be permitted, we’ll fall back exclusively on basic deterministic algorithms and
heuristics. This hybrid, data-driven workflow leverages transparent, rule-based mappings for
routine variations while reserving the LLM to generate custom transformation code for truly
complex, domain-specific logic, delivering a scalable, accurate, and privacy-aware mapping
solution.

4.6 Correlation Recommendation
In this project, the Correlation Recommendation System aims to provide the midPoint
configuration necessary to carry out the correlation. In cooperation with the Model-Mapping
Recommendation System it does the following:

Architecture and Design Documentation 4. Architecture and Design

Project code: 09I05-03-V04-00101 Page 103 of 152

1. Suggests correlation attributes, i.e., attributes in the application and in midPoint that are
relevant for the correlation.

2. Suggests correlation rules.

Processes of schema mapping and correlation often go hand in hand: the determination of non-
trivial attribute mappings may depend on the presence of (at least partially) correlated data.
Hence, the overall process of connecting an application to midPoint regarding schema
matching, mapping, and correlation will look like this:

1. The first correlation attribute is determined and the correlation is executed. It is assumed
that this attribute in application directly corresponds to an attribute in midPoint, i.e., there is
an "as-is" mapping between them.

2. Mappings for other attributes are created, based on this preliminary correlation.

3. If needed, other correlation attributes are determined, now utilizing newly discovered
mappings. They are used in the correlation. And this process can iterate by repeating from
point 2 above.

4.6.1 Suggesting Correlation Attributes

Our goal here is to suggest which midPoint and/or application attributes can be used to correlate
objects (e.g., user accounts or groups). We will select the most suitable approaches among those
mentioned in Section 3:

• Predefined correlator list

• Heuristic-based selection (name patterns, data types check)

• LLM-assisted suggestion

4.6.2 Suggesting Correlation Rules

Expected approach uses most suitable approaches among those mentioned in Section 3, like
this:

1. We’ll attempt the exact matching first.

2. If that fails (e.g., because of case mismatch, diacriticals, or minor formatting differences),
we’ll fall back to a set of relaxed matching strategies:

◦ Normalization-based matching

◦ String similarity matching (e.g., Levenshtein distance, Jaccard similarity)

◦ Phonetic matching (e.g., Soundex, Metaphone)

Note that midPoint currently does not support some of the above methods (e.g., phonetic
matching or Jaccard similarity). If it’s needed, we can consider adding this functionality.

Architecture and Design Documentation 4. Architecture and Design

Project code: 09I05-03-V04-00101 Page 104 of 152

4.7 Delineation
Experiments in this area, described in Section 3, suggest that we need to do the following:

1. Consulting domain experts to capture their implicit knowledge how to create and verify
delineations.

2. Based on this knowledge, refine our analytical steps and prompt designs.

3. Verify our solution using improved evaluation pipelines, taking into account the issues we
identified (multiple seemingly equivalent options when creating delineations, avoiding the
use of accidental data characteristics, avoiding the use of mutable fields, and so on).

4.8 User Interface (MidPoint Studio Plugin & Web UI)
User interface design must place a strong emphasis on both User Experience (UX) and User
Interface (UI) principles. Our goal is to create a product that is not only visually consistent and
responsive, but also intuitive, accessible, and user-centric. By combining clean and purposeful
design with a deep understanding of user needs, we ensure that the interface is easy to navigate,
efficient to use, and provides a seamless overall experience.

In the project, there are three distinct areas where the user interface varies based on the
environment and the type of user interacting with it. Each interface is tailored to meet the
specific needs, context, and workflows of its intended user group, ensuring a more efficient and
user-friendly experience across different usage scenarios.

To begin with the explanation, we need to define few key terms. The first is Application
Connector, which represents a potential integration with a selected application. The second is
Application, which is a new object in midPoint, representing an integrated/used application in
the environment with configured business attributes such as application owner, level of
approval, etc. Next is Resource, which is the technical representation for application integration
and uses the connector to communicate with the application’s service. The last term is
Application Catalog, which is a list of all applications in the company; from a technical
perspective, it is a list of applications along with the business attributes related to application.

MidPoint

In midPoint, we need to focus on users who are not highly technically skilled and who do not
feel comfortable working directly with object representations such as XML, JSON, or YAML.
Instead, they prefer a more visual and intuitive configuration experience.

MidPoint will include a sequence of guided steps designed to lead users through entire
processes in a clear and structured way. Emphasis is placed on keeping users fully informed
about where they are within the flow and what their specific task is at each stage. The main
flows will include:

Architecture and Design Documentation 4. Architecture and Design

Project code: 09I05-03-V04-00101 Page 105 of 152

• creating a connector for integrating an application, with support for defining all necessary
capabilities;

• modifying an existing connector, whether due to changes on the side of the application (e.g.
API changes) or to add additional capabilities;

• and creating or updating a resource configuration for an application, which will also include
a flow for using AI-assisted recommendations to suggest relevant parts of the configuration.

MidPoint Studio

In midPoint Studio, we target a more experienced and technically skilled user who is
comfortable working directly with object representations in XML, JSON, or YAML. This
environment is designed for advanced users who prefer full control over configurations and are
familiar with the underlying data structures and syntax. Moreover, midPoint Studio will also
integrate with the connector code generator functionality, allowing users to prepare new
connectors for application integrations directly within the IDE.

In midPoint Studio, it is important to follow the UX/UI conventions of the IntelliJ IDEA
application. While users will primarily work with object representations in XML, JSON, or
YAML, there will be also support for implementing new connectors using the connector code
generator component. For the connector code generator, there will be a need for a lightweight
wizard to help with necessary steps to successfully create a new connector. For panels that
interact with AI, we aim to apply the same layout standards used by existing copilots, ensuring a
familiar and seamless experience for users who are already accustomed to IntelliJ IDEA.

Integration Catalog

The Integration catalog will contain a list of connectors representing possible application
integrations and provide a set of available operations that can be performed on them. It will
serve as a central point for managing applications integrations, allowing users to easily browse,
upload, or download existing connectors.

These functions will also be supported directly within midPoint, which will communicate with
the Integration catalog. However, it is necessary to support them directly in the UI of the
Integration catalog as well, to accommodate midPoint deployments that do not have direct
access to the Integration catalog.

The Integration catalog will also allow users to request applications integrations that are not yet
available and will display a list of application integrations that have been requested. This
feature helps track demand and encourages contributions of new connectors for requested
applications integrations from community members.

4.8.1 Description of Guided Wizards and Integration Catalog UI (User
Flow Diagrams)

The initial user flow diagrams presented in this section are intended to illustrate the expected

Architecture and Design Documentation 4. Architecture and Design

Project code: 09I05-03-V04-00101 Page 106 of 152

flow of user interaction and to capture the functionality provided by the system.

These diagrams serve as a conceptual model of the anticipated behavior and user journey
within the interface. However, they are subject to change as a result of the detailed design
process of individual UI panels and adjustments that may arise during later stages of
implementation.

They should be considered as preliminary drafts that help align expectations and provide a
foundation for further refinement during the UI development lifecycle.

Integrating a New Application

The following diagram illustrates the sequence of steps a user must follow when integrate an
application through the midPoint graphical interface. This high-level flow also incorporates
references to several sub-process diagrams, which are described later in the document.

From the panel displaying an Application catalog, the user can access the functionality for
integrating a new application.

The first step involves selecting an application to integrate. A list of available integrations is
provided by the Integration catalog. If the desired application is not present in this list, the user

Architecture and Design Documentation 4. Architecture and Design

Project code: 09I05-03-V04-00101 Page 107 of 152

can either leverage an AI assistant to generate a new connector for integrating with the new
application, or request the creation of a new connector if they prefer not to generate one
themselves.

Once an application is selected (or a new connector is generated), the user proceeds to configure
basic attributes of resource that corresponds to the application. After this initial setup, users can
use suggestions of object types that might exist, which are recommended to them by the AI
assistant for delineation. Once the object type is selected, users can proceed with configuring the
remaining basic attributes, including all necessary configuration aspects such as mappings,
correlation rules, synchronization settings, and more.

If the required application is not found and the user does not wish to create a connector at that
time, he may submit a request for connector creation. The integration process for that
application can then be continued at a later.

The "Show Details" diagram is not explicitly included here, but it refers to the application’s
detail view, where key aspects of the application are presented in separate panels. These panels
are accessible via the details menu and allow users to view and manage specific parts of the
application and corresponding resource configuration.

The diagrams titled "Wizard for Synchronization," "Wizard for Capabilities," and "Wizard for
Policies" are already implemented as part of midPoint’s standard functionality. Since these
wizards will be used without modification during the application creation process, they are not
depicted in this document to avoid redundancy.

This structure ensures that only the modified or newly introduced parts of the process are
illustrated in detail.

Generate New Connector for Application

This diagram illustrates the process of generating a connector for a new application that is not
yet present in the Integration catalog.

It outlines the steps a user follows to define and create a new connector using available tools,
such as the AI assistant or manual input.

Architecture and Design Documentation 4. Architecture and Design

Project code: 09I05-03-V04-00101 Page 108 of 152

The diagram is divided into two parts. The first part illustrates the process of gathering
documentation for a given application, highlighting the point at which it becomes necessary to
more precisely define the type of application. The second part depicts the procedure for
generating a connector for an application that communicates via REST/SCIM protocols.

The process may vary slightly for different types of applications. However, the application using
REST/SCIM has the most complex workflow, which is why it is specifically demonstrated in the

Architecture and Design Documentation 4. Architecture and Design

Project code: 09I05-03-V04-00101 Page 109 of 152

diagram.

During the procedure, it is necessary to configure several components. First, the configuration
settings themselves need to be established.

As the next step, the user selects the object class he wants to support in the connector. The
available object classes are suggested by the AI assistant. After selecting a specific object class,
the first required action is to generate a schema with all the necessary attributes the user wants
to support for that object class. The schema is generated by the AI assistant, and the user either
approves it or modifies the necessary attributes if the generated schema is not entirely accurate.

The process then continues with the configuration of the search operation, specifically the
search all function, which is essential for the connector to work correctly with the selected
object class. The user can verify the correctness of the search all function by running it and
checking the results.

Subsequent steps allow the user to optionally define additional operations, such as create,
modify, and delete. These steps are not mandatory but provide extended functionality for the
connector to fully support CRUD (Create, Read, Update, Delete) operations. Additional options
include extending the search operation with support for more filters, and creating an
association involving the chosen object class.

Overall, the diagram offers a clear, step-by-step representation of how to obtain necessary
documentation and generate a fully functional connector for a REST/SCIM-based application,
with flexibility for other application types as well.

Modify Existing Connector

The following diagram illustrates the option to return to a connector that is still in progress and
has not yet been completed, or to add extended functionality to an already existing connector.
This includes adding unsupported operations, search filters, associations, or object classes.

Architecture and Design Documentation 4. Architecture and Design

Project code: 09I05-03-V04-00101 Page 110 of 152

Architecture and Design Documentation 4. Architecture and Design

Project code: 09I05-03-V04-00101 Page 111 of 152

This process allows users to revisit and continue development on partially finished connectors,
ensuring flexibility and iterative improvement. Additionally, it supports the enhancement of
existing connectors by integrating new features or capabilities that were not initially supported,
thereby increasing the connector’s functionality and adaptability to changing requirements.

Filter of Search Operation

This diagram illustrates the sequence of steps involved in supporting filters for the search
operation. The diagram consists of two main parts the generation of the script and followed by
the verification of the results.

Verification is performed either through a table displaying the returned objects or by
confirming the correctness of a single object if the operation was "get one" object.

This process ensures that search filters are properly implemented and validated, enabling
precise and efficient querying within the application. It helps users confirm that the filter
criteria yield the expected results, whether multiple objects or a specific single object.

Create Operation

This diagram represents the configuration process for the create operation.

Architecture and Design Documentation 4. Architecture and Design

Project code: 09I05-03-V04-00101 Page 112 of 152

The first step is to validate the correctness of the generated script. Once the correctness of the
script is confirmed, the next stage involves testing the operation.

In this phase, a test object can be created to verify that the operation behaves as expected. If the
connector already supports the "get one" search operation, the test object can be verified
directly in midPoint. Otherwise, the verification must be performed within the target
application itself.

This structured approach ensures that the create operation is not only implemented but also
thoroughly tested, minimizing the risk of errors during deployment. It also provides flexibility
in the verification method based on the connector’s current capabilities.

Modify Operation

This diagram represents the configuration process for the modify operation.

Similar to the create operation, the workflow follows the same steps, first, the generated script
must be validated, and then the modify operation itself is tested.

During the testing phase, it is necessary to select an existing test object — or create new, if the
connector already supports it — on whom the modify operation will be executed.

Architecture and Design Documentation 4. Architecture and Design

Project code: 09I05-03-V04-00101 Page 113 of 152

As with the 'create' operation, the results can be verified directly in midPoint if the connector
supports the "get one" search operation. Otherwise, verification must be performed within the
target application.

This approach ensures that the modify operation is correctly implemented and properly
validated, providing consistency and reliability in how object data is updated across connected
systems.

Delete Operation

The last of the basic operations for the object class is the delete operation.

Just like with the create and modify operations, the first step is to confirm the correctness of the
generated script, followed by verification of the operation’s result.

For verification, a test object must be selected or created, which will then be deleted using the
configured operation. To ensure the object has been successfully removed, the deletion can be
verified in midPoint, if the connector supports the "get one" search operation, or alternatively,
by checking directly in the target application to confirm the object is no longer present.

This step ensures that the delete operation works as intended and that the connector correctly
handles object removal, maintaining data consistency between midPoint and the connected
application.

Association

The following diagram illustrates the configuration of an association between two object classes.

Architecture and Design Documentation 4. Architecture and Design

Project code: 09I05-03-V04-00101 Page 114 of 152

The user begins by selecting from a list of available associations that can be configured within
the system.

Once an association is selected, the necessary scripts required to ensure the association
functions correctly are displayed. These scripts may include schema extensions for the involved
object classes, or modifications to specific operation scripts (such as search, create, modify or
delete) that need to be adjusted to support the association.

This process provides a structured way to establish relationships between different object
classes — such as linking users with roles or groups — while ensuring that all necessary script
modification is applied for the association to operate reliably across all supported operations.

Suggestions Panels

These diagrams represent partial wizards that are linked to specific configurations of the
ResourceType. Each wizard guides the user through a focused configuration task related to the
resource.

All of these wizards have been enhanced with the ability to provide suggestions, reducing the
need for manual configuration of the main components.

These guided wizards serve as helpful tools, especially for less experienced users, by simplifying
complex tasks and offering intelligent assistance throughout the configuration process.

Suggestions for Mappings

The following diagram illustrates the process of displaying and then either accepting or
rejecting suggested mappings. These suggestions can be specifically targeted toward a particular
attribute, either in midPoint or on the resource side.

Architecture and Design Documentation 4. Architecture and Design

Project code: 09I05-03-V04-00101 Page 115 of 152

Suggestions for Activation/Credentials Mappings

This diagram operates on the same principle as the previous one but focuses specifically on
activation and credentials mappings.

It illustrates the process of reviewing, accepting, or rejecting suggested mappings related to user
activation status (such as enable/disable) and credential-related attributes (such as password).

Architecture and Design Documentation 4. Architecture and Design

Project code: 09I05-03-V04-00101 Page 116 of 152

As opposed to attribute mappings, these suggestions may target only to midPoint attributes.

Suggestions for Correlation Rules

This diagram illustrates the suggestions for correlation rules, along with options to either accept
or reject them.

The user is given the ability to review each proposed rule, assess its relevance, and decide
whether to incorporate it into the configuration.

Suggestions for Associations

The last diagram in this section shows the sequence for recommending associations.

Architecture and Design Documentation 4. Architecture and Design

Project code: 09I05-03-V04-00101 Page 117 of 152

Just like in previous diagrams, these suggestions can be either accepted or rejected by the user.
Additionally, during the association setup, the user can also take advantage of suggested
mappings for the association object.

Integration Catalog

The last diagram illustrates the interaction flow within the Integration catalog service.

The Integration catalog provides a centralized view of all available application integrations. It
allows users to browse and filter existing integrations, download or upload new application
integration (connector) and configuration of application, and retrieve a full signed list of
available integrations.

Architecture and Design Documentation 4. Architecture and Design

Project code: 09I05-03-V04-00101 Page 118 of 152

If the user cannot find the application they need, they can request its creation. Additionally, if
someone from the community wishes to contribute by creating a connector, they can view a list
of the most requested applications.

4.9 Integration Catalog
In this section, we will take a closer look at the Integration Catalog, exploring its architecture
and core functionalities in more detail. We will examine how the catalog is structured and what
capabilities it offers to users—from connector management to configuration handling.

4.9.1 Architecture

The Integration catalog consists of multiple architectural layers, each serving a specific role
within the system.

• One of the core components is the graphical user interface (GUI), which provides interaction
with end users. This interface is publicly accessible and exposes all core functionalities of
the integration catalog, including browsing, searching, uploading, and downloading
application connectors, as well as user registration and authentication.

• Another important layer is the REST controller, which enables communication with other
services, primarily with midPoint and Studio. This layer is responsible for handling external
API requests and ensuring secure and structured data exchange between the catalog and
connected systems.

• For data storage, the Integration catalog relies on two databases. The first is a relational
database used to store all essential information, such as available application connectors
with metadata and user accounts. The second is a specialized database for storing
configurations of integrated applications (mappings, correlation rules, association, etc.)
collected from individual deployments. This configuration data is used to improve AI
assistant recommendations and to gather statistical insights for evaluating the assistant’s

Architecture and Design Documentation 4. Architecture and Design

Project code: 09I05-03-V04-00101 Page 119 of 152

effectiveness. This data layer ensures consistency, reliability, and efficient access to
information required by both the graphical user interface and backend services.

• Another layer of the Integration catalog is a Git repository, which serves as the storage for
the source code of uploaded connectors and compiled JAR files of uploaded connectors.
Whenever a user uploads a new connector, the system automatically pushes its source code
into the Git repository. This mechanism ensures version control, change tracking, and
provides a transparent history of all modifications made to the connectors over time.

Together, these layers form a modular and scalable architecture that supports the catalog’s
operational needs while ensuring data integrity, and user accessibility.

4.9.2 Function

The system provides both an API and a graphical user interface (GUI), giving users flexible
access to key features.

One of the core capabilities is the ability to view all currently available application connectors.
Each connector includes detailed metadata such as its name, description, capabilities,
popularity, and the type of system it integrates with, allowing users to easily understand its
purpose and technical scope.

To simplify navigation and help users find specific connectors within a potentially large catalog,
users can filter and search based on various criteria. These include attributes like the
connector’s name, type, capabilities, and popularity, making the discovery process efficient and
user-friendly.

Another key feature is the ability to upload new integrations into the catalog. Users can either
publish entirely new connectors or upload configuration files that define how two systems
should communicate. When uploading a connector, the process typically involves providing the
connector file itself, along with a description and essential metadata such as the version, the
type of system it supports, and its technical specification. Alternatively, users may upload
integration configurations, which define how applications communicate through the connector.
These configurations may include mappings, correlation rules, or associations, and must be
accompanied by metadata that describes their origin. This functionality is available only to
authenticated users.

Users can also download individual application connectors. This enables them to import the
downloaded connectors into the midPoint system and begin using them as part of their
integration processes.

To provide additional security and trust, the catalog includes access to a digitally signed list of
all available connectors. This list acts as a tamper-proof, verified snapshot of the system’s
current state and is used in midPoint to verify the authenticity of the connectors in use.

If a desired connector is not available, users can submit a request for it. These requests are

Architecture and Design Documentation 4. Architecture and Design

Project code: 09I05-03-V04-00101 Page 120 of 152

tracked and presented in a dedicated view, offering visibility into user needs and guiding future
development priorities.

One of the key features of the Integration Catalog is the ability to provide integration
configurations—specifically, resource configurations that have been uploaded by authenticated
users. These configurations are made available to the Smart Integration Service, which takes
them into account when generating new suggestions within midPoint or midPoint Studio.

Each configuration is associated with a specific application and object class, ensuring contextual
relevance. By leveraging real-world, user-contributed configurations, the system can
significantly improve the accuracy and quality of its suggestions. This enables Smart Integration
to offer suggestions that are better aligned with common integration scenarios and practical use
cases.

In addition to enhancing suggestion quality, the collected configurations also serve a secondary
purpose: they are used to evaluate the accuracy and effectiveness of the suggestions provided by
the Smart Integration Service. This feedback loop allows the service to continuously refine its
models and adapt to actual user needs and behaviors.

This functionality is strictly secured and accessible only to the Smart Integration Service. Access
to upload and consume these configurations is controlled through user authentication to ensure
that only authorized systems can contribute or retrieve this sensitive integration data.

To maintain a secure and accountable environment, the catalog implements user registration
and authentication features. Only authorized users are allowed to upload connectors or
configuration, which helps protect the system from misuse and ensures traceability of uploaded
components.

4.10 Validation Service
One project goal is simplifying onboarding new applications to midPoint. The system will
dynamically generate various artifacts using AI/ML techniques.

Because these techniques are non-deterministic, the generated artifacts are also non-
deterministic and require validation. Validation will differ depending on the artifact type (e.g.,
Groovy code vs. XML snippets).

The validation service will also provide feedback to the AI/ML services to improve generated
artifacts. For example, it might report missing XML parts, which the AI/ML can then use to fix
the issues. Artifact validation will be available through a REST API.

Given the types of artifacts our recommendation services and code generators will produce, we
must provide validators for two types of generated content:

• XML

Architecture and Design Documentation 4. Architecture and Design

Project code: 09I05-03-V04-00101 Page 121 of 152

• Groovy

The validation service is implemented as a microservice, based on the Spring Boot framework,
providing REST endpoints. The request contains the generated code snippet in the request body
and the code type (XML/Groovy) in the request headers. The validation result contains a list of
all issues found.

XML Validator

The XML Validator is designed to validate XML configurations or snippets specifically targeted
for midPoint. It leverages the Prism framework’s parsing context in compatibility mode to
ensure correctness and schema consistency with midPoint’s internal data model.

Currently, XML configuration validation (mappings, correlations, etc.) is performed according to
the midPoint schema. This provides good syntax validation of XML configurations.

Design

Our main requirements for the XML validator are to ensure that the XML is:

• Syntactically correct

• Parseable into Prism objects (midPoint’s internal object representation).

Validation Against XSD Schema

Several libraries can validate XML against XSD schemas. We tried:

• Xerces (bundled in the JDK)

• Woodstox (FasterXML project)

• XMLUnit (primarily a testing library)

However, regardless of configuration and library, we identified limitations:

• Validation stops at the first error (with some exceptions). For example, if three elements are
mandatory but the XML only contains the first, the error message only reports the missing
second element.

• Validation fails if XML element order differs from the XSD. This is technically correct for
<sequence> elements in XSDs, but the order is practically insignificant in midPoint and causes
more problems than benefits.

After discussion, we relaxed the schema validation requirement, partially substituting it with
parsing into Prism objects (generated from the schema).

Architecture and Design Documentation 4. Architecture and Design

Project code: 09I05-03-V04-00101 Page 122 of 152

Validation Using Prism Parsing

Our next approach leveraged the Prism framework’s parsing context in compatibility mode to
ensure correctness and schema consistency with midPoint’s internal data model.

Prism, by Evolveum, is a data representation layer framework, parsing data from formats like
XML, JSON, or YAML and making it available to Java applications abstractly.

The existing midPoint schema is used to parse XML objects, capturing detected errors and
warnings. Compatibility mode allows processing to continue as long as the data is roughly
schema-compatible, silently ignoring illegal values and unknown elements. Parsing starts by
creating an object type definition (an input parameter for the validator). If a different
objectType from the XML configuration is needed, the optional itemPath parameter specifies the
object type for Prism parsing definition.

Currently, XML configuration validation (mapping, correlations, etc.) is performed according to
the midPoint schema, providing good syntax validation but not semantic validation. We may
require semantic validation in later project stages, requiring further research.

Groovy Validator

The Groovy Validator ensures that dynamically generated Groovy code is syntactically and
semantically correct before execution. Groovy code will be generated primarily for connectors
but may also be generated for mappings and other needs. The validator should verify syntactic
correctness and static compilability.

Design

Our initial Groovy code validation requirements were:

• Syntactic correctness

• Static compilability

• Ability to call code outside the standard library

Our initial PoC validation using GroovyShell revealed that validator implementation depends
heavily on the generated code’s structure, specifically calls to "external code". Calls to the
standard library are not problematic, but if the script caller binds custom methods/variables to
the script at runtime, these must be passed to the validation service for static compilation.

We identified several approaches for handling calls to external code:

• Variable bindings: Binding an object to a variable accessible from the code at runtime.
Disadvantages: less readable, exposes Groovy builder usage.

• Method closure bindings: Binding a variable as a MethodClosure. We couldn’t achieve
successful compilation and execution. While compilation worked, the script failed at

Architecture and Design Documentation 4. Architecture and Design

Project code: 09I05-03-V04-00101 Page 123 of 152

runtime.

• Base script class: Limits how "external code" is passed to the Groovy code. Requires
defining all accessed methods/variables in the base script class.

All approaches require the validation service to be aware of and have access to the "external
code."

After discussions, we chose the base script class approach.

Our research resulted in a prototype using GroovyShell to parse and evaluate user-provided
Groovy code snippets.

Ensuring code safety

Besides syntactic correctness, it is necessary to ensure that the code is safe, i.e., that it does not
harm its environment in any way. We plan to implement LLM guardrails to do this.

4.11 AI Studio
The aim of the AI Studio is to provide a proper set of tools and integrations to our ML engineers,
DevOps engineers, and developers that facilitate, and potentially automate, their day-to-day
work. In the context of the entire project, this means providing tools that support several parts
of MLOps.

4.11.1 Chosen Toolset

After assessing various available open source tools that provide MLOps functionalities, we
selected a few tools that fulfill the requirements. However, for LLM observability tools, we still
have several similar options to evaluate in practice. Below is a table with the chosen toolset
mapped to the requirements they fulfill.

Tool Fulfills alone Fulfills in combination
with another tool from

the table

Fulfills in combination
with CI/CD tooling

ClearML R5, R6 R7 R2, R3, R4, R7, R8

LangFuse/LangTrace/P
hoenix/Opik

R1, R5, R9 R7, R8 -

JupyterLab - R2, R4 -

Ollama - - R3

ClearML: This is the central tool, playing a role in fulfilling most of our requirements. It serves a
crucial role in experimentation and testing as our main orchestrator. It also provides abilities to
store and version datasets, track experiments, visualize experiment results, and more.

Architecture and Design Documentation 4. Architecture and Design

Project code: 09I05-03-V04-00101 Page 124 of 152

LangFuse/LangTrace/Phoenix/Opik: These belong to the family of LLM observability tools.
Their main job is to track traces from AI pipelines, run evaluations on collected traces, and
provide AI performance monitoring. They also have some feature overlap with ClearML,
notably managing datasets and tracking experiments. As mentioned earlier, we will need to
evaluate and compare them further in practice to choose one.

Ollama: Our model serving tool. We chose Ollama, at least in our early stages, for its simplicity
and ease of use. We are aware of Ollama’s performance limitations compared to other
alternatives. However, we believe it can boost us significantly in our early stages and help us
prove our concept quickly. We may switch to a more performant alternative in the future.

JupyterLab: The IDE used by our ML engineers for day-to-day experimentation and
development. This tool is a de facto standard in the data science and ML community, making it a
clear choice. However, we do not limit our engineers and developers to JupyterLab; they can use
any IDE they prefer.

The above tools may be collectively considered our "AI Studio". To reach their full potential, they
need to be integrated into the broader ecosystem of other DevOps tools. They will have close
integration with CI/CD, Git, and potentially many others.

Below is an illustrative diagram showing how the selected tools map to the MLOps aspects we
want to provide.

An example of the data flow between various components of the stack is illustrated in the
diagram below.

Architecture and Design Documentation 4. Architecture and Design

Project code: 09I05-03-V04-00101 Page 125 of 152

4.11.2 Next Steps

We have identified promising contenders for our AI Studio, but we need to verify their practical
integration.

To test the AI Studio in practice, we will:

1. Deploy AI Studio tools (or core parts) to our testing Kubernetes cluster.

2. Integrate our simple demo "application" we created with AI Studio tooling. The demo
application mimics the architecture and design of the connector code generator.

3. Rewrite some existing experiments about mappings and correlations to integrate with AI
Studio tooling.

This will allow us to test various AI Studio aspects, including:

• Writing, running, and managing experiments.

• Experiment tracking.

• Creating evaluation pipelines.

• Pipeline orchestration.

• Observability.

• Deployment flows.

• JupyterLab integration.

Architecture and Design Documentation 4. Architecture and Design

Project code: 09I05-03-V04-00101 Page 126 of 152

4.11.3 Risk Factors

The current main risk factors are:

• Experiment evaluations: Uncertainty about the optimal integration flow between our tools,
particularly getting necessary execution data to the evaluation pipeline. We have several
approaches/theories to investigate and test.

• Distributed traces: The project’s architecture will consist of several microservices,
including "regular" microservices and AI pipelines utilizing AI tooling (LLMs or others).
While AI Studio tooling will collect traces from AI pipelines, we want end-to-end visibility of
user interactions, correlating traces from all microservices and presenting them in a unified
view. How to implement this remains an open question, potentially requiring another tool.

• Deployment flows: We have a theoretical deployment approach, but we need to test it
practically. It will likely combine a testing tool (e.g., ClearML) with CI/CD tooling, but the
implementation details are undecided.

4.12 Security Considerations
Security is a top concern of this project. In this section we concentrate on a crucial aspect: How
can we be sure that the generated and/or shared code is safe to execute? By "the code" we
mean code in connectors and in mappings. (It is possible that the scope could be extended a
little bit if we start generating e.g. delineation conditions.)

We plan to undertake the following:

1. Checking the generated code. The code generated by LLMs will be checked for correctness
and safety. This is the responsibility of the Validation Service, described below.

2. Checking the shared code. Also, the code shared via the Integration Catalog will be checked
for correctness and safety. This is the responsibility of the Validation Service as well.

3. Reducing the power of generated or shared code. As mentioned in section 4.5.5 above,
Groovy is extremely powerful language. We can lower the risk by allowing to use more
restricted, less powerful, and hence safer language.

4. Limiting the amount of generated code. By moving some of the functionality into the
standard midPoint or connector code, the amount of application-specific code being
generated or shared decreases. For example, the base connector framework (section 3.1.7)
provides many low-level (technical) features necessary for connect to remote applications,
reducing or sometimes even eliminating the need to write custom connector code. Or,
planned support for mapping complex attributes (section 4.5.1) eliminates or at least
reduces the need for creating code that manipulates embedded data structures, using
declarative configuration style instead.

As there is less code to be generated or shared, it is easier to inspect this code (either
automatically or manually) to ensure its safety. Moreover, reducing the responsibilities of

Architecture and Design Documentation 4. Architecture and Design

Project code: 09I05-03-V04-00101 Page 127 of 152

custom code may mean that a more restricted, safer language can be used instead of Groovy.

4.13 Changes to MidPoint
This section describes changes to midPoint that have to be done in order to fulfill goals of this
project.

4.13.1 Complex Attributes

The original design of midPoint and ConnId connector framework has been limited to simple
attributes so far. This means that objects transferred between a connector and midPoint consist
of attributes that are of simple types only: string (potentially with language variants), number,
date and time, byte array, and object reference. Internal processing in midPoint is also limited to
simple data types. (A notable exception is processing of associations that are based on object
references. But they contain only simple data types as well.)

However, the initial analysis revealed that many of the applications that we plan to be able to
connect work with complex (structured) attributes. Even the SCIM2 standard contains them. For
example, name complex attribute consists of givenName, middleName, familyName, honorificPrefix,
honorificSuffix, and formatted sub-attributes. Also, emails, phoneNumbers, addresses are multi-
valued complex attributes, typically containing type, value, and primary sub-attributes. Besides
SCIM2, we know of real deployments where complex attributes are present.

The current version of midPoint allows treating complex attributes only by funneling them
through string attributes by applying some kind of encoding: JSON, XML, CSV, or the like. For
example, when synchronizing complex data from the resource, the connector has to pack the
received data into an appropriate format (e.g., JSON) and provide it to midPoint in a string
attribute. MidPoint then must unpack (parse) the JSON string and process the unpacked data
accordingly.

This works but is unnecessarily complex.

It is preferable to enhance midPoint so that it will handle complex attributes right out of the box
in order to prevent overburdening the AI generator by forcing it to provide sophisticated
workaround code.

These changes will require significant modifications of the panels in the GUI as well.

4.13.2 Schema Enhancements

With SCIM2 becoming more prevalent, we expect a lot of cases of matching standard SCIM2
schema to midPoint. For example, a multivalued complex emails SCIM2 attribute to a single-
valued, simple, emailAddress midPoint property. The phones vs telephoneNumber is the same case.
SCIM2 address attribute has no counterpart in midPoint at all.

Architecture and Design Documentation 4. Architecture and Design

Project code: 09I05-03-V04-00101 Page 128 of 152

Today’s real deployments need more. Many of them put secondary email addresses, secondary
telephone numbers, and postal addresses into custom extension properties. Each of them is
implementing the same or similar functionality in different ways, wasting time and energy on
something that could be provided out of the box.

From the perspective of this project, the AI schema matching generator will have to find
matches between SCIM2 schema and these custom schema extensions. It will be able to do that.
But it’s an unnecessary complexity.

Therefore, we will enhance midPoint schema with pieces from standard SCIM2 schema, so that
mappings will be much more straightforward, providing efficiency and consistency of
generated solutions.

4.13.3 Natural (Business) Keys in Item Paths

MidPoint uses an item path as a concept to identify a concrete item in structured objects. The
item path is used in various roles, such as specification of source and target attributes in
mappings, specification of attributes in queries, deltas and other places. The current item path
uses numeric identifiers for multivalue properties, which makes it hard to read, configure and
understand. With the introduction of complex attributes in ConnId and midPoint schema, there
is increasing need to introduce support for natural (business) keys in item paths (eg. email type,
phone type, etc.). As the preliminary analysis suggests, we will probably need even more:
arbitrary filters and potentially also queries in item paths.

This change will allow to use more human-readable item paths, which will be easier to
understand and use with complex attributes.

The change affects multiple places in midPoint, including the item path parser, item path
serializer, item path validation, and item path support in various components processing
queries, deltas, and mappings.

4.13.4 Support for Advanced Aggregate and Analytical Queries

MidPoint currently supports basic queries, such as filtering objects by attributes, searching for
objects by name, attribute values, and other criteria. The use-cases in Smart Integration
(mappings, delineations) require more advanced query support for statistical analysis of
distribution of attribute values, duplicates.

The proposed change is to enhance midPoint Aggregate Query API and PostgreSQL Native
Repository to support advanced query capabilities, such as grouping, counting, averaging by
native attributes and extension attributes.

4.13.5 Safer Scripting Language

Groovy (or similar) scripts play a pivotal role in midPoint deployments. All non-trivial mappings
use them, including mappings generated by this project. Custom reports and GUI customizations

Architecture and Design Documentation 4. Architecture and Design

Project code: 09I05-03-V04-00101 Page 129 of 152

are often based on them. They are present in ScriptedSQL connectors and soon they will be in
connectors generated by this project.

These scripts are extremely powerful. They can execute all operations available to the operating
system (OS) user under which midPoint is executing. This includes arbitrary modifications of
midPoint repository content (including roles and authorizations), modifying files in local
filesystem, executing OS commands, opening network connections, and so on. Although
midPoint has Expression Profiles that are designed to limit the possibilities of what scripts can
do, they are not bullet-proof. They are not easy to configure, and there are ways to circumvent
them.

Normally, the majority of scripts are created by system administrator, so there is no problem in
their power. But this project introduces at least two other sources of these scripts: they will be
generated by LLMs and also provided by third parties in the Integration catalog. Although this
project will provide legal and technical mechanisms to prevent malicious code execution, we
plan to provide even better option: using a safer scripting language.

The chosen language will be restricted enough to be relatively safe to execute even if the source
of the scripts is not absolutely trustworthy. Of course, planned mechanisms to prevent malicious
code from being run will be still applied - to avoid even less harmful effects, like denial of
service or information leakage.

Regardless of whether such a language will be found and used, we will continue to support
Groovy, with all the planned safety mechanisms.

4.14 Changes to ConnId Framework
The connector framework needs some enhancements to provide the functionality necessary for
rapid application onboarding.

• We need to pass more schema information from a resource to midPoint. For example,
human-readable descriptions of object classes and their attributes have been missing up to
now. They are crucial for AI algorithms for schema matching and mapping, besides others.

• MidPoint now needs more efficient access to the schema. In particular, midPoint must be
able to iteratively query the schema, obtaining a list of object classes first, in order to
provide AI algorithms a possibility to select which object classes are relevant for further
processing and which are not. (Fetching all the data at once may not be possible because of
system resource constraints.)

• We need to support complex configuration items in connector configuration. Up to now, only
simple properties (e.g. of string, integer, boolean and similar types) have been supported.
The analysis carried out up to now indicates that we need also complex structures to be
passed to connectors as their configuration.

• In order to support complex attributes in midPoint, some changes need to be done in ConnId
as well. For example, UID and Name attributes should become optional for embedded object

Architecture and Design Documentation 4. Architecture and Design

Project code: 09I05-03-V04-00101 Page 130 of 152

https://docs.evolveum.com/midpoint/reference/support-4.9/expressions/expressions/profiles/

classes.

• The analysis of existing systems revealed that UID and Name attributes should support data
types other than string. Currently, they are limited to string values; if a resource requires
other values (e.g., integers), they must be converted from/to strings. This is more
workaround than a serious solution. When connectors are to be generated by AI, we want to
eliminate the need for such workarounds.

4.15 Changes to MidPoint Studio
The current version of midPoint Studio relies on the midPoint XSD schema for validation, code
completion, and other features. We identified that the support using XSD schema is not
sufficient for the integration with the AI-assisted workflows.

The MidPoint Studio integration needs to be enhanced to support native MidPoint schema
format (Prism) which provides additional metadata necessary to correctly identify suggestions,
validations, and metadata necessary for AI-assisted workflows.

The switch from XSD schema to Prism schema will also allow for native support of additional
languages such as JSON and YAML for configuration objects.

Architecture and Design Documentation 4. Architecture and Design

Project code: 09I05-03-V04-00101 Page 131 of 152

5. DevOps & Operational Standards

5.1 Hardware and Infrastructure
The overall architecture of the solution is designed as a set of services that may scale
independently in the future. At the same time, we want to run these services on our hardware
to ensure we have compliance and security fully under our control. We decided to deploy the
solution on Kubernetes[1] for a number of reasons:

• Kubernetes is a well-established container orchestrator.

• We want to containerize the services to streamline our CI/CD pipelines, using containers as a
method of delivery.

• We already have some experience with Kubernetes and want to extend it further.

Currently, there are no identified cases where Kubernetes and containers will not be sufficient.
But to cover all the bases, we will also have virtual machine capability available.

Finally, as a storage solution, we will use Ceph[2]. It is a battle-proven open-source solution for
software-defined storage which is more economical than hardware-based storage.

5.1.1 Hardware Design

Our current internal infrastructure is mostly composed of dated hardware placed in spaces
repurposed as a server room. That’s why we plan to procure new hardware and place it in a
professional data center to meet all compliance requirements. Our main hardware
infrastructure will be placed on the primary site and will consist of:

• Three servers, one of which is equipped with GPUs.

• Necessary networking such as switches, etc.

• Firewall appliance providing the first level of protection against common threats such as
DoS/DDoS, with IDS/IPS support.

The three servers will serve multiple duties:

• All servers will be part of the Ceph cluster (storage).

• All servers will be part of virtual machine cluster - for this Proxmox[3] solution is considered.

• On top of the VMs, Kubernetes cluster will be built.

We will build 3-node cluster, and we will ensure that each node runs on a different physical
node. Building the Kubernetes cluster on top of virtual machines gives us a lot of flexibility. For
instance, we can have a dedicated test cluster completely separated from the production one, or
we can experiment with Kubernetes clusters of more than just three nodes.

Architecture and Design Documentation 5. DevOps & Operational Standards

Project code: 09I05-03-V04-00101 Page 132 of 152

For this setup, three physical nodes are the minimum if we require reliability and proper
operation of both the Kubernetes and Ceph cluster. Because of the multiple roles each server
node fulfills, the nodes should be reasonably sized, ideally dual-processor with plenty of RAM
and disk space.

The secondary site, geographically dislocated (at least a few kilometers apart), consists of a
single backup server that also provides Zabbix monitoring functionality.

5.1.2 GPU Requirements

While some low-key development can rely on local GPU/APUs, for any serious development,
testing, and future production high performance GPUs are must. Because we want to host our
hardware in a data center, data-center-grade GPUs are required - this means passive cooling
solution allowing high-density computing. This may limit our options both in terms of
availability, because of the current AI hype, and in terms of cost as well, because data center
GPUs are more expensive.

At the start of the project, it wasn’t clear what will be the ratio of the training and inference
workloads. At this moment, it is obvious that we will need much more inference than training.
Occasional bursts of training can also be served by external services if required, but inference
workloads will be our bread and butter.

Current design uses LLMs for Smart Integration (expected 2 models with 32 billion parameters,
or 32B), Code Generator (at least 2 instances of 32B parameter LLM), and Code Validator (1x 32B
LLM). All these models must run at the same time and be ready to serve requests, that is, they
must be warmed up. This all points to the total VRAM requirements of 200 GB or more.

For flexibility, it would be also ideal to have multiple cards instead of one giant one. This would
allow us to isolate different kinds of workloads, and run the to-be-production services
simultaneously with development tasks. This would suggest at least two GPUs, but three would
be better as it would allow us to use two for the solution with one for additional tasks. Naturally,
at the beginning of the development cycle, all GPUs would be used for development, testing, and
data preparation.

To summarize GPU requirements, we will need: Three GPUs with at least 80 GB of VRAM each,
and with performance in the range of 100 TFLOPS for FP32 and 2000 TOPS for INT8, or more.

5.1.3 Hardware Origin and Risk Assessment

To ensure cybersecurity and compliance requirements of our solution we will choose hardware
and supplier that adheres to good practices in ICT supply chain cybersecurity as outlined by
ENISA, e.g. in Good Practices for Supply Chain Cybersecurity, June 2023[4]. While formal
certification to standards such as ISO/IEC 20243 or IEC 62443 is not required, alignment with
their principles - including supply chain transparency, origin control, and secure delivery - is
expected.

Architecture and Design Documentation 5. DevOps & Operational Standards

Project code: 09I05-03-V04-00101 Page 133 of 152

5.2 Kubernetes and Network Infrastructure
Before we get to the CI/CD pipeline for the final solution, we will need to bootstrap the
Kubernetes environment and supporting services.

5.2.1 Kubernetes Cluster and Supporting Services

The Kubernetes cluster is planned to be built in the following steps:

1. Virtual machine creation
3 for control plane nodes and 3 for worker nodes. Each physical node will run one control
plane and one worker node. The sizing of the worker nodes will be generous, details
depending on the delivered hardware.

2. Operating system
Ubuntu 24.04 LTS will be used as the operating system, as it is our preferred OS and widely
supported by Kubernetes distributions and installation tools, such as kubespray[5] or RKE2[6].

3. Kubernetes Distribution and Installation
RKE2 is planned as the Kubernetes distribution, with a minimal cluster installation
performed initially. We will use the default CIDR settings for service and pod networking
(see Network Segmentation below), but override the node-cidr-mask-size from the default 24
to 22 to allow for more pods per node. Following capabilities must be configured before the
first workload that depends on persistent storage and networking:

◦ Storage using the Ceph cluster.

◦ Networking using Cilium with eBPF enabled for optimal performance. No tunneling is
needed because all the nodes are on the same layer 2 domain. WireGuard encryption
will be used for inter-node communication.

4. Argo CD Deployment
Argo CD[7] will be installed as the first optional component. This will be used to manage not
only the applications later, but also all additions and Kubernetes plugins from this moment
further.

5. GitOps Setup
Argo CD will be connected to an in-advance prepared Git repository with all the other
infrastructure components, such as cert-manager, ingress, proxy, DNS, load balancer,
network policies, etc.

Supporting services are described later in the section 5.4 Operational Architecture.

5.2.2 Network Segmentation

The following table shows the proposed subnets and VLANs for our primary site:

Architecture and Design Documentation 5. DevOps & Operational Standards

Project code: 09I05-03-V04-00101 Page 134 of 152

VLAN
ID

Subnet Description

10 10.10.10.0/
24

Out-of-Band Management, for IPMI, isolated from other networks.

20 10.10.20.0/
24

Provisioning / Admin, used to SSH into Proxmox, hypervisors, and base
OS.

30 10.10.30.0/
24

VM Internal Network, internal VM traffic, isolated from WAN.

35 10.10.35.0/
24

Proxmox Sync, ideally isolated, dedicated network used only for Corosync
traffic.

40 10.10.40.0/
24

Kubernetes Nodes, used by K8s control/worker nodes for inter-node
traffic.

50 10.10.50.0/
24

Ingress / Load Balancer, for public-facing services accessible via ingress
or LB.

80 10.10.80.0/
24

Storage (Ceph), dedicated Ceph traffic.

90 10.10.90.0/
24

Monitoring/Logging, isolate telemetry traffic (this is optional, and may be
dropped).

N/A 10.42.0.0/1
6

Kubernetes Pods, allocated via cluster CIDR (used by CNI); used for
internal pod-to-pod communication across the cluster; not externally
routable.

N/A 10.43.0.0/1
6

Kubernetes Services, allocated via cluster CIDR (used by CNI); not
externally routable.

From the workload deployment perspective, Kubernetes networks are used most heavily, but
they are largely abstracted away through the use of service names. Additionally, the Ingress
network is used to expose software services to clients outside the cluster. Access from the public
Internet is handled by the edge firewall, which routes traffic to the Ingress network.

The backup/Zabbix server on the secondary site will have its own uplink with a separate public
IP. It will not be part of any VPN/VLAN, it will be heavily firewalled, and will be accessed over
secure protocols (SSH, HTTPS).

5.3 CI/CD Pipeline
Continuous Integration (CI) and Continuous Delivery (CD) are two related terms from a
family of "continuous" terms. This is underlined by the fact that CD can also mean Continuous
Deployment which in some context is clearer as a complement to CI. All these terms imply
various levels of automation - the higher, the better, but this also requires higher maturity level
of the organization.

Architecture and Design Documentation 5. DevOps & Operational Standards

Project code: 09I05-03-V04-00101 Page 135 of 152

It is important to focus on the "value stream" - what is going in (e.g. source code), how is it
transformed, what are the key artefacts, and where they should go. The pipeline can be roughly
split into the CI-part which, in simplified terms, corresponds to the "build" phase - and CD-part,
here with focus on deployment. CI part is mostly done with dev/build tools, e.g. Maven, or, in
Kubernetes environment, tools for building container images. The result is an artifact that is
either consumed by other CI/CD pipelines (in case of a library) or ultimately deployed. A
deployable artifact can be deployed to multiple environments, including testing environments
for end-to-end and other kinds of tests.

5.3.1 CI/CD Requirements

These are the identified requirements for our CI/CD pipeline:

• Building midPoint (Java, Maven), this is an existing capability, currently we use Jenkins for
this.

• Building container images - all the services and AI workloads will be delivered as container
images.

• Deployment to Kubernetes, both automatic and with manual intervention, including
selection of the target environment. This may be handled directly by the CI/CD pipeline or
delegated to GitOps tools such as Argo CD.

• The pipeline should scan artifacts for dependency vulnerabilities using Dependency-
Track[8], which is already established in our company. This means, CI/CD must be able to
send Software Bill of Materials (SBOM) to Dependency-Track.

At this stage, we don’t expect sophisticated pipelines incorporating AI workflows, as we mostly
use existing LLMs for inference. Also, AI development and testing initially require more manual
intervention. This may change in the future and tools such as MLflow or kubeflow may be used
by the primary CI/CD pipeline.

The following types of artifacts must be supported by our CI/CD processes:

• Existing Java artifacts, namely midPoint. It is normally run on customers' infrastructure, but
for testing purposes we will also deploy it to our Kubernetes cluster.

• Our services, packaged as containers and deployed as pods to Kubernetes. Helm or
Kustomize are both acceptable to describe the deployment as long as the environment-
specific configuration is clearly externalized.

• Third-party software for development (such as various AI tools), and operations
(monitoring, logging, and other qualities). This will be managed in GitOps fashion, utilizing
Helm charts or Kustomize, ideally already available from 3rd parties.

5.3.2 Artifact Registry

Beyond the main CI/CD tools for build and deployment, another component is of utmost

Architecture and Design Documentation 5. DevOps & Operational Standards

Project code: 09I05-03-V04-00101 Page 136 of 152

importance - artifact registry (also called a repository). There are many types of artifact
repositories, often specific to a programming language ecosystem, for instance, a Maven
repository for Java.

Based on the known requirements from the development team, we will not need Python or
other language-based repositories initially. But we must introduce a robust and reliable
container image registry (Docker registry).

We are long-term users of Nexus OSS repository software, however, recent restrictions -
specifically, a 24-hour request limit - have made it unreliable. It is a capable universal
registry/repository supporting all the important artifact formats. But we decided not to use
Nexus OSS because it becomes non-functional when the request limit is exceeded, and the
commercial version is very costly.

The following alternatives are considered:

• JFrog Artifactory OSS[9] - a direct competitor of Nexus, universal registry, free version
available.

• Harbor[10] - OCI-compliant registry, Docker images and binary files (via ORAS[11]), OIDC
support; no Maven and npm support.

• GitLab also offers a built-in Docker registry. While we use GitLab already, it is debatable
whether this responsibility should belong here, or whether a focused project like Harbor
would be more appropriate.

5.3.3 CI/CD Solution

Let’s discuss our current CI/CD ecosystem and how it can serve the needs of this project:

• Source repositories
GitHub and internal GitLab; virtually any Git repository would work the same way in our
ecosystem. Both solutions support webhooks to trigger the build in CI/CD, but polling would
also be an acceptable solution. Generally, we treat Git repositories purely as source code
storage, not tying ourselves to the additional features, especially for GitHub, which we do
not host ourselves.

• CI/CD product
Jenkins with Jenkinsfile-style pipelines builds most of our software, predominantly midPoint
and related libraries. With current CI/CD requirements, any generic CI/CD solution would
suffice as long as it can be integrated with other tools we use to check source code quality
and detect potential vulnerabilities, that is Dependency-Track and SonarQube. These tools
are often integrated primarily on the build tool level. Given our familiarity with Jenkins and
the fact that CI/CD is not the core focus of this project we may keep using it not to disrupt the
development flow. We should improve our current scripted pipelines, which often duplicate
Kubernetes setup code. We will therefore try to standardize and reuse our Kubernetes setup
templates and adopt declarative pipelines where feasible. For short development- or test-

Architecture and Design Documentation 5. DevOps & Operational Standards

Project code: 09I05-03-V04-00101 Page 137 of 152

oriented pipelines, GitLab CI/CD is also under consideration.

• Artifact repository - Nexus, covered in previous section.

• Kubernetes deployment
Argo CD; this is currently used predominantly by the infrastructure team to deploy 3rd-party
products for the needs of the company. In the scope of the project, Argo CD will be used
much more by the development team as well, be it directly or via another tool, to deploy the
services into Kubernetes.

Other CI/CD solutions were reviewed, with a focus on OSS, free, self-hosted options. Naturally,
there is significant overlap in features across tools, though some offer unique approaches. If
strong pipeline modeling, e.g. as a directed acyclic graph (DAG), was required, we would
consider options such as Concourse CI[12] or Argo Workflows[13]. GitLab CI/CD and GitHub Actions
also support DAG-style job dependencies. However, we decided to stay with our current
solutions and focus on improving pipeline standards instead of migrating to a new tool.

5.3.4 GPU Workloads

GPUs are hosted on one of the three physical nodes in the cluster. All GPUs are made available to
the Kubernetes worker VM through PCIe passthrough. This worker VM runs the required GPU
drivers and Kubernetes plugins (e.g. NVIDIA device plugin for Kubernetes[14]). The Kubernetes
node is labeled with GPU-related tags to enable GPU-aware pod scheduling[15]. Otherwise, the AI
workload is managed like any other service, apart from the need to monitor additional GPU-
specific metrics.

5.4 Operational Architecture
This section describes the operational architecture supporting the system, focusing on how
services are deployed, accessed, and monitored. It includes considerations for running AI
components, along with the supporting infrastructure such as observability tooling and API
routing. Generally, we should follow well-known practices inspired by the Twelve-Factor
App[16] methodology.

5.4.1 Observability Architecture

The observability architecture is designed to provide a unified monitoring and logging solution
for all workloads across the project. This approach ensures consistent visibility and operational
awareness, enabling rapid incident response. Since the project will be deployed on our company
hardware, there is a natural synergy with company-wide compliance and security initiatives.
Rather than maintaining a separate observability platform, company observability solution will
be redesigned to meet the needs of the project.

Key design aspects include:

• Shared company-wide monitoring and logging stack:

Architecture and Design Documentation 5. DevOps & Operational Standards

Project code: 09I05-03-V04-00101 Page 138 of 152

A centralized observability platform will be deployed using industry-standard tools such as
Prometheus[17] for metrics collection, Grafana[18] for visualization, and an OpenSearch[19]

-based logging platform for log aggregation and analysis. OpenSearch replaces the well-
known ELK stack (Elasticsearch, Logstash, Kibana), which we want to avoid due to their less
OSS-friendly licensing. This stack will be co-deployed on the company Kubernetes
infrastructure and shared across projects for operational consistency.

• Namespace-aware data collection and logical isolation:
The monitoring infrastructure will support separation of metrics and logs by Kubernetes
namespace, enabling clear operational boundaries between projects or teams. This
approach simplifies access control while retaining a unified observability backend for the
whole organization. The setup remains compatible with stricter isolation models if future
workloads or compliance requirements demand them.

• Developer empowerment and collaboration:
The infrastructure team will maintain the core monitoring and logging platform. Developers
will be empowered to create and manage their own dashboards and alerts within their
namespaces. This enables agile and responsive operational insights for each team or project
without compromising centralized governance.

• Integration with CI/CD and security tooling:
Observability will extend to monitor CI/CD processes (covered in section 5.3), including build
health, artifact vulnerability scans, and SBOM generation. Security-related telemetry and
scan results will feed into the monitoring platform to provide feedback for the developers,
as well as for the security team.

• Alerting and incident escalation:
Alerts will be defined based on service-level objectives and operational thresholds, with
integration to incident management workflows. In addition to Prometheus
Alertmanager[20], the Zabbix[21] server deployed at the secondary site will provide
complementary monitoring and escalation capabilities for infrastructure-level events. The
coordination between these systems will be defined to avoid alert duplication and to
leverage long-term monitoring strengths of Zabbix.

Deploying all these solutions is just a start and can quickly become a burden if not managed
with high level of automation and GitOps practices. Once the observability platform is well
established, the proposed tools provide a solid foundation for integrating Wazuh[22], an open-
source SIEM (Security Information and Event Management) system. Wazuh leverages
components like OpenSearch, allowing us to build on existing knowledge and tools without
starting from scratch. This would offer a more comprehensive, holistic view of our collected
data and can extend to integrate with our firewall for enhanced security monitoring.

5.4.2 Workload Organization and Namespace Strategy

Kubernetes namespaces offer a way to logically separate and manage workloads within the
same cluster. One option is to create a dedicated namespace for each service or functional
component, e.g. Code generator, Integration catalog, etc. This approach allows for fine-grained

Architecture and Design Documentation 5. DevOps & Operational Standards

Project code: 09I05-03-V04-00101 Page 139 of 152

access control, isolated resource quotas, and clearer separation of concerns. This is especially
beneficial in large-scale systems or when multiple teams are involved. It can also simplify
observability, network policies, and operational boundaries, but introduces additional overhead
in terms of configuration and coordination.

In contrast, placing all project workloads into a single shared namespace reduces complexity at
the beginning. This makes it easier to configure networking, access control, and CI/CD pipelines
during early development and prototyping. It also reflects the current reality of a small, co-
developed system where most components are tightly integrated and maintained by the same
team (or closely related teams with a high level of trust).

We will start with a single shared namespace for all workloads to keep the setup lean and
manageable. As the architecture matures and services evolve, we may introduce namespace
boundaries where operational or security requirements justify them.

5.4.3 API Gateway and Ingress Management

API Gateway has the following responsibilities:

• Act as the primary boundary between internal services and external clients, hiding internal
service details and protecting the cluster from direct external access.

• Manage incoming traffic with routing, TLS termination, and basic authentication.

• Provide advanced API management features such as authentication, rate limiting, etc.

• Monitor key metrics like request rates, latency, and errors to identify and resolve issues
proactively.

• Trigger alerts on anomalies (e.g., codegen timeouts) to minimize user impact and maintain
service reliability.

The initial plan is to use the NGINX Ingress Controller[23] to manage incoming traffic, providing
essential functions such as routing, TLS termination, and basic authentication. This setup
ensures reliable and secure access to services hosted within the Kubernetes cluster.

Looking ahead, we plan to evaluate alternative API gateway solutions such as Kong[24] or
Traefik[25]. These platforms offer advanced capabilities beyond basic ingress, including API
management features like authentication and rate limiting. Selecting the optimal gateway will
be driven by evolving project requirements and ease of integration.

We will monitor gateway metrics like request rates, latencies, and error counts to detect
bottlenecks or failures early. For example, if the codegen service starts timing out, alerts can
trigger investigations before users notice impact. This proactive monitoring helps keep APIs
stable and performant throughout development and production.

Architecture and Design Documentation 5. DevOps & Operational Standards

Project code: 09I05-03-V04-00101 Page 140 of 152

5.4.4 Workload Standards and Best Practices

To ensure consistent quality, security, and maintainability across project workloads, a set of
standards and best practices will be established and followed.

• Container Images:
All container images must be based on vetted, minimal base images to reduce attack surface
and improve startup times. Images will undergo security scanning as part of the CI/CD
pipeline, with Software Bill of Materials (SBOM) generated for traceability and compliance
(orchestrated by CI/CD pipeline).

• Observability Instrumentation:
Services must expose standardized endpoints to facilitate monitoring and health checks:

◦ /metrics endpoint conforming to the Prometheus exposition format[26] for metrics
collection. This is a de facto standard supported by many client libraries.

◦ Kubernetes health (/health) and readiness (/ready) probes to enable proper lifecycle
management by the platform.

Examples for backend languages commonly used in the project:

◦ Java (Spring Boot): Use the Micrometer[27] library, which integrates seamlessly with
Spring Boot Actuator to expose Prometheus-compatible metrics. Spring Boot Actuator
also supports built-in health and readiness endpoints out of the box.

◦ Python: Recommended libraries include prometheus-client[28] for metrics exposure,
along with frameworks like FastAPI[29] or Flask[30] combined with health check packages
(e.g., py-healthcheck[31]) for readiness and liveness probes.

Using these libraries will help standardize telemetry while minimizing custom
implementation, ensuring consistency across services. The final choice of libraries for
observability instrumentation may evolve over time.

• Logging and Log Forwarding:
Logs should follow a consistent, structured format and include key metadata such as
timestamps, service name, and request or correlation IDs. This consistency enables effective
troubleshooting and traceability across distributed services. Guidelines will be established to
ensure logs are forwarded reliably and securely to the centralized observability platform
based on OpenSearch.

Although we do not plan to use OpenTelemetry[32] for the project at this moment, we may
consider it as our observability solution matures. OpenTelemetry, as a CNCF-hosted project,
provides widely accepted standard formats for telemetry data including traces, metrics, and
logs.

Candidate libraries for structured logging include Logstash Logback Encoder[33] for Java
(often used with Spring Boot) and structlog[34] or python-json-logger[35] for Python.

Architecture and Design Documentation 5. DevOps & Operational Standards

Project code: 09I05-03-V04-00101 Page 141 of 152

As typical in Kubernetes or cloud environments, logs should be written to standard output
(stdout).

• Configuration and Lifecycle Management:
Workloads will be configured through environment variables and externalized configs, as
this improves portability and eases operational management. Graceful shutdown
mechanisms must be implemented to allow pods to terminate cleanly, releasing resources
and avoiding request disruptions.

• Resource Management:
Clear guidelines for specifying resource requests and limits (CPU, memory) will be enforced
to ensure stable cluster operation and prevent resource contention. This includes
recommendations for initial values and adjustments based on observed usage, enabling
efficient autoscaling and scheduling.

Together, these standards form a foundation for robust, secure, and observable workloads that
align with the overall project and company infrastructure goals.

5.5 Security Operations
Security is an integral part of the operational lifecycle and is applied consistently across the
infrastructure, CI/CD pipelines, and deployed workloads.

The following practices and tools are considered as our security operations baseline:

• Access control is enforced using Kubernetes RBAC, with further restrictions applied
through GitOps workflows (e.g., Argo CD) to ensure auditable and declarative changes.
Authentication is integrated with our Keycloak instance, enabling centralized identity and
access management.

• Secrets management is implemented using Kubernetes Secrets initially, but we consider to
advance to HashiCorp Vault[36].

• Container security is addressed via:

◦ Minimal base images.

◦ Regular vulnerability scans of built artifacts using Dependency-Track[37].

◦ Generation of SBOMs using tools like Trivy or Syft, and tracking of image provenance
and metadata in CI/CD.

• Infrastructure hardening includes baseline OS configuration, restricted administrative
access, and restricted network ingress.

• Auditability is achieved through logging of CI/CD actions, Kubernetes events, and changes to
GitOps-managed infrastructure.

Security practices will evolve with the project, depending on the scope of exposed APIs, or
regulatory demands. An internal security review will be part of the final staging/deployment

Architecture and Design Documentation 5. DevOps & Operational Standards

Project code: 09I05-03-V04-00101 Page 142 of 152

process for any public-facing services.

Because the Kubernetes cluster and workloads are fully under our control, excessive security
measures such as mTLS are not required. Pods can use HTTP within the Kubernetes pod
network. Cilium network policies will restrict communication between unrelated pods.
Communication between Kubernetes nodes will be encrypted by Cilium to prevent sniffing on
the VM network. Outside the cluster, all communication will use HTTPS, with Let’s Encrypt
serving as a sole certificate authority.

5.6 Backup and Disaster Recovery
Our infrastructure incorporates a multi-layered backup and disaster recovery (DR) strategy,
designed to minimize data loss and service downtime.

The redundancy is provided on these levels:

• Ceph-based storage with replication across nodes provides immediate fault tolerance.

• Secondary site with a dedicated backup server, this ensures geographic redundancy and
protection from catastrophic failures.

• An additional secondary backup may be introduced if needed; however, this requires data
encryption at rest and can increase risk if not carefully managed.

We are familiar with Backy2[38] for Ceph RBD image backups and BorgBackup[39] for structured,
file-level or application-aware backups. This combination creates a strategy in which important
data are backed up in two complementary forms, each with its pros and cons.

• Backing up whole images (or volumes) shortens recovery times, but the backup process is
unaware of application state, which may result in inconsistencies.

• Recovering business data, e.g. database dumps and selected directories on the filesystem, is
more involved. The system has to be reinstalled first (and reconfigured if the configuration
is not backed up) and then filled with the data from backup.

Since our future infrastructure will use Proxmox for VM clustering, it is natural to utilize the
Proxmox Backup Server (PBS)[40] solution for VM-level backups. PBS can effectively replace
Backy2-style backups, which are application-unaware, but PBS also supports "quiescence" via
QEMU guest agent, enabling more consistent backups.

In any case, this kind of backup consumes more disk space, but at the same time enables faster
recovery. Naturally, occasional full backups will be combined with incremental backups to save
some space. But if anything goes wrong with this kind of backup, e.g. inconsistent image, one
deals with a binary blob that may be useless in the worst case, or very difficult to put together at
least.

We plan to use Kubernetes-oriented backup tools such as Velero or Stash for backing up cluster

Architecture and Design Documentation 5. DevOps & Operational Standards

Project code: 09I05-03-V04-00101 Page 143 of 152

resources and persistent volume data.

Application-aware backups remain valuable even when wholesale backups of underlying data
are performed. At this moment, we intend to continue using Borg for this type of backup. These
backups are typically more space-efficient and suitable for long-term retention.

Backups will be scheduled and verified regularly, with attention to recovery time objectives
(RTO) and recovery point objectives (RPO) appropriate to each workload type. This setup is a
solid foundation, but formal DR testing and procedures will be defined in later operational
stages.

[1] https://kubernetes.io/

[2] https://ceph.io/

[3] https://www.proxmox.com

[4] https://www.enisa.europa.eu/publications/good-practices-for-supply-chain-cybersecurity

[5] https://github.com/kubernetes-sigs/kubespray

[6] https://docs.rke2.io/

[7] https://argo-cd.readthedocs.io/en/stable/

[8] https://dependencytrack.org/

[9] https://jfrog.com/community/download-artifactory-oss/

[10] https://goharbor.io/

[11] https://oras.land/

[12] https://concourse-ci.org/

[13] https://argoproj.github.io/workflows/

[14] https://github.com/NVIDIA/k8s-device-plugin

[15] https://kubernetes.io/docs/tasks/manage-gpus/scheduling-gpus/

[16] https://12factor.net/

[17] https://prometheus.io/

[18] https://grafana.com/

[19] https://opensearch.org/

[20] https://prometheus.io/docs/alerting/latest/alertmanager/

[21] https://www.zabbix.com/

[22] https://wazuh.com/

[23] https://github.com/kubernetes/ingress-nginx

[24] https://konghq.com/

[25] https://traefik.io/traefik/

[26] https://prometheus.io/docs/instrumenting/exposition_formats/

[27] https://micrometer.io/

[28] https://github.com/prometheus/client_python

[29] https://fastapi.tiangolo.com/

[30] https://flask.palletsprojects.com/

[31] https://pypi.org/project/py-healthcheck/

[32] https://opentelemetry.io/

[33] https://github.com/logstash/logstash-logback-encoder

[34] https://www.structlog.org/

[35] https://pypi.org/project/python-json-logger/

[36] https://developer.hashicorp.com/vault

Architecture and Design Documentation 5. DevOps & Operational Standards

Project code: 09I05-03-V04-00101 Page 144 of 152

https://kubernetes.io/
https://ceph.io/
https://www.proxmox.com
https://www.enisa.europa.eu/publications/good-practices-for-supply-chain-cybersecurity
https://github.com/kubernetes-sigs/kubespray
https://docs.rke2.io/
https://argo-cd.readthedocs.io/en/stable/
https://dependencytrack.org/
https://jfrog.com/community/download-artifactory-oss/
https://goharbor.io/
https://oras.land/
https://concourse-ci.org/
https://argoproj.github.io/workflows/
https://github.com/NVIDIA/k8s-device-plugin
https://kubernetes.io/docs/tasks/manage-gpus/scheduling-gpus/
https://12factor.net/
https://prometheus.io/
https://grafana.com/
https://opensearch.org/
https://prometheus.io/docs/alerting/latest/alertmanager/
https://www.zabbix.com/
https://wazuh.com/
https://github.com/kubernetes/ingress-nginx
https://konghq.com/
https://traefik.io/traefik/
https://prometheus.io/docs/instrumenting/exposition_formats/
https://micrometer.io/
https://github.com/prometheus/client_python
https://fastapi.tiangolo.com/
https://flask.palletsprojects.com/
https://pypi.org/project/py-healthcheck/
https://opentelemetry.io/
https://github.com/logstash/logstash-logback-encoder
https://www.structlog.org/
https://pypi.org/project/python-json-logger/
https://developer.hashicorp.com/vault

[37] https://dependencytrack.org/

[38] https://github.com/wamdam/backy2

[39] https://www.borgbackup.org/

[40] https://pbs.proxmox.com/wiki/index.php/Main_Page

Architecture and Design Documentation 5. DevOps & Operational Standards

Project code: 09I05-03-V04-00101 Page 145 of 152

https://dependencytrack.org/
https://github.com/wamdam/backy2
https://www.borgbackup.org/
https://pbs.proxmox.com/wiki/index.php/Main_Page

6. Compliance & Governance
Our organization is in the process of establishing an information security management system
aligned with ISO/IEC 27001. Preparations for certification are underway, with the goal of
completing the process within the next few months. This ensures that security and compliance
are treated as ongoing effort, not just one-time activities.

The following sections focus on governance and regulatory aspects specific to AI systems,
including standards like ISO/IEC 42001 and legal obligations under the AI Act and GDPR.

6.1 AI Governance and ISO/IEC 42001
ISO/IEC 42001 is the international standard for Artificial Intelligence Management Systems
(AIMS), designed to help organizations manage risks and responsibilities associated with AI
technologies. We do not seek this certification, so it is not mandatory for us, but its principles
offer a structured way to align AI development and deployment with safety, transparency, and
accountability goals.

As we want to improve our AI governance practices, we will use ISO/IEC 42001 as a guiding
framework. Some of the relevant areas it covers, and how it relates to our project, include:

• AI-specific risk management:
Risks associated with AI-based suggestions, such as hallucinated connector configurations or
misapplied access policies, are being assessed and tracked. Manual approval steps are
enforced in sensitive workflows, for instance, code must be reviewed by the user. Prompt
injection vectors are included in threat modeling activities.

• Human oversight and accountability:
Accountability for AI-assisted decisions is distributed across designated roles (e.g., platform,
data, and security teams). Logs include traceable metadata and auditability for actions
influenced by AI. Human approval is required for all changes with security or infrastructure
impact.

• Transparency and explainability:
Users interacting with AI-generated suggestions are shown contextual information,
including explanatory tooltips and links to source prompts or documentation. Internally, all
AI-related assets (prompt templates, model parameters, intended usage) are documented in
version-controlled repositories.

• Data quality and integrity:
Currently, it is not clear whether we will perform training tasks, but if so, training or
reference data used by internal AI components must be curated from valid, up-to-date
configuration sources. Inference components must also rely on validated and current
configuration sources to ensure meaningful output.

• Monitoring and impact assessment:

Architecture and Design Documentation 6. Compliance & Governance

Project code: 09I05-03-V04-00101 Page 146 of 152

AI-related features are instrumented with custom telemetry such as suggestion adoption
rates and user feedback indicators. Logs about rejected or modified AI outputs support
regular audits and downstream analysis of potential misalignment with user expectations.

• Lifecycle management:
AI model usage is tracked across services, with support for prompt versioning, staged
rollout, and rollback procedures (this is related to Transparency and Data quality controls
above). All deployments involving model updates are reviewed and tested as part of normal
CI/CD processes.

Where relevant, we will review the controls from ISO/IEC 42001 and prepare a related
statement of applicability.

6.2 EU AI Act Alignment and Obligations
The EU Artificial Intelligence Act introduces binding regulatory requirements for the
development and deployment of AI systems within the European Union. In contrast to voluntary
frameworks such as ISO/IEC 42001, AI Act establishes legal obligations based on the risk
category of each AI system. As an EU-based organization, we are subject to this regulation with
compliance obligations expected to phase in between late 2025 and 2026.

Our current use of AI focuses on assisting identity engineers (which are users from the API’s
perspective), specifically generating code snippets and suggesting attribute mappings in the
context of midPoint connector development and configuration. These suggestions are subject to
human review and approval, and they do not autonomously affect end-users or identity data.
Nevertheless, we aim to align our practices with the Act’s core principles.

Key considerations include:

• General-purpose AI usage:
If using open-source or third-party LLMs, we must ensure they originate from providers that
offer sufficient transparency and documentation. This includes licensing, model
information, and technical details to meet applicable legal and ethical requirements,
especially as defined by the EU AI Act and associated Codes of Practice.

• Transparency and documentation:
Any internal models or prompt templates must be documented, including their intended
use, limitations, and version history. This helps satisfy the Act’s expectations for general-
purpose AI traceability.

• Human oversight and approval:
All AI-assisted suggestions (code changes, access control mappings) remain subject to human
review. No AI-generated content is applied without user confirmation, reducing regulatory
exposure.

• CI/CD governance: Outputs from AI systems are traceable through logging and versioning.
Manual approval gates and automated validation steps in CI pipelines help prevent unsafe

Architecture and Design Documentation 6. Compliance & Governance

Project code: 09I05-03-V04-00101 Page 147 of 152

or non-compliant code from reaching production.

• Avoiding high-risk classification: We monitor the evolving definition of high-risk AI under
the Act. Should our AI tooling ever influence decisions in regulated domains (e.g., critical
infrastructure, biometric ID systems), a formal risk assessment and compliance process will
be initiated.

We want to ensure alignment with the AI Act’s requirements without sacrificing developer
productivity and control. To achieve this, we will implement transparency and human oversight
(both for developers and users, as relevant) into our processes.

6.3 GDPR Considerations
Our project is designed to minimize the processing of personal data. Typically, all user data
remains within the customer’s environment and is processed locally by midPoint, consistent
with established data privacy best practices.

However, we recognize scenarios where AI-assisted mapping suggestions could benefit from
access to personal data to improve accuracy. In such cases, only after local heuristics fail, users
will be explicitly asked to consent (opt-in) before any personal data is processed or transmitted
externally.

We will try to avoid such scenarios, but if no better alternative exists, the system must be
designed to minimize spread of such data inside our operational infrastructure. Wherever
personal data may appear in telemetry (logs, traces, etc.), it may be necessary to omit or replace
it with pseudo-data. While this may limit troubleshooting for this category of API calls, we
accept these consequences where GDPR compliance requires it.

We commit to maintaining strict compliance with GDPR principles, ensuring transparency, user
control, and data minimization throughout all AI-related workflows. This approach balances
innovation with privacy and legal responsibility.

Architecture and Design Documentation 6. Compliance & Governance

Project code: 09I05-03-V04-00101 Page 148 of 152

Bibliography
Ahmad, W. U., Chakraborty, S., Ray, B., & Chang, K. W. (2021). Unified pre‑training for program
understanding and generation. arXiv preprint arXiv:2103.06333.

Allamanis, M., Barr, E. T., Devanbu, P., & Sutton, C. (2018). A survey of machine learning for big
code and naturalness. ACM Computing Surveys (CSUR), 51(4), 1–37.

Alon, U., Zilberstein, M., Levy, O., & Yahav, E. (2019). code2vec: Learning distributed
representations of code. Proceedings of the ACM on Programming Languages, 3(POPL), 1–29.

AI Infrastructure Landscape (2023), available at https://ai-infrastructure.org/ai-infrastructure-
landscape/, retrieved at 5th June 2025.

AI Observability: Ensuring Trust and Transparency in Machine Learning Pipelines (2025),
available at https://www.computer.org/publications/tech-news/trends/ai-observability-trust-
transparency, retrieved at 6th June 2025.

Austin, J., Odena, A., Nye, M., Bosma, M., Michalewski, H., Dohan, D., … & Sutton, C. (2021).
Program synthesis with large language models. arXiv preprint arXiv:2108.07732.

Banerjee, S., & Lavie, A. (2005, June). METEOR: An automatic metric for MT evaluation with
improved correlation with human judgments. In Proceedings of the ACL Workshop on Intrinsic
and Extrinsic Evaluation Measures for Machine Translation and/or Summarization (pp. 65–72).

Chandrachood, A. (2023). The Importance of Observability in Modern Software Applications. J
Artif Intell Mach Learn & Data Sci 2023, 1(2), 472–475.

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. D. O., Kaplan, J., … & Zaremba, W. (2021).
Evaluating large language models trained on code. arXiv preprint arXiv:2107.03374.

Denkowski, M., & Lavie, A. (2014, June). Meteor universal: Language specific translation
evaluation for any target language. In Proceedings of the Ninth Workshop on Statistical Machine
Translation (pp. 376–380).

Dhamankar, R., Lee, Y., Doan, A., Halevy, A., & Domingos, P. (2004, June). iMAP: Discovering
complex semantic matches between database schemas. In Proceedings of the 2004 ACM SIGMOD
International Conference on Management of Data (pp. 383–394).

Dibia, V., Fourney, A., Bansal, G., Poursabzi‑Sangdeh, F., Liu, H., & Amershi, S. (2022). Aligning
offline metrics and human judgments of value for code generation models. arXiv preprint
arXiv:2210.16494.

Do, H. H., & Rahm, E. (2002, January). COMA—a system for flexible combination of schema
matching approaches. In VLDB'02: Proceedings of the 28th International Conference on Very
Large Databases (pp. 610–621). Morgan Kaufmann.

Architecture and Design Documentation Bibliography

Project code: 09I05-03-V04-00101 Page 149 of 152

https://ai-infrastructure.org/ai-infrastructure-landscape/
https://ai-infrastructure.org/ai-infrastructure-landscape/
https://www.computer.org/publications/tech-news/trends/ai-observability-trust-transparency
https://www.computer.org/publications/tech-news/trends/ai-observability-trust-transparency

Ellis, K., Ritchie, D., Solar‑Lezama, A., & Tenenbaum, J. (2018). Learning to infer graphics
programs from hand‑drawn images. Advances in Neural Information Processing Systems, 31.

Feng, L., Li, H., & Zhang, C. J. (2024). Cost‑Aware Uncertainty Reduction in Schema Matching with
GPT‑4: The Prompt‑Matcher Framework. arXiv preprint arXiv:2408.14507.

Feng, Z., Guo, D., Tang, D., Duan, N., Feng, X., Gong, M., … & Zhou, M. (2020). CodeBERT: A
pre‑trained model for programming and natural languages. arXiv preprint arXiv:2002.08155.

Fuxman, A., Miller, R. J. (2009). Schema Mapping. In: LIU, L., ÖZSU, M. T. (eds) Encyclopedia of
Database Systems. Springer, Boston, MA.

Guo, D., Ren, S., Lu, S., Feng, Z., Tang, D., Liu, S., … & Zhou, M. (2020). GraphCodeBERT:
Pre‑training code representations with data flow. arXiv preprint arXiv:2009.08366.

Kang, J., & Naughton, J. F. (2003, June). On schema matching with opaque column names and
data values. In Proceedings of the 2003 ACM SIGMOD International Conference on Management
of Data (pp. 205–216).

Kementsietsidis, A. (2009). Schema Matching. In: LIU, L., ÖZSU, M. T. (eds) Encyclopedia of
Database Systems. Springer, Boston, MA.

Kreuzberger, D., Kühl, N., & Hirschl, S. (2023). Machine Learning Operations (MLOps): Overview,
Definition, and Architecture. IEEE Access, 11, 31866–31879

Lai, H., Liu, X., Iong, I. L., Yao, S., Chen, Y., Shen, P., … & Tang, J. (2024, August). AutoWebGLM: A
Large Language Model‑based Web Navigating Agent. In Proceedings of the 30th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining (pp. 5295–5306).

Li, R., Allal, L. B., Zi, Y., Muennighoff, N., Kocetkov, D., Mou, C., … & de Vries, H. (2023). Starcoder:
may the source be with you!. arXiv preprint arXiv:2305.06161.

Li, Y., Choi, D., Chung, J., Kushman, N., Schrittwieser, J., Leblond, R., … & Vinyals, O. (2022).
Competition‑level code generation with alphacode. Science, 378(6624), 1092–1097.

Li, Y., Li, J., Suhara, Y., Doan, A., Tan, W. C. (2020). Deep entity matching with pretrained language
models. arXiv preprint arXiv:2004.00584.

Lin, Ch.‑Y. (2004). ROUGE: A package for automatic evaluation of summaries. In Proceedings of
the Workshop on Text Summarization Branches Out, 2004.

Lozhkov, A., Li, R., Allal, L. B., Cassano, F., Lamy‑Poirier, J., Tazi, N., … & de Vries, H. (2024).
Starcoder 2 and the stack v2: The next generation. arXiv preprint arXiv:2402.19173.

Lu, Y., & Wang, J. (2025). KARMA: Leveraging Multi‑Agent LLMs for Automated Knowledge
Graph Enrichment. arXiv preprint arXiv:2502.06472.

Madhavan, J., Bernstein, P. A., & Rahm, E. (2001, September). Generic schema matching with

Architecture and Design Documentation Bibliography

Project code: 09I05-03-V04-00101 Page 150 of 152

cupid. In VLDB (Vol. 1, No. 2001, pp. 49–58).

Melnik, S., Garcia‑Molina, H., & Rahm, E. (2002). Similarity flooding: a versatile graph matching
algorithm and its application to schema matching. In Proceedings of the 18th International
Conference on Data Engineering, San Jose, CA, USA, pp. 117–128.

MLOps at a Reasonable Scale \[The Ultimate Guide] (2024), available at https://neptune.ai/blog/
mlops-at-reasonable-scale, retrieved at 6th June 2025.

Nijkamp, E., Hayashi, H., Xiong, C., Savarese, S., & Zhou, Y. (2023). Codegen2: Lessons for training
llms on programming and natural languages. arXiv preprint arXiv:2305.02309.

Papineni, K., Roukos, S., Ward, T., & Zhu, W. J. (2002, July). BLEU: a method for automatic
evaluation of machine translation. In Proceedings of the 40th Annual Meeting of the Association
for Computational Linguistics (pp. 311–318).

Popović, M. (2015, September). chrF: character n‑gram F‑score for automatic MT evaluation. In
Proceedings of the Tenth Workshop on Statistical Machine Translation (pp. 392–395).

Rahm, E., & Bernstein, P. A. (2001). A survey of approaches to automatic schema matching. The
VLDB Journal, 10, 334–350.

Ren, S., Guo, D., Lu, S., Zhou, L., Liu, S., Tang, D., … & Ma, S. (2020). CodeBLEU: a method for
automatic evaluation of code synthesis. arXiv preprint arXiv:2009.10297.

Roziere, B., Gehring, J., Gloeckle, F., Sootla, S., Gat, I., Tan, X. E., … & Synnaeve, G. (2023). Code
llama: Open foundation models for code. arXiv preprint arXiv:2308.12950.

Shraga, R., Gal, A., Roitman, H. (2020). Adnev: cross‑domain schema matching using deep
similarity matrix adjustment and evaluation. Proc. VLDB 13(9), 1401–1415.

Sutanta, E., Wardoyo, R., Mustofa, K., & Winarko, E. (2016). Survey: Models and Prototypes of
Schema Matching. International Journal of Electrical & Computer Engineering (2088‑8708), 6(3).

Tran, N., Tran, H., Nguyen, S., Nguyen, H., & Nguyen, T. (2019, May). Does BLEU score work for
code migration? In 2019 IEEE/ACM 27th International Conference on Program Comprehension
(ICPC) (pp. 165–176). IEEE.

Wang, S., Ding, L., Shen, L., Luo, Y., He, Z., Yu, W., & Tao, D. (2024). \$\mathbb{USCD}\$: Improving
Code Generation of LLMs by Uncertainty‑Aware Selective Contrastive Decoding. arXiv preprint
arXiv:2409.05923.

Wang, Y., Wang, W., Joty, S., & Hoi, S. C. (2021). CodeT5: Identifier‑aware unified pre‑trained
encoder‑decoder models for code understanding and generation. arXiv preprint
arXiv:2109.00859.

Xu, F. F., Alon, U., Neubig, G., & Hellendoorn, V. J. (2022, June). A systematic evaluation of large

Architecture and Design Documentation Bibliography

Project code: 09I05-03-V04-00101 Page 151 of 152

https://neptune.ai/blog/mlops-at-reasonable-scale
https://neptune.ai/blog/mlops-at-reasonable-scale

language models of code. In Proceedings of the 6th ACM SIGPLAN International Symposium on
Machine Programming (pp. 1–10).

Zhang, J., Shin, B., Choi, J. D., & Ho, J. C. (2021). SMAT: An attention‑based deep learning solution
to the automation of schema matching. In Advances in Databases and Information Systems: 25th
European Conference, ADBIS 2021, Tartu, Estonia, August 24–26, 2021, Proceedings 25
(pp. 260–274). Springer International Publishing.

Zhang, Y., Ma, Z., Ma, Y., Han, Z., Wu, Y., & Tresp, V. (2024). Webpilot: A versatile and autonomous
multi‑agent system for web task execution with strategic exploration. arXiv preprint
arXiv:2408.15978.

Architecture and Design Documentation Bibliography

Project code: 09I05-03-V04-00101 Page 152 of 152

	Architecture and Design Documentation: Deliverable D1
	Table of Contents
	Revision History
	1. Introduction
	1.1 Purpose
	1.2 Document Overview
	1.3 Target Audience
	1.4 Acronyms and Abbreviations
	1.5 Changed Terms

	2. Executive Summary
	2.1 Project Scope and Outcomes
	2.2 Project Milestones and Timeline

	3. Current State: Research, Analysis, and Prototypes
	3.1 Connector Code Generator
	3.1.1 Search & Scraping Solutions
	3.1.2 Code Generator Theory and Existing Solutions
	3.1.3 Summary Of Existing Solutions
	3.1.4 Open Challenges and Future Directions
	3.1.5 State of the Art in Evaluation Metrics for Code Generation
	3.1.6 Baseline Experiments for Connector Code Generator
	3.1.7 Analysis of Current Connector Frameworks and APIs

	3.2 Model Mapping Recommendation System
	3.2.1 Survey of Schema Matching and Mapping Algorithms
	3.2.2 Theoretical Framework for Applying Schema Mapping Techniques
	3.2.3 Overview of Open-Source and Commercial Tools
	3.2.4 Metrics

	3.3 Correlation Recommendation
	3.3.1 Finding Correlation Attributes
	3.3.2 Suggesting Correlation Rules

	3.4 Baseline Experiments for Model Mapping/Matching and Correlation Recommendation System
	3.4.1 Experiment 1: Embedding-based Empirical Threshold Optimization with Schema Matching and Correlation Prediction
	3.4.2 Experiment 2: LLM-Based Empirical Prompt-Driven Schema Matching and Correlation Prediction
	3.4.3 Baseline Groovy Code Generation for Schema Mapping
	3.4.4 Global Summary & Next Steps

	3.5 Delineation
	3.5.1 Experiments on Delineation Rule Discovery
	3.5.2 Results & Next Steps
	3.6 UX Research Approach

	3.7 AI Development & Testing Tools
	3.7.1 Requirements
	3.7.2 Key AI Studio Areas

	4. Architecture and Design
	4.1 Component-Level Diagram
	4.2 Component Descriptions
	4.3 API Specifications
	4.3.1 Codegen Interface
	4.3.2 Smart Integration Layer Interface
	4.3.3 Smart Integration Service Interface
	4.3.4 Integration Catalog Endpoints
	4.3.5 Code Validator Interface

	4.4 Connector Code Generator
	4.4.1 Base Connector Framework

	4.5 Mapping Recommendation
	4.6 Correlation Recommendation
	4.6.1 Suggesting Correlation Attributes
	4.6.2 Suggesting Correlation Rules

	4.7 Delineation
	4.8 User Interface (MidPoint Studio Plugin & Web UI)
	4.8.1 Description of Guided Wizards and Integration Catalog UI (User Flow Diagrams)

	4.9 Integration Catalog
	4.9.1 Architecture
	4.9.2 Function

	4.10 Validation Service
	XML Validator
	Groovy Validator

	4.11 AI Studio
	4.11.1 Chosen Toolset
	4.11.2 Next Steps
	4.11.3 Risk Factors

	4.12 Security Considerations
	4.13 Changes to MidPoint
	4.13.1 Complex Attributes
	4.13.2 Schema Enhancements
	4.13.3 Natural (Business) Keys in Item Paths
	4.13.4 Support for Advanced Aggregate and Analytical Queries
	4.13.5 Safer Scripting Language

	4.14 Changes to ConnId Framework
	4.15 Changes to MidPoint Studio

	5. DevOps & Operational Standards
	5.1 Hardware and Infrastructure
	5.1.1 Hardware Design
	5.1.2 GPU Requirements
	5.1.3 Hardware Origin and Risk Assessment

	5.2 Kubernetes and Network Infrastructure
	5.2.1 Kubernetes Cluster and Supporting Services
	5.2.2 Network Segmentation

	5.3 CI/CD Pipeline
	5.3.1 CI/CD Requirements
	5.3.2 Artifact Registry
	5.3.3 CI/CD Solution
	5.3.4 GPU Workloads

	5.4 Operational Architecture
	5.4.1 Observability Architecture
	5.4.2 Workload Organization and Namespace Strategy
	5.4.3 API Gateway and Ingress Management
	5.4.4 Workload Standards and Best Practices

	5.5 Security Operations
	5.6 Backup and Disaster Recovery

	6. Compliance & Governance
	6.1 AI Governance and ISO/IEC 42001
	6.2 EU AI Act Alignment and Obligations
	6.3 GDPR Considerations

	Bibliography

