SLOVAK UNIVERSITY OF TECHNOLOGY
IN BRATISLAVA

FACULTY OF INFORMATICS AND INFORMATION
TECHNOLOGIES

Pavol Mederly

SEMI-AUTOMATED CONSTRUCTION
OF MESSAGING-BASED
ENTERPRISE APPLICATION INTEGRATION
SOLUTIONS

Dissertation

FIIT-10890-54689

Supervisor: Prof. Pavol Navrat
August 2011

Slovak University of Technology in Bratislava

Faculty of Informatics and Information Technologies

Pavol Mederly

SEMI -AUTOMATED CONSTRUCTION
OF M ESSAGING-BASED
ENTERPRISE APPLICATION INTEGRATION SOLUTIONS

Dissertation

FIIT-10890-54689

SupervisorProf. Pavol Navrat

ProgrammeSoftware Systems

Field of study9.2.5. Software Engineering
Organizationinstitute of Informatics and Software Engineering

August 2011

Author: Pavol Mederly
Fakulta informatiky a inform@ych technologii

Slovenska technicka univerzita v Bratislave

Supervisor: Prof. Pavol Navrat (Slovenska technioki&erzita v Bratislave)
Reviewers: Prof. Karol Matiasko (Zilinska univeezit Ziline)

Dr. Zoltan Balogh (Slovenska akadémia vied)

ACM Subject Classification:
D.2.2 Design Tools and Techniques: Computer-aidéisvare engineering;
1.2.2 Automatic Programming: Program transformagtion

1.2.8 Problem Solving, Control Methods, and Search

Keywords: enterprise application integration, mgssg integration patterns,
constraint satisfaction, action-based planning

Anotacia

Integracia informénych systémowiZze Usilie s cibom zaist’, aby nezavisle od seba
vyvinuté systémy dokazali spolupracéyvae uz des&ocia vyznamnou témou
informatiky v prostredi podnikowi inych organizacii. Vyvoj integeaaych rieSeni je
eSte stal&asto spojeny s vysokymi nakladmi a chybaons a to i napriek Mi&ému
asiliu o zlepSenie tohto stavu, vynakladanému wngaxej aj akademickej sfére.

Cielom predkladanej dizertnej prace je zefektivnenie procesu tvorby a udrzby
integranych rieSeni zaloZzenych na posielani sprav. V pmov s existujucimi
pristupmi vyuZivajucimi myslienku modelom riadenéhpsoja, ktoré automatizuju
generovanie koédu pre integree rieSenia, tato praca idé€alej: usilujeme sa
automatizova nielen generovanie koédu, ale aj samotny navrtenies Vyuzivame
pritom prostriedky umelej inteligencie, konkrétnirpvanie a dgianie ohranieni.
Vramci prace prezentujeme sadu metdd, ktoré pray dabstraktny navrh
integra&ného rieSenia a poziadavky na jeho vlastnosti {ekwapriklad priepustnés
dostupnos, monitorovaténog’, minimalizacia vyuZzitia komunikaych prostriedkov
a podobne) vytvori vhodny detailny navrh intégieho rieSenia a pripadne aj
vykonaté&ny kod.

Annotation

Enterprise application integration, i.e. an endedawanake independently developed
information systems cooperate, is an importantctai enterprise computing for
decades. Despite many efforts, both in industry anddemic area, integration
solutions development is still often a costly, eqpoone process.

The goal of this dissertation is to make messa@ampd integration solutions
development and maintenance more efficient. In @mpn to existing model-driven
approaches that aim to generate code for integrattutions we are trying to reach a
more advanced goal: to automate not only the cedergtion but the detailed design
as well. In order to do this, we use artificialeiigence techniques, namely planning
and constraint satisfaction. In this dissertatienpeesent a set of methods that — for a
given integration solution abstract design and fumational requirements (like
throughput, availability, monitoring, minimal commuaoation middleware usage, and
S0 on) — create a suitable solution design andimescases an executable code as
well.

Acknowledgement

First and foremost, | would like to thank my supsov Prof. Pavol Navrat for his
guidance throughout my work on this dissertation.

| am also much indebted to Prof. Maria Bielikovdhovonce invited me to the
doctoral study at our faculty, for her encouragetménoughout my study. Many
thanks go to my colleagues at the Institute of imiatics and Software Engineering,
for the friendly atmosphere and unselfish help. deggly | would like to thank
Dr. Marian Lekavy for our successful cooperatiorthia area of planning and for his
insightful comments to the draft of this dissedati

| am very grateful also for the comments of reviemwvef this work, Prof. Karol
Matiasko and Dr. Zoltan Balogh, which helped mariprove its quality.

| would like to thank my family, especially my wif&nna for her love, support,
patience, and for standing with me in all timesd atso to our children, Janko,
Marienka and Beatka, for bringing much joy to aues$. | am grateful to my parents
and parents-in-law for their support throughoutwrhole study.

Most of all, | would like to thank our God for ghg me the life, earthly and eternal,
and for all the talents | got from Him. Only to Hime all praise and glory.

Contents

INEFOTUCTION ...t e e 1

1 Enterprise application iNtegrationccccouueeeeeeeeieeeeeieeeieee e ee e e e 3
1.1 The need for INtegrationccvicccccceeeeieiiirre e e e 3
1.2 Approaches to iINtegration.............. e eeeerreemmmninaaae e e eeeeeeeeeeeeeeeeieenas 4
1.3 State of the art in the INAUSEIY ..., 11
1.4 State of the art in the academia........ oo 12
15 Model-driven iNtegration............... . icccccreeeeeeriiiiirese e e e e e e e e e eeeeeeeeeeees 13
1.6 Model-driven service COMPOSITIONccceeeiiiiiiiiiiiiieeee e e eeee e e 21
1.7 Enterprise application integration — SUMMALY...........cceevrvvrrrnnnniinnenennn 24

2 Dissertation goal and hypotheses ..o 25

3 Methods and tOO0IS USEA.........cccoiiiiiieeieeeciiiie e meeeee e 27
3.1 Model-driven software development.......coeeeeeveeeveeeiiiiiiiiieiiee e eeeen 27
3.2 [F= U T T 29
3.3 Constraint ProgrammMing......... ... occeeeeeeernnn e e eeeaeeeeeeeeeeeeeneees 33
3.4 Concrete software t00IS USE...........corrrriiiiiiiiiiieieaee e 35

4 Our approach: A general desSCriptioncccceeevereiiieeeeeiiiicrrr e e 37
4.1 Input of the MEethodsS...........eviiii e 39
4.2 Output Of the MELNOAS ..o e 46

5 Planning-based methods...............oo i 59
5.1 The ML/P method detailSuuuiieeeemeiiiiiiiiiiieeeeeeeee e 60
52 RESUIES ..o 64
5.3 Other planning-based Methods...........ccceeeeeiiiiiiiiiiii e 68
54 Planning-based methods: a CONCIUSION...cccueemmi i, 72

6 Methods using constraint Programming.......cccoeeeeeeeeeeeeeieiiirinie e eeeeeens 57
6.1 The U/CP method detailS.............ccuvmeeeec i 77

6.2 T aT o] (=70 0T=T] ¢= U1 o] o PSS 95

6.3 Evaluation of the ML/ICP Methodcoooveeeeee e, 95

6.4 Evaluation of the U/CP Method...........comeeeee i 96

6.5 Methods using constraint programming: a COMBIUS..............cceeeeeenee. 125
CONCIUSION ...ttt e ettt e e e e e e e e e esbn e eees 129
RETEIENCES ettt e e e e e e e e e 133
Appendix A: AbOut the aUtNOTooii e, 141

Al PUDBNCALIONS ... 141

Appendix B: Content of the attached electronic raedi...............ccccccviiiiiiiiiiiennen. 145

List of figures

Figure 1. An example of the Pipes and Filters aeclurral pattern. ... 9
Figure 2. An example of the Process Manager anthitgl pattern — adapted from
(Hohpe and WOOIf, 2004)........uuuueeiie e eeeeeeeee et 9
Figure 3. A relation of control flow specificationo its Pipes and Filters
IMPIEMENTALION. ...ttt e e e e e e e e e e e e et ee et tebb e s e snnn s 11
Figure 4. Step-wise refinement of an abstract gmiigpecification...............ccccee..... 13
Figure 5. Symbols for enterprise integration patiarsed in this dissertation........... 16
Figure 6. Symbols for BPMN elements used in thselitation..................cccevveeeeee. 28
Figure 7. Symbols for UML activity diagram elemented in this dissertation. 29
Figure 8. A schema of our approach.ccceeeeeiii oo, 37
Figure 9. An example of the flow of data to be iempknted, using BPMN.............. 40
Figure 10. An example of a design produced by cethod.ovvvviiiiiiiiienenn.. 47
Figure 11. A part of an example of a design produog our method, shown as a
deSIGN GrapPh.....cooo e 49
Figure 12. Basic principle of the planning-basedhués.cccccooiiiinnin 59

Figure 13. A part of messaging-based implementatibrthe sample integration
K101 = 0 = g o J OSSR 61

Figure 14. An example of required flow of data —irgwut for the DL/P method...... 69

Figure 15. An example data model — an input fo@hé” method. 69
Figure 16. An example integration solution credigdhe DL/P method.................. 70
Figure 17. Basic principle of the methods basedamstraint programming. 75
Figure 18. A fragment of an integration solutioniglot for..............ccceeeviiiiiiiiiiinnnnns 76
Figure 19. Iterative use of constraint programmimgur methods.cc.c.cevueee. 77

Figure 20. Main elements of abstract control floetvieen services in the U/CP
8111 0o To RSO PP PP PPPPRRPR 78

Figure 21. An example of subprocess invocatiome/CP method....................... 79

Figure 22. An example of specification of contraldadata flow for U/CP method,
USING UML. ... ettt e e e e e e e e e e e e e e e eeeaeaeeeeeeeeeanes 80

Figure 23. An example of specification of contrabadata flow for U/CP method, in
the tEXTUAI TOIM. L. e e 80

Figure 24. An example of a transformation from klstructured specification of the
control flow into graph-oriented skeleton of thetegration solution (the U/CP

L= T T | TR 82
Figure 25. An example of a problem and its solditor the data flow design aspect.
... 87
Figure 26. Dependencies between design issuesdsbyvthe U/CP method............ 91
Figure 27. Possible pathways through the SOIVIRGESS.ccoovveiiiiiiiiiiiiiiiiiiiiis 93
Figure 28. Specification of control and data floar Widgets and gadgets order
PrOCESSING SCENAIIO. .. ieeeeieiee ettt e e e e e e ettt et e e e e e e e e anaaaaaaaeeeaeaaaens 99
Figure 29. Specification of control and data flaw Eoan broker scenario. 102
Figure 30. Dependencies among integration proceésseEenario S3...........ccccc..... 103
Figure 31. Dependency of processing time on théogiepent complexity. 112
Figure 32. Distribution of time needed to procassn@oming order. 116

Figure 33. An example of counting the number of lsgls used to invoke a XSLT
Validate service in Progress Sonic Workbench ar@PUL..................cooeeeiiei, 119

Figure 34. Number of symbols necessary to implenthent sample scenarios using
Progress Sonic Workbench and U/CP.........coooiieen 120

Figure 35. An example of graphical design docuntetaproduced by the U/CP
method IMpPlemMeNntation.uuueei e 122

Figure 36. Comparison of performance of integratsmutions using native and
U/CP-generated implementations.cceuememieeeeeieeieceeeeeiiii e 123

Figure 37. Advanced version of the graphical useéerface for the U/CP method
(Y= LTz 1= 2 0 5 S 126

List of tables

Table 1. A list of enterprise integration patterns............coevvvvvviiiiiiinnieeeeeeeeeeeen. 14
Table 2. A list of Guarana Simple tasks. ... e eeeeeeeiiiiiiiiie e ee e 18

Table 3. Input/output characterization of servicsed in the example integration
K o1=] 0 F= L[J TP PPPPPPPPPPPPPPPRP 43

Table 4. Functions used to model basic aspects edsaging-based integration

£ 1110 1 S 57
Table 5. Support for design aspects by individuathads.ccoeeiiiiiiiiiinnnns 58
Table 6. Description of problems selected for tHeg®method evaluation.............. 65

Table 7. Characteristics of selected planners asdlts of using them with the ML/P

(141211 (010 FETTT TP TPRPRTR 66
Table 8. The most important CSP variables usedan/CP method....................... 90
Table 9. Results of the evaluation of the ML/CPmodtccovveveniieeieiee, 96

Table 10. Parameters of business service deployfoeimtegration problem P1.1.100
Table 11. Costing weights for integration servitm@sntegration problem P1.1..... 101
Table 12. Results of solving problem P1.1 by th€RJmethod Prototype 1. 108

Table 13. Results of individual combinations of h&lics in integration problem
P . L e ——————— et nn e aa s 110

Table 14. Characterization and results for problehd-P1.8 (using Prototype 1).111

Table 15. Ways of design problem partitioning ukedhe evaluation................... 112
Table 16. Effects of design problem partitioningtbe integration solution creation.
... 113

Table 17. Results of the U/CP method for scen&b$ S8...........ovvvviiiiiieennennnn. 114

Table 18. Content of the attached electronic media.........ccooveveeeiiiiiiiiiieene, 514

List of abbreviations

g

~—+

AIS Academic information system

API application programming interface

BPEL Business Process Execution Language

BPMN Business Process Model and Notation (origgnBlisiness Process Modelir
Notation)

CORBA Common Object Request Broker Architecture

CSP constraint satisfaction problem

DCOM Distributed Component Object Model

DL/P Data element-level, planning-based method

DSL domain-specific language

EAI enterprise application integration

ECA Event Condition Action

EIP Enterprise integration pattern

ESB enterprise service bus

ERP enterprise resource planning

HTN hierarchical task network

HTTP Hypertext Transfer Protocol

ISO International Organization for Standardization

JDBC Java Database Connectivity

JMS Java Message Service

ML/CP Message-level, constraint programming-basethod

ML/P Message-level, planning-based method

MOM message-oriented middleware

MQ message queuing

OoDBC Open Database Connectivity

OWL-S an ontology for describing semantic web %I

PDDL Planning Domain Definition Language

QoS quality of service

RPC remote procedure call

SAT Boolean satisfiability problem

SOAP a protocol for a communication with web seggi¢originally Simple Objeg
Access Protocol)

STRIPS Stanford Research Institute Problem Solver

U/CP Universal constraint programming-based method

UML Unified Modeling Language

WSDL Web Services Description Language

XML Extensible Markup Language

XSLT Extensible Stylesheet Language Transformations

Introduction

In this dissertation we are investigating the pubses of semi-automated
construction of messaging-based enterprise apjlicaitegration solutions.

Enterprise application integration, or EAI for shateals with making independently
developed and sometimes also independently opeapfdtations in the enterprise to
communicate and cooperate — in order to produceniied set of functionality
(Hohpe and Woolf, 2004). A software system thatbésmsuch cooperation is often
called anintegration solution

A related area, inter-enterprise application irdéign (sometimes known as business-
to-business application integration, or B2Bi), dealith making applications in
various enterprises to cooperate. Although in basiociples similar to EAI, the
situation in B2Bi is more complicated as there coissues of trust, legislative,
standards, and so on. For this reason the techeslaged in EAI and B2Bi are
slightly different.

These two flavors of application integration, tdgetwith their accompanying area,
service oriented computing, are considered to ba tbpics” in the information
technology industry, because of their significafmeenterprises seeking efficiency
and flexibility in today’s dynamic environment. Ribie same reasons, service oriented
computing is an important research topic in acadessiwell (Papazoglou, Traverso,
Dustdar, Leymann, and Kramer, 2006).

As in the case of any other software product deraknt, also when creating an
integration solution there are a couple of distswitware engineering activity types:
one of commonly used classifications recognieegiirements specificatiosoftware
design implementationvalidation andoperation and maintenancéet us consider
more closely the first three of them.

Requirements specificatiodeals with stating requirements that the integrati
solution must implement or satisfy. Two significaigtegories of such requirements
arefunctionalandnon-functionalones. The former specify the required functiogalit
to be provided by the solution. Its key part is Business logido be implemented,
i.e. algorithms and rules such as “when a purcloader arrives, the system has to
invoke ‘check customer credit’ and ‘check inventagrvices” or “an order coming
from a customer of class ‘standard’ can be prockssdy if the customer has credit
rating of at least 60 and all the ordered prodaptsin the inventory”. The latter (non-
functional) requirements deal with the performamediability, scalability, security,
monitoring, logging and auditing features of thdegration solution. Generally,
requirements are statements imposed by the integrsblutioncustomer

An activity of software(or system designdeals with creating a solution blueprint for
a software system that would meet the above fumaticand non-functional
requirements. The designer has to choose an apgearchitecturefirst, and then

Introduction

he or she creates detailed system desigr the key part being a thorough
decomposition of the system functionality into aafecomponents that together meet
all the requirements. In the domain of messagirggddantegration solutions the most
important part of the design often lies in choostgnponents to be used and
connecting them together appropriately. The dessga strongly creative activity
where the developer engages his or her previousriexge, well-known approaches
(often described in the form of standard architesgtuand patterns), intuition, and
rational thinking.

Theimplementations concerned with the actual creation of an irdgggn solution in
chosen development environment.

Design and implementation activities are usuallyried out by thedeveloperor
developers.

The border line between the above kinds of softwangineering activities is
sometimes a bit blurred. For example, an exactifpmton of the control flow of
integration solution (obviously a part of businésgic to be implemented) can be
missing in the requirements document — it couldieated during the design process,
or it could be even automated, as seen in autoreatiice composition approaches
(Papazoglou et al., 2006). On the other hand, ¢taildd design can overlap with the
implementation: many modern integration platforriisva the developer to work at
quite high level of abstraction — the integratiasluton is being constructed by
choosing, configuring, and connecting pre-exissolytion components (adapters and
integration services), with the need to write alkctagle being strongly reduced.

As shown in Chapter 1, there are several approabaesssist the developer with the
implementation activities in the domain of messggiased integration solutions,
namely (Scheibler and Leymann, 2009) and (SleirBaitin, and Frantz, 2009). Our
basic question isCan we help the developer moré&? it possible to provide any
methods and tools that are useful duringgbleition desig@ As described in chapters
4-6, we have succeeded in using traditional amifimtelligence techniques, namely
planning and constraint programming, in order &chethis goal.

The structure of this dissertation is as follows:Ghapter 1we describe enterprise
application integration — its expected benefits,jandssues encountered, main
approaches used to achieve it, as well as the msigsificant results of related
researchChapter 2is devoted to formulation of our research probléhapter 3
contains a description of methods and tools we Tisenchapters 40 6 contain our
main result — methods for automating selected aspddntegration solutions design
and their evaluation. The final chapter contai®@clusion and outlines possibilities
for consequential research.

1 Enterprise application integration

In the first part of this chapter we describe guwise application integration, its
expected benefits, major issues encountered, amd aparoaches in this area. This
provides us with a general motivation and widertegnhfor our research problem.
Describing main approaches in the area of integnatilso allows us to specify a
domain of our work more precisely.

In the second part we describe the current statesefarch related to our topic.

1.1 The need for integration

It seems that the integration is not “natural”.cimhation systems in an organization
are usually disintegrated unless it undertakesxpfio effort to integrate them, and

keep them integrated. (In literature such disirdegt systems are usually called
“silo” or “stovepipe” systems, or “islands of autation”.)

Reasons for this situation include:

1. When building or modernizing an enterprise inforimatsystem, or a part of
it, there is a strong need to balance two configctiorces or needs: (1) needs
of a particular project (or department or busingss carrying it out), focusing
on its business case: achieving particular businesEtionality while
minimizing costs, with (2) needs of the enterprae a whole: achieving
compatibility, maintainability, flexibility, funcbnality, efficiency and low
total cost of ownership of the whole informatiorstgm.

As creating and deploying enterprise systems isl lemough by itself and
integrating them with the rest of enterprise’sdndscape is much harder, very
often project teams concentrate on achieving tin@nediate goals and have
no time or other resources to take wider aspetsaiccount.

For more information on this issue please see (brmge, Roxburgh, Hohpe,
Manolescu, and Nadhan, 2004), (Cook, 1996), anitt¢Br 2000).

2. The enterprise itself is typically rather fragmehteit is divided into business
units and departments, frequently with their ownddpartments or teams,
often not communicating among themselves prop@&tig result is that the IT
systems created by them are not communicatingreifimethis context Hohpe
and Woolf (2004) cite Conway’s law: “Organizatiowhich design systems
are constrained to produce designs which are cagigee communication
structures of these organizations.”)

Of course, the degree of fragmentation dependsiljean the sector the
organization is in — e.g. higher education institu$ are more decentralized
than most commercial ones — as well as individogawoization. As a note, this
fragmentation of organizations is often the soumfe the suboptimal

3

Enterprise application integration

functioning not only in the IT area: once very plgpubusiness process
reengineering efforts try to overcome exactly fisblem, see e.g. (Hammer
and Champy, 1993).

3. Packaged (or “commercial-off-the-shelf’) produdtstt represent significant
part of enterprise IT systems are developed andhtaiaed by independent
vendors so they are not compatible “out of the box”

4. Mergers and acquisitions contribute to the probdggnificantly.

When an organization has a number of systems thatal communicate among
themselves, it usually encounters the followingiéss

1. Business processes that are supported by more dhansystem cannot be
executed seamlesstyrelevant data stored in one of the systems have
manually re-entered into the other ones. This glpicresults in delays in
process execution, inefficient utilization of humasources, and induction of
errors (e.g. when repeatedly entering the sameitataeveral systems).

2. It is not possible to provide meaningful and cotesis informationbased on
data from more than one systenasthe data (e.g. data about a customer) are
often independently entered into more systemss itlifficult to (1) relate
relevant pieces of the data together, and (2) @ewildat system contains the
correct data in case they overlap and differ.

3. It is very difficult to share data and services hwitustomers and business
partners— it is impossible to provide consistent informatito partners when
you cannot obtain it at all, as described aboverddeer, customers and
business partners usually cannot (or are not atloteg use traditional user
interfaces designed for internal employees, sovasleinternal systems have
to be integrated with system or systems providireggaccess for external users
(e.g. portals).

Enterprise application integration is then a preaasconnecting disparate systems so
that they can work together to produce a unifiedodunctionality. EAI allows an
organization to overcome the above-mentioned liomws and provides further
benefits, e.g. it allows it to add originally unéseen functionality to the information
system in a flexible and efficient way.

For more information and deeper discussion on ssselated to silo systems as well
as on benefits of integration, please see e.gtlidam, 2003), (Britton, 2000), (Pan
andVina, 2004), (Chappell, 2004), (Hohpe and Woolf, 20841 (Cummins, 2002).

1.2 Approaches to integration

In this section we present a categorization of mgdproaches to integration, as
described in the literature — namely in (Trowbridgeal., 2004), (Linthicum, 2003),

Enterprise application integration

and (Hohpe and Woolf, 2004) — and then we proceitd the characterization of
messaging-based integration solutions that arentiie focus of this dissertation.

As the categories presented in the above mentipuklications are rather similar and
overlapping, we base our presentation on the ohdopiln by Trowbridge et al. that
we feel is the most comprehensive one; along wiham adaptations that we
consider necessary.

The integration options — or patterns as Trowbridgeletdescribe them — can be
looked at from various points of view:

1. Looking at the overall functionality provided byetintegration solution.
2. Looking at how individual systems are connectethé&integration solution.

3. Looking at the structure of the integration solntio

1.2.1 Classification by the overall functionality of the solution

When looking athe overall functionalityprovided by the integration solutiadhere
are the following three basic options:

1. Portal integration is an approach that provides end users with a
comprehensive view across various systems in aNysconsistent format. In
its more advanced versions it is also possibled&amnpdates to the presented
data. The integration solution itself does not @enf any actions upon
individual systems, except for those mandated tiirdxy the user through the
portal.

2. Entity aggregationis an approach that provides systems with a cafestet
view on data stored in various systems — agair) tie possibility to make
updates in more advanced versions of the patténs.approach is often called
“enterprise information integration” (Bernstein aHdas, 2008). Similarly to
the case of portal integration, an integration sotuof this kind does not
perform any actions upon individual systems bylfitseonly when instructed
to do so by client systems utilizing the consokdiatiew it provides.

3. Process integrations an approach that allows managing, or orchésgrat
interactions between multiple systems as prescripedusiness processes
definitions. An integration solution in this case/okes specific functions of
individual systems as required by a process defmitSuch a processing is
triggered either by a defined action within sometlnd systems or by an
external event. This form of integration is perh#ps most closely related to
the general meaning of the term “enterprise apjdinantegration”.

Enterprise application integration

1.2.2 Classification by the nature of connections to systems

When looking atonnections between the integration solution amtividual systems
there are the following options:

1. Data integration— an integration solution interacts with a systeaata layer,
typically with the database, either via databaderiace like JDBC (Java
Database Connectivity, a standardized API allonangava client to access
a database), ODBC (Open Database Connectivity hanatandardized API
used to access a database), or database venddiespdel, or through
database tools performing transfer and/or sharihgthe data with the
integration solutiort.

7

2. Functional integration— an integration solution interacts with a sys&em
business logic. This is the preferred way of cotingcto a system from the
point of view of ease of development and mainteaareliability, and
security. Technically it can be implemented in mavgys, ranging from a
very simple ones — using traditional “import/expdunctionality provided by
the system — to sophisticated ones, using syncheorar asynchronous
distributed middleware like RPC (Remote Procedurall)C CORBA
(Common Object Request Broker Architecture), DCONDis{ributed
Component Object Model), .NET Remoting, web semjioe messaging.

3. Presentation integration(also called “screen scraping”) — an integration
solution interacts with a system’s presentatioretayrhis is sometimes the
only possibility when the system being integrated monolithic, closed one.

In most cases there are special components oftegration solution whose role is to
provide connectivity to systems being integratduese components are usually called
adapters

1.2.3 Classification by the structure of the integration solution
An integration solution typically consists of macgmponents:

1. adapters that provide a connectivity to systemsdgitegrated,

2. other components that provide specific functiogadit the integration solution
— they contain e.g. data mapping rules or the logilausiness process (in case
of process integration approach).

! In addition to the above mentioned cases, theadsis a very specific kind of EAl mentioned e.g. by
Trowbridge et al. (2004) and by Hohpe and WoolfQZ0 It is a situation where applications are
integrated by storing their data in a shared dabactually, this is not very common in practice-a

in the general case of applications coming fromepehdent sources — it would require considerable
modification of applications involved.

Enterprise application integration

These components have to communicate to form aimgsystem. Trowbridge et al.
(2004) distinguish the following major integratisolution communication structures
(or topologies, as they call them):

1. Point-to-Point Connections communication between components is carried
out by the sender sending a message to a particedgrient, knowing its
address and access protocol.

2. Broker-based- the broker is used to decouple communicatingpmorants; it
can be

a. a direct broker that helps establish a connectetwéen components,
with the subsequent communication flowing direttween them,

b. an indirect broker that acts as a mediator betweemponents,
processing each message flowing between them.

Current major integration technologies are divarsghis respect, for example web
services cover cases (1) and (2a), while messayetsrcorrespond to case (2b).

1.2.4 Messaging-based integration solutions

In this dissertation we deal witintegration solutions based on messagiag
described in (Hohpe and Woolf, 2004). These sahgtioan be characterized in the
following way:

1. They consist of a set of components that commumidat sending and
receiving messagegrimarily — although not necessarily — in a relkaand
asynchronous way.

2. As a primary — again, not exclusive — mean of comigation they use
messaging middlewaralso called message-oriented middleware (MOM) or
message queuing (MQ).

How are messaging-based integration solutionselad the integration approaches
classification described above?

First of all, when looking at the third criterioni-e. integration solution structure-
we deal with solutions based on an indirect brakebrokers: this functionality is
provided by the messaging middleware that transposssages between individual
integration solution components.

From the point of view of the first criterion — .i.everall functionality of the
integration solution— we deal with all three integration approachekhoagh
messaging-based integration solutions are a gaoddrfprocess integration, they can
be used to implement portal integration and emtifgregation as well.

Finally, from the point of view of the second criten — i.e.the nature of connections
to participating systems here again we deal with the full spectrum ofrapphes:

7

Enterprise application integration

participating systems are connected to the integrasolution using adapters
(working at the level of database, business lagiajser interface) and these adapters
communicate with the other solution componentsgigsiessaging. In some cases it is
possible for the integration solution to commurecatith messaging-aware systems
directly.

Generally, messaging is a very good technologycfeating integration solutions,
because it allows creatingosely coupledolutions. First of all, it allows systems to
be decoupledat run-time When using traditional synchronous approaches to
communication (e.g. remote procedure call, synabusrweb service invocations, and
so on) it is required that both parties are sinmdtausly available for the
communication to succeed. Unfortunately, this igegan unrealistic expectation in
real-life systems — we need to tolerate some domntiue to unexpected hardware or
software failures, as well as for ordinary hardwarel software maintenance. For
integration solutions connecting many systems @eshens of them) the probability
of at least one of them to be unavailable is th@techigh. Asynchronous messaging
using message broker eliminates this problem, asotily system that has to be
always available is the broker itself. And this daimplemented using up-to-date
technologies like broker clustering.

Second form of loose coupling allowed by messafiaged integration solution is
visible at design timeMany traditional integration technologies requi@mmunica-
tion parties to have the same interface. This haanaequence that when one of them
changes — typically because of a system upgralle ether has to be changed as well.
Messaging-based systems allow easy insertiomedliation componentbetween
integrated systems that can cope with mismatcheseba interfaces of individual
systems.

1.2.5 Architectures for messaging-based integration solutions: Pipes
and Filters and Process Manager

There are two main implementation paradigms, ohnigectures, for messaging-based
integration solutions:

1. Pipes and FiltersThis approach is based on processing messagearioys
components (filters): transformation services, irgutservices, splitters,
aggregators, resequencers, application adaptedss@ron. These filters are
organized in a predefined structure (graph), amheoted by pipes. Pipes are
typically implemented in memory or via messagingdaheware; however,
other channel implementations, e.g. web servids,aadn be used as well.

A simple example of the use of this pattern is smomw Figure 1. Here we
want to process purchase orders coming e.g. frompaay customers or
business partners. Each order has to be validadhan customer’s credit as
well as the inventory has to be checked — usingappropriate service,

Enterprise application integration

depending on the ordered product’s type. For siiiplwe assume that one
order contains products of one type only.

Publish-subscribe channel Point-to-point channel
(not shown as an icon) Check (not shown as an icon)
customer’s
credit
Service invocation Aggregator
Check inventory O
—=> Validate order — for products of O—m 04—
type A O
New order L) e e .
il Order with
Check inventory credit and
Content-based router for products of .
type B inventory
information

Figure 1. An example of the Pipes and Filters architectusddgon.
(Filters are denoted as boxes, pipes as lines betfileers.)

An important feature of Pipes and Filters approacthat messages are self-
contained and, moreover, filters do not exchangg iaformation besides
those included in messages. Everything that a #tevants to pass to filter B
must be stored in the message or messages flowihmthe solution.

Validate order

Process manager %

SN Check inventory
for products of

Check
customer’s
credit

type A
New order \\
Order with l/ Check invent
. eck inventory
C.il'edlt and for products of
inventory type B
information

Figure 2. An example of the Process Manager architecturaépat adapted from (Hohpe and Woolf,
2004)

2. Process ManagemHere we have one central component, namely theepsoc
manager, orchestrating the whole integration pcébe process manager
receives incoming message, and invokes the firgtcge(in this case, Validate
order) by sending it a message. The service presessnessage and sends a
reply back to the manager. It then decides whichigato invoke next (in this
case both Check customer’s credit and one of imvgnthecking services),
sends the message(s), gets the reply or replies tlaadwhole process
continues. An example is shown in Figure 2.

Enterprise application integration

Process Manager maintains the overall state ofgssmstance execution, i.e.
the state of processing of an individual messageaBse this state can contain
all data that have been received in the originajder) message as well as all
data returned by individual services, it is no lengecessary to keep all data
in messages that are sent to services: each s@aticbe provided with only
those data it really needs to process.

This approach is frequently used for a web serearaposition.

Both approaches have advantages and disadvantatgsnis of development effort,

portability, maintainability, operational relialiyfi efficiency, and ease of

administration, and — if using commercial infrasttue — also licensing and support
costs. For example, the Process Manager-basedossluare generally easier to
develop and maintain, yet less efficient and margtlg. This approach is often used
to implement long-running processes that span daaysveeks and often require

human interaction. On the other hand, Pipes andr&ibased solutions are usually
more efficient but require more development effdtey are frequently a good fit for

implementing technology-oriented, shorter-runningpgesses. For a comparison
between these two kinds of processes, please seetla# description of Macro-

microflow pattern in (Hentrich and Zdun, 2006). Fomore detailed comparison of
Process Manager and Pipes and Filters architectylals, see (Mederly and Navrat,
2011).

When creating an integration solution, either Pssc®lanager or Pipes and Filters-
based one, a developer usually starts with a spattdn of control dependencies
among services invocations executed within thaitgol. These dependencies can be
easily modeled using BPMN (Business Process MauINotation) or UML activity
diagram. For an example please see Figure 3a. ingpiing such a specification in
languages used in current Process Manager implatiamd, like BPEL (Business
Process Execution Language), is usually not a bidplem. For Pipes and Filters
architectures this can be quite straightforwardaome cases (see for example Figure
3, inspired by a similar comparison presented iohip€ and Woolf, 2004)), but rather
intricate in others, namely when complex non-fumail constraints come into play.
As an example of such a correspondence, seeguges$i 9 and 10 in Chapter 4.

And exactly this question — how to design and immEat a Pipes and Filters-based
integration solution for a given set of control addta dependencies and non-
functional requirements — is the main topic of ttissertation, as will be discussed in
Chapter 2.

10

Enterprise application integration

Activity (service invocation)

Fork (Check W Join
customer’s
credit

[the product)
Validate order ordered is of type A] | Check inventory %@
for products of
type A

Check inventory
for products of
type B

[the product
ordered is of type B]

(a) control flow specification

Publish-subscribe channel Point-to-point channel
(not shown as an icon) Check (not shown as an icon)
customer’s
credit
Service invocation Aggregator
Check inventory O
—=> Validate order — for products of O—s0]——
type A O
New order L) e . .
i Order with
Check inventory credit and
Content-based router for products of .
type B inventory
information

(b) implementation of the control flow specification using Pipes and Filters architectural style

Figure 3. A relation of control flow specification to its Rip and Filters implementation.

1.3 State of the art in the industry

When creating an integration solution the develspeaditionally had to write

a significant amount of low-level (technology-otied) code in order to access
individual systems, to implement required data dfammations, message routing,
splitting and aggregating, and so on.

This code had to be created and then kept up-®-datsystems and integration
requirements evolved. The result was that creadimgy maintaining the integration
solution was a tedious, error-prone, and theredapensive, undertaking.

As this fact was recognized soon, there have beamynattempts to improve this
situation. Among most relevant ones have been BedcBAl (enterprise application
integration) tools starting to appear in the secoald of 1990’s followed by products
called ESBs (enterprise service buses), since 68.2Both categories of products
provided rich infrastructure, consisting of comnuation mechanisms (e.g. message-
oriented middleware), pre-created adapters (ergddtabase systems, mail systems,
and specific application software like SAP R/3, €eainancials, etc.), and standard
integration services (e.g. for transformation aadting of messages). Utilizing this
infrastructure, these systems allowed designersotwstruct an integration solution
using a higher level of abstraction than was preditly the traditional programming
languages.

11

Enterprise application integration

Nevertheless, our experiences with the state-ohthdeSB product (Mederly and
Palos, 2008) as well as with some others showdhah using such powerful tools
some concerns remain: As programming and modedinguages of existing tools are
still at a quite technical level, it is (1) harddesign, create and maintain integration
solutions, (2) hard to port those solutions betwdiffierent integration platforms (e.g.
when — for whatever reason — the enterprise hasmtch from one platform to
another). As mentioned in previous section, thesads are more significant in the
area of Pipes and Filters-based solutions. In ngaktiese activities easier, cheaper
and less error-prone we see the big and imporpatesfor this dissertation to cover.

1.4 State of the art in the academia

Technical issues of creating an integration sofutbm a service composition have
been the subject of recent research efforts, uakkmt mainly in the following two
areas:

1. Model-driven integration
2. Model-driven service composition

They deal with construction of integration solusomnd service compositions,
respectively, using an approach starting with astrabt description of the solution
and stepwise enhancing it by adding more detaitlseremanually by developers or
automatically by model transformation and code garen techniques.

But before looking at existing results in more dhelet us have a look at the following
research proposal: Papazoglou, Traverso, Dustégméann, and Kramer (2006) have
published theService-Oriented Computing Research Roadmaptaining a list of
“Grand Challenges”, among which this one is dise@pplicable to our research:
(Emphasis added.)

Business-driven automated compositioBsand Challenge

“One of the main ideas of service oriented applimas is to abstract away the logic at
the business level from its non-business relatqukcts, the ‘system level’, e.g., the
implementation of transaction, security, and reliiép policies. This abstraction should
make easier and effective the composition of tisted business processes. However,
the provision of automated composition techniqudsch make this potential advantage
real, is still an open problem. Business-drivencauated compositions should exploit
business and system level separation in servicepesitions. According to this view,
service composition at the business level shouldepthe requirements and the
boundaries for the automatic composition at thetesys level. While the service
composition at the business level should be supdobty user-centered and highly
interactive techniquesystem level service compositions should be fullyoanated and
hidden to the humans System level compositions should be QoS-awamjldhe
generated and monitored automatically, and shoulso abe based on autonomic
computing.”

Said in other words, Papazoglou et al. here calafolear separation of requirements
specification and design activities (the businesd aystem levels) with the latter

12

Enterprise application integration

being carried out fully automatically. This dirgctcorresponds to our goal of
automating the design and implementation of intsgmasolutions.

1.5 Model-driven integration

Model-driven development (MDD) (Mellor, Scott, Uhhnd Weise, 2004) is an

approach to software development that has the pakén significantly reduce human

work needed to construct a software system by aatiomjmsome of tasks related to its
design and implementation. Nowadays it is typicalsed for the development of
individual applications (systems), yet there aterapts to use it also in the area of
application integration.

This section reviews several works in the area afdehdriven application
integration.

1.5.1 Modeling languages

First, let us focus on modeling languages usetieratea of EAI. Modeling languages

for software systems can be categorized with résijpebow abstract, concise, and

platform-independent they are. At one side theeeastract, platform-independent
languages allowing the developer to concentratesudostantial features of problem

and solution being developed; at the other sidestiea concrete code that can be
executed on a specific software/hardware platf@atween them there are modeling
languages that are specific to a platform (or ac$etlated platforms) yet are at a

higher level of abstraction than an executable code

The promise of model-driven development is that caa start with an abstract
description and then refine it step-wise, evenjuaiming to executable code (see
Figure 4).

Platform- Platform-
. . Executable
independent specific code
model(s) model(s)
Step-wise refinement >

Figure 4. Step-wise refinement of an abstract solution sptibn.

1.5.2 Enterprise integration patterns

In the area of enterprise application integratioeré are many languages specific to
particular EAl and ESB tools. As has been mentiomedsection 1.3, they are
generally platform-specific and at a quite techhliezel.

When looking at platform-independent languagesingportant result is Hohpe and
Woolf's (2004) book on enterprise integration patse(or EIPs for short). It captures
knowledge on architecture as well as on technieddil$ of integration solutions,
specifically in the area of integration based omestly asynchronous — messaging.

13

Enterprise application integration

Authors have described 6 general patterns: Mes€dgeanel, Message, Pipes and
Filters, Message Router, Message Translator, anss&¢e Endpoint, as well as 55
more specific patterns, mainly refining the genecales. These patterns are
summarized in Table 1.

Table 1.A list of enterprise integration patterns.

Area Pattern Area Pattern
Message Channel Envelope Wrapper
Message Content Enricher

Basic patterns

Pipes and Filters

Message Router

Message Translator

Message Endpoint

Message transformatior

Content Filter

Claim Check

Normalizer

Canonical Data Model

Messaging channels

Point-to-Point Channel

Publish-Subscribe Channel

Datatype Channel

Invalid Message Channel

Dead Letter Channel

Guaranteed Delivery

Channel Adapter

Messaging Bridge

Message Bus

Message construction

Command Message

Document Message

Messaging Gateway

Messaging Mapper

Transactional Client

Polling Consumer

Messaging endpoints

Event-Driven
Consumer

Competing Consumers

Message Dispatcher

Selective Consumer

Durable Subscriber

Idempotent Receiver

Service Activator

Event Message

Request-Reply

Return Address

Correlation Identifier

Message Sequence

Message Expiration

Format Indicator

Message routing

Content-Based Router

Control Bus

Detour

Wire Tap

System management

Message History

Message Store

Smart Proxy

Test Message

Channel Purger

Message Filter

Dynamic Router

Recipient List

Splitter

Aggregator

Resequencer

Composed Message
Processor

Scatter-Gather

Routing Slip

Process Manager

Message Broker

Let us shortly describe the most important patteeferenced in this dissertation.

1. Point-to-Point Channeis a kind of channel that ensures that each pdatic
message will be consumed by exactly one receivareRample of such a
channel is a queue in messaging middleware implengerdMS (Java
Message Service).

14

Enterprise application integration

2. Publish-Subscribe Channé a kind of channel that enables more receivers
(subscribers) to attach to it and then deliversyewmeessage to each of them.
This functionality is provided e.g. by topics in S3Mbased middleware.

3. Datatype Channels a channel that transports messages of a gyn This
separation of messages of different types intoviddal channels is a usual,
but not the only one, way of organizing channela messaging-based system.

4. Message Routes a component that has multiple output channetsrautes
each incoming message to a selected channel (onels based on a set of
conditions.

5. Content-Based Routes a kind of router that routes messages in degesel
on their content.

6. Message Filteis a kind of router that either forwards a mesdagan output
channel or discards it, based on a defined comditio

7. Recipient Lisis a kind of router that routes messages to afistcipients. (In
this dissertation we use the simplest form of doisyponent, which sends each
message to a predefined list of recipients.)

8. Wire Tapis a simple Recipient List that copies each incgmnessage to the
output channel as well as to a special channehdeg for message content
monitoring. It is often used to monitor messag#itragoing through a point-
to-point channel.

9. Splitter is a component that divides a composite messageainseries of
individual ones.

10. Aggregatoris a component that merges a set of related messagether, and
sends them out as a single message.

11.Resequenceis a component that collects messages and seadsdht in a
defined order.

12.Composed Message Processera pattern that splits a message into its
constituent parts, ensures the appropriate prowpssi these parts, and
reaggregates responses back into a single message.

13. Scatter-Gatheris a pattern consisting of a mechanism that brastdca
message to multiple recipients and a mechanismréagigregates responses
back into a single message.

14.Message Translatois a component that translates messages from atze d
format into another.

15

Enterprise application integration

15.Content Enricheris a special kind of Message Translator that chang
message by adding some information to it.

16.Content Filter is a special kind of Message Translator that rermove
unnecessary data from a message.

17.Transactional Clientis a messaging client that is able to group a $et o
messaging-related operations into one transactionsome cases such a
transaction can also contain operations on otheourees, typically a

database.

18.ldempotent Receives a messaging client that can safely receivestimae
message multiple times.

19. Competing Consumeese multiple consumers reading messages off anethan
concurrently, so that they are able to achieve drigirocessing rate and/or
higher system availability in comparison with presi@g by single consumer.

20.Message Dispatcheis a consumer that read messages from a chandel an
dispatches them to entities that process themcgiigieach in its own thread).

Even if these patterns were not originally intendseda language to be used in model-
driven approach (Hohpe, 2004), they provide a comynaccepted vocabulary that
has been, as shown below, used in such an apprbatipe and Woolf's patterns
have also a visual representation, and therefag pinovide an effective means for
modeling messaging-based integration solution&idare 5 we show visual symbols
for integration patterns that are used in thisetisgion.

—>
= [B 7 =
— e —

Point-to-Point Publish-Subscribe Content-Based Recipient List
Channel Channel Router P
]] O
— T O— 0O O —» O U —-000
O O _
Wire Tap Splitter Aggregator Resequencer
Message Translator Content Enricher Content Filter

Figure 5. Symbols for enterprise integration patterns usetisdissertation.

16

Enterprise application integration

1.5.3 Executable enterprise application integration patterns

Building on the work on enterprise application pats, Scheibler and Leymann
(2008, 2009) have proposed an idea of executaliprise application integration
patterns. They have enriched original EIPs withfigomable parameters in order to be
able to use them as elements of platform-indepdndedels of integration solutions.

Parameters that are attached to the patterns &wearatategories:
1. input: a characterization of input messages,
2. output: a characterization of output messages,
3. characteristics: specifying details of a patterplementation behavior,

4. control: a characterization of control messages, those that influence the
behavior of a pattern implementation at run time.

For example, their Aggregator pattern has the ¥ahg parameters that determine
exactly how this component should function:

1. completeness condition — whether the aggregatdrwalt for all expected
messages, for a specified amount of time, for dareal event, or whether it
will treat first message that comes as the best one

2. timeout value,

3. specification of a criterion and a XML element iressage that is used to
decide what is the “best” message to pass fortthid@nd Woolf, 2004),

4. achannel to receive external events signalinggggegation completion,

5. a flag indicating whether the aggregation will lealized by an external web
service (along with specification of the servids,interface and operation).

Authors have provided a graphical editing environtméor creating integration
solution designs. The environment allows developergick patterns from a palette
and place them into the working space, then parmetand connect them. It checks
the syntactical validity of the composition and gextes executable code for a chosen
platftorm. The target is either Business Processclii@n Language (BPEL)
(Druckenmdller, 2007) or a configuration language $pecific integration tools:
Apache ServiceMix (Mierzwa, 2008) or Apache Camkbl, 2008). Service
Component Architecture environment is supportedvali, using BPEL as a tool
(Scheibler, Mietzner, and Leymann, 2009). The apgnds limited to using XML as
a message format, and WSDL (Web Services Desaniftamguage) as a means of
describing interfaces of systems being integrated.

Authors applied their idea also in an outsourcedftware-as-a-service setting
(Scheibler, Mietzner, and Leymann, 2008).

17

Enterprise application integration

1.5.4 Guarana language

Frantz, Corchuelo, and Gonzales (2008) have prab@smrana, a modeling language
for EAIl based on entities that are very similaretderprise integration patterns. The
principle of their work is comparable to the onesa#éed above, with the following
differences:

1. Models in Guarana are more structured than modededon traditional EIPs.
Basic executable entities in Guarana, named tasks, be simple or
composite, allowing decomposition of complex intggm processes into
easily understandable parts. Simple tasks corresponghly to integration
patterns. Moreover, tasks are encapsulated inttibgi blocks with well
defined interfaces (ports), connected by explidggration links.

2. Although tasks correspond to integration pattethese two are not exactly
the same. For illustration, we list simple tasketygn Table 2, along with
enterprise integration patterns that we have fointde the closest ones for
particular tasks. (The ,-“ symbol means that weenagt found a correspoding
pattern).

Table 2.A list of Guarana simple tasks.

Task type Task Corresponding EIP
Aggregator Aggregator
Message constructors | Splitter Splitter
Custom task -
Content enricher Content Enricher
Transformers Slimmer Content Filter
Translator Message Translator
Filter Message Filter
Replicator Recipient List
Routers Distributor Recipient List
Merger Aggregator
Synchronizer -
Timing Timer
Delayer -
Database Channel Adapter
Gateway Channel Adapter
Interfacing Channel Channel Adapter
File Channel Adapter
Scrapper Channel Adapter

In other aspects this approach is similar to the @inScheibler and Leymann (2008).
For example, the overall process is exactly the esaf developer creates an
integration solution, based on components listeGable 2. This process is supported
by a graphical editing environment. After choosintarget platform, the code for it is
generated.

Currently authors claim a support for Microsoft Witow Foundation as a target
platform (Sleiman, Sultan, and Frantz, 2009) wiims limitations due to conceptual
mismatches between the world of messaging-baseegration and workflow

18

Enterprise application integration

automation. However, their approach is independana platform, and translators to
other platforms are conceivable. Moreover, autliwslare they work on their own
runtime system to execute integration solutionstemiin Guarana (Frantz, 2011).

What distinguishes works of Frantz et al. from ttkers in this area is a special
interest in exception handling. As described inaffz, Corchuelo, and Molina-
Jimenez, 2009), they deal with failures using acsppeomponent, named monitor,
that receives notifications on failures and reactsthem in a way specified in
a declarative language based on ECA (Event-ComdAiction) rules.

1.5.5 A critique of approaches based on integration patterns

Works of Scheibler et al. and Frantz et al. presenstep forward to making
development of messaging-based integration solsitranre efficient. Namely, they
relieve a developer from writing detailed, platfesmecific configuration and/or code,
and allow him or her to concentrate on more abstpatform-independent aspects.

However, these works do not take into account mmational requirements, like
throughput, availability, message processing lateaod so on. A developer has to
design an integration solution that meets suchireaents “manually”, knowing

details of a selected integration platform, anderting this knowledge in the
platform-independent models. (Those, then, becorat least partially — dependent
on a chosen platform!)

Moreover, many of the enterprise integration patige.g. Transactional Client), are
of a highly technical nature. Also some others, &gcipients List and Publish-
Subscribe Channel, capture design decisions at geitailed level. Therefore if one
uses EIPs alone as a tool for modeling the integragolution, the business and
technical aspects of the solution are strongly lexhgin (Mederly, 2009a) we have
shown this fact on a case study. We try to additesse shortcomings in our work
presented in this dissertation.

1.5.6 Integration Designer Assistant

Generally speaking, we are looking for approachas would allow the developer to
specify solution at a higher level of abstracti@trictly separating business and
technical aspects, with transformation to lowerelsvof abstraction being as
automated as possible.

An interesting work aimed towards such a liftingtloé level of abstraction has been
performed by Umapathy and Purao (2007, 2008). Ht®y have recognized the fact
that using enterprise integration patterns to dlesantegration solutions is at too
technical a level. Moreover they claim that the piag from an abstract specification
of the solution (in a process-oriented language Business Process Model and
Notation, or BPMN for short) to a concrete desigrsaibed by a set of EIPs is a
cognitively demanding task.

19

Enterprise application integration

Umapathy and Purao therefore have devised a sy&taled Integration Designer
Assistant, or IDAssist, existing in the form ofesearch prototype) based on Speech
Act theory that assists the designer with the magpfriom models in BPMN to sets of
EIPs. The tool allows a designer to depict an idggn solution in the form of a
BPMN diagram showing a graph of tasks, with eask &nnotated by one of 11 so
called Action Types (these types are e.g. Request Ifformation, Provide
Information, Invocation, and Accept/Reject with/out sending receipt). Users are
then being offered suitable EIPs based on the amgstructure as well as on
individual task Action Types. In order to do thibe tool uses an inference engine
backed by an ontology. A weak point of this meti®that the abstract specification
of the solution (i.e. the annotated BPMN diagraoagtures very little information, so
the proposals provided to the developer are ofingrielevance and the model itself
cannot be used to generate directly executableicotu

1.5.7 Other model-driven integration approaches

Concerning other attempts in the area of modeledrimtegration, Al Mosawi, Zhao,
and Macaulay (2006) proposed a general idea ofophatindependent specification
of integration solution, modeling it at five levelgl) collaboration between
enterprises, (2) collaboration within an enterpr{8 services provided by individual
systems, (4) supporting services, and (5) techryedpgcific model. Induruwana
(2005) describes the idea of aspect-oriented appraamodeling of EAI solutions.
Unfortunately none of these authors have providadikkd information on their work,
and we have not found any follow-on work on thigiedoy them.

There are also some vendors, e.g. E2E TechnolatieE2E Technologies, 2010)
claiming they have products implementing model-givapproach to application
integration. Actually what they provide is an int&gon engine with a UML-based
configuration language. In contrast to them, we dona platform-independent
approach that is able to generate integration isolsittargeted to many integration
platforms.

Only very recently, after writing a draft of thissdertation, we have become familiar
with the BIZYCLE integration process (Milanovic, @burg, Kutsche, Widiker, and
Kschonsak, 2009), (Agt, Bauhoff, Cartsburg, Kunipeatsche, and Milanovic, 2009).
It is a result of research project whose goal waistestigate the potential of model-
based software and data integration methodologies.

BIZYCLE process works with models at various leyetsughly in the following
order:

1. Computation-independent mod@IM) of the integration solution: reflects
functional requirements that the solution has t6lfuA major part of this
kind of model is a diagram conceptually similatuibiL activity diagram that
shows control and data flows within the solutiohef there is a data model

20

Enterprise application integration

showing structure of business objects and two mygres of models that relate
business objects to business functions and comsecéspectively.

2. Platform-specific models (PSMsf systems that are to be integrated: these
models reflect interfaces of systems at the tecahimével. Currently there are
metamodels created for various platforms — relaliafatabases, XML files,
web services, Java Platform, Enterprise Editioet ddmponents and selected
ERP (Enterprise Resource Planning) systems. The igléhat interfaces of
participating systems are modeled using these nuetels (or, even better, the
description of interfaces is imported from a dinfoy provided by systems’
execution platforms) and automatically convertecatplatform-independent
form.

3. Platform-independent model (PIMntains the description of systems that are
to be integrated, but this time at a higher leahlwstraction. Main reason for
existence of this model is to enable conflict as&lyas described below.

Conflict analysis is a key activity in the courdeceeating an integration solution in
the BIZYCLE process. It analyzes PIM in order teadiver mismatches between
component interfaces, at the semantic, behavioopgsty, communication and
structural levels. This analysis is semi-automatdgbre are situations where it
requires user interaction. An output of conflictabsis, along with the above
mentioned models (CIM, PSMs, and PIM) is used toegate code for the integration
solution. Generated code is executed in BIZYCLE tio@ Environment, based on
Glassfish OpenESB product.

In comparison to our work, BIZYCLE process is muwhre comprehensive: it helps
the integration developer at multiple levels, raggifrom the questions of
incompatible semantics of data down to the levekohnical interoperability. Results
of the research are being offered also in the camialeform (Model Labs, 2011),
indicating their relevance for real integration jpods. However, the BIZYCLE
process does not cover the main question of oearels — namely, how to design an
effective messaging-based integration solutiorafgiven target integration platform.

1.6 Model-driven service composition

Service composition deals with creation of more plax (composite) services out of
simpler (elementary) ones. It has become an impbmasearch topic in last few
years: the goal is to reduce human effort neededetelop and maintain such
composite services.

When speaking about service composition, serviassdon web services technology
(i.e. SOAP and WSDL) are usually meant.

What is the connection between service compositind application integration?
Application integration deals with making systenapplications) to interoperate.
Service composition is concerned with creating cositp services out of simpler

21

Enterprise application integration

ones, i.e. with the interoperation of services. igaions are often made available to
integration using wrapping services (or adaptettsdjr integration can be directly
seen as a composition of their wrapping servicég dnly technical difference is in
technologies used: while service composition isedaalmost exclusively on XML,
HTTP, SOAP and WSDL (at least in the academic g)happlication integration
uses various message formats and transport pretdeery often asynchronous
messaging as described in Section 1.2.4). Thigng mportant in our case, because
we are interested exactly in solving these techpiczblems. Nevertheless, let us take
a look at model-driven service composition, espiclaow the technical aspects are
dealt with here.

Service composition can be implemented in varioasgliages. In theory, any
implementation language can be used, providingag &adequate support for calling
individual services. During last few years, BPELu¢Biess Process Execution
Language) has been established as the de facasthim this area, given its ability
to describe the composition without the need toaciépgoo much implementation
aspects. The execution of composite services imgiéea in BPEL is done by BPEL
servers (or BPEL engines), implementing the Prodéssager architectural pattern
mentioned in Section 1.2.5. Other languages forpmsite service description are e.g.
OWL-S (Web Ontology Language for Services) for seticaweb services, Web
Componentstr-calculus, Petri Nets and Finite State Machinedgivic and Malek,
2004). Principles of many of these languages ang sienilar to principles of existing
workflow languages (van der Aalst, Dumas, and teistéde, 2003).

Model-driven service compositi@pplies an idea of model-driven development in the
area of service composition. Methods of this tyemeagally start with a platform-
independent model of the composition (created fatljy in a UML-based language)
and through a sequence of generation and/or reénemsteps they go to platform-
specific models and to an executable code.

Let us take as a representative example a recaktdeme by Mayer, Schroeder, and
Koch (2008). It is devoted to generating orchestnatode (currently in BPEL, Java,
or formal language Jolie) on the basis of an absstraodel written in UML4SOA.
UML4SOA is a conservative extension of UML 2.0, deped with the goal of
achieving minimalism, conciseness and a comforttierdeveloper, adding features
like scopes and compensations. The transformatsetf is done in two steps: in the
first one the UML4SOA graph-based model is convkttean intermediate structure-
oriented form (called Intermediate Orchestrationdglp or IOM). Here a rule-based
approach is used in order to infer how decision iaedge elements in UML models
should be transformed into structured concepts (bkanches and loops) in IOM.
IOM is then translated into platform-specific maxlahd eventually into code. As for
BPEL, along with the code, the interfaces to parseevices are generated.

A number of similar works are described in a surdeye by Rauf, Igbal, and Malik
(2008). What they have in common is the fact thatgervice composition modeling

22

Enterprise application integration

is done using UML (typically using activity or stathart diagrams complemented by
class diagrams) and then transformed into an eablaulanguage, typically BPEL.
Some of the works are very straightforward, usipecglly created UML profiles for
modeling BPEL processes; the more interesting oaes those that enable
transformation to various executable languages. ekample of such works is
(Skogan, Grgnmo, and Solheim, 2004). These worKsrdalso in the modeling
constructs supported (e.g. are scopes and compmrssavailable to the developer?),
in the approach to code generation (e.g. does #thad aim to generate a “nice”,
readable code, or just any working code?), andvénstcalability of the method. For
example Koehler, Hauser, Sendall, and Wahler (208®) techniques known from
compiler theory in order to partition large proasssinto subprocesses (to be
processed more effectively) and to detect unstradteycles and to transform them
without exponential expansion of the resulting pang.

These approaches, in general, aim to provide aiswmodeling language for the
developer and then use more or less sophisticagesformational algorithms to
generate platform-specific models and/or executalnde. They do not provide
“intelligence” to free developer from specifyinggeadaptation components that have
to be included in the composite service (if angomething that is crucial in the case
of application integration. Generally they alsords deal with technical or quality of
service (QoS) issues, forcing the developer toesdhese issues “by hand”, and,
moreover, intermixed with essential (business) etspaf the service composition.

There were some attempts to separate technicalbasthess aspects of service
composition, however. Let us mention some of thene h

An early attempt to includéransactional aspectand treat them separately from
business aspects is provided by Schmit and Dug2@&5). The authors have created
a UML profile for modeling transactional propertie§ service composition. They

model basic service composition using a UML stdtaric diagram; transactional

aspects of this composition are included in a s#pdayer, modeled as UML class
diagram. Each transaction is modeled as a clas) mested transactions as
subclasses. Attributes of this class corresporgktoices included in the transaction,
while operations (namely, constructors and destragtcorrespond to transitions in
the basic state chart diagram during which thesaation should start and end,
respectively. The transaction has associated taggle@s (like a flag whether it can

be compensated, or maximum time it can be actind)sdereotypes (indicating e.g.
whether it is Atomic Transaction or Business Adtiyi Authors provided a prototype

doing some rudimentary code generation, although attifact generated is not a
running code, just an example of WS-BusinessAgti8OAP message header (a
coordination context). The approach seems to beigiog; unfortunately we have

not found any follow-on work giving more concreésults.

There are also a couple of UML profiles designed dpecifying non-functional
propertiesof services, e.g. the one described by Wada, $uan#t Oba (2006). Their

23

Enterprise application integration

UML profile allows specifying the required propesdiof connectors connecting the
services: delivery assurance (unspecified, at ranee, at least once, exactly once;
and whether the message order has to be presemad)num allowable message
delivery time, transmission channel parameters. (ggv to handle situations when
underlying message buffers overflow), and filteragjions that have to be applied on
messages flowing through that connector. Othertiestthat can be modeled are
services themselves, messages, and message exxh@mgaegh only the simple

“request-response” ones). The authors provide htonap models created using
their UML profile into specific technologies, nameWiule ESB — an open-source
enterprise service bus implementation. Their apgroeoncentrates on generating
appropriate message delivery code (e.g. choosiitgbsel transport mechanism and
configuring it) for applications that need to commuate; however, the generated
code seems to be not directly usable for serviaghestration. Comparing to our
vision, this language forces the developer to $p@an-functional properties at a low
level of abstraction; we would like to generatesthérom a more abstract description
automatically.

An aspect-oriented approach to specifying and/orettgping service compositias
relatively frequently present. Among first attempis use aspects in service
composition are those of Charfi and Mezini (200802, 2005a) aimed to separate
various crosscutting concerns from the basic workftomposition code. These
concerns are e.g. volatile business rules and ieah@aspects like transactions,
security, reliability and persistence. The authbese created an aspect-oriented
variant of BPEL, called AO4BPEL and its implemeiaat The work is summarized
in Charfi's dissertation (2006). Aspect-orientedvg® composition is dealt with also
by Courbis and Finkelstein (2005), Schmidmeier J0@nd Xu, Tang, Xu, and Tang
(2007). In our case, these ideas seem to be usefihle last phase of integration
solution construction, namely when generating ttexeatable code.

1.7 Enterprise application integration — summary

In this chapter we have described an area of emgerppplication integration. We
have shortly characterized messaging-based integrablutions and identified the
possibility of making their creation easier asn&n goal of this dissertation.

Surveying the research results available we havedmo comprehensive approach to
creation of messaging-based application integrasiolutions that would allow the
developer to separate business and technical aspédhe solution, and then to
automatically or semiautomatically solve these méwdl aspects.

We therefore plan to create such an approach,sasilded in the next chapter.

24

2 Dissertation goal and hypotheses

Given the situation described in Chapter 1, weedfa¢ main goal of this dissertation
in the following way:

To find a way of partially or fully automating tipeocess of design
and implementation of messaging-based integratiolutisns, in
order to improve some of their characteristics.

We are going to research methods that will help dbeeloper to find a detailed
design of a messaging-based integration solutiah would comply with a defined
abstract design, non-functional requirements, desgpals and environment
characteristics.

In order to achieve this goal we plan to confirm refute the following two
hypotheses:

Hypothesis 1:

It is possible to partially or fully automate thetdiled design and
implementation of messaging-based integration gmist given their
abstract design (control and data flow specificajionon-functional
requirements, design goals and environment -charsties,
utilizing planning and constraint satisfaction meds.

However, automating the design process is not &igatself. What is important is
whether this automation brings any real benefits developers — manifesting
themselves e.g. in shorter time to produce a swiutr a given integration problem,
in reducing the number of defects in such a salyiwe in its better maintainability.

Although in the future we want to characterize ¢éhdmenefits quantitatively by
measuring e.g. an effort needed to construct agiation solution, in this dissertation
we plan to concentrate on a simpler aspect: prigseot source code. We are going to
research the following hypothesis.

Hypothesis 2:

Methods of partial or full automation of design aimaplementation
mentioned in Hypothesis 1 can lead to more consmece code
compared to traditional way of integration solutidavelopment.

By a source code for our approach we understanddtie used to specify the input
for our methods. We can reasonably assume thatissosource code is easier to
create, will contain fewer defects, and is easienaintain.

25

3 Methods and tools used

In this chapter we describe major methods and tbealisare used in this dissertation.

3.1 Model-driven software development

A general approach we use is thedel-driven software developmef8chmidt,
2006), (Mellor, Scott, Uhl, and Weise, 2004). Tdea of this approach is that the
software system is developed usimgdels— more or less abstract representations of
the problem and its software solution.

The development of software systems using thiscgmpr starts with creating a set of
abstract models, comprising a high-level descnipiid the software system being
constructed. Then it continues by stepwise transfog or refining these models into
lower-level ones and eventually into executablescod

Modeling languages can be graphical or textual .ofksy can be based on industry
standards like UML (Unified Modeling Language), pitdy customized e.g. using

UML profiles, or they can be created specially ttoe particular domain. In the latter
case they are usually callddmain-specific modeling languagé@3SMLSs).

In this work we use our own, textual domain-speaifiodeling languages. However,
for the sake of understandability, we show exampferethods’ inputs in Chapters 4
to 6 using two well-known graphical modeling langas: Business Process Model
and Notation (BPMN) and Unified Modeling LanguagML) activity diagrams.

Business Process Model and Notation (BPMN)

BPMN is devised as a standard means for descritusgness processes by and for
human users (Object Management Group, 2011). lviges five categories of
modeling elements: flow objects, data, connectibgeas, swimlanes and artifacts.
However, we use only a small subset of this rigigleage, utilizing the following
kinds of flow objects:

1. events:
a. start Message eventeaning that a message is to be received, and
b. end Message evemteaning that a message is to be sent;

2. tasks atomic activities that have to be carried out,

3. gateways: used to influence the control flow:

a. exclusive gatewayhat either splits the control flow based on a
specified condition, or merges back multiple erigtalternative paths,

b. parallel gatewaythat either creates parallel paths or joins back
multiple existing parallel paths,

27

Methods and tools used

c. complex gatewaythat is used to model complex synchronization
behavior. It can create and merge back both aligegnand parallel
paths.

Symbols for these elements are shown in Figure 6.

o @ (b

Start Message End Message

event event
«<>+ «<_|>+ k<%+
Exclusive Parallel Complex
gateway gateway gateway

Figure 6. Symbols for BPMN elements used in this dissertation

UML Activity diagrams

Unified Modeling Language is a language primarityended for system architects,
software engineers, and software developers (Objestagement Group, 2010). It
provides several kinds of diagrams, from which \@eenchosen activity diagrams as a
tool for visualizing abstract design of integratimmiutions. We have chosen this tool
for solutions with explicit data input and outpatr@meters for individual components
and with the for-each construct, as we considetJilie notation very well suited for
this purpose.

We use the following constructs in our diagrams:
1. activities atomic activities that have to be carried olkgliasks in BPMN),

2. decisionand merge nodes: split the flow to multiple alternative patand
merge them later back together (like exclusivewyates in BPMN),

3. fork andjoin nodes: fork the flow to multiple parallel paths gauh them later
back (like parallel gateways in BPMN),

4. expansion regionused to model for-each construct, i.e. an exeoutif a
subprocess once for each element of an input ¢igltec

5. inputandoutput pinsused to denote input and output parameters ofidhehl
activities,

6. startandfinal nodesused to model the start and end of process.

Symbols for these elements are shown in Figure 7.

28

Methods and tools used

!

an activity

decision and merge

s
: -

initial node flow final node
fork and join

expansion region

orderLine @ linelnfo

an activity with input and
output pins

Figure 7. Symbols for UML activity diagram elements usedhis tdissertation.

3.2 Planning

Generally speaking, planning is an approach to Iprobsolving whose aim is to
produce a course of actions that takes a system &o initial state to a goal state
(Schalkoff, 1990).

Current action-based (or STRIPS-like) plannersdescendants of the automated
planner STRIPS (Fikes and Nilsson, 1971), are basdtie situation calculus. States
of the world (situations) are described as conjonst of grounded first-order
predicate formulas; these formulas are positiwgdis (atoms).

A state of the world can be modified by applyomerators An operator is a tripl®p

= (pre, del, add)wherepre is a set of predicate formulas that must be satish
order for the operator to be invoked (a precond)tidel is a set of predicate formulas
that are deleted aratld are predicate formulas that are added to the iggiser of the
state of the world. Togethedel and add represent the effect of the operator. The
operators can be parameterized, i.e. predicateulasmnpre, del, add are allowed to
contain free variables.

What we have just described is the basic STRIPS{ilanning. There are several
extensions to this approach that we use in someuofmethods. For example, an

29

Methods and tools used

extension used in the DL/P method allows us to weitk quantified preconditions
and universally quantified and conditional effects.

A planning problem consists of a planning domaisdbof operators) and a definition
of the initial state of the world and the goal stgdtates). The planner then tries to find
a plan, consisting of operators that incrementafipsform the world from the initial
state to a goal state. Operators used in a plaespwnd to real-world actions and are
usually required to have all their variables bouhd&though in most cases the plan
is a sequence of actions, it is also possibledaterplans with concurrent actions.

A frequently used algorithm of action-based plagnivorks by sequential adding of
operators to the plan. Plan construction is guibdgdoperators’ preconditions and
effects, usually employing some kind of heuristiddere are other methods as well,
for example using a planning graph, plan spaceckBearonverting planning to a
constraint satisfaction problem, and so on.) Inroathods, we only use the planner as
a black box. The exact plan search algorithm isimgiortant, as long as it provides
correct results in acceptable time.

More information on action-based planning can hentbe.g. in (Russel and Norvig,
2003).

The planning as a general paradigm can be usedbinvays: One could either create
a custom planner for his problem, or he or she gae an existing, domain-
independent planner. We have chosen the seconzhopti

Actually, we are not alone when using this approathere have been several
successful attempts to translate domain-specifiblpms into an input for a domain-
independent planner. As an example, this approashbken promoted by organizers
of ICKEPS 2009 (International Competition on Knogde Engineering for Planning
and Scheduling). Participating applications weoenfithe domains of data mining, e-
learning, business workflows (a question of reseuatlocation), semantic web
service composition, and instructable computingréviaformation on this event can
be found in (Bertoli, Botea, and Fratini, 2009).hé&t examples of using domain-
independent planners for specific domains are ¢ases generation (Scheetz, von
Mayrhauser, and France, 1999; Frohlich and LinkO030or deployment of
components of distributed software systems (Arshigiinbigner and Wolf, 2007).

Planning Domain Definition Language (PDDL)

PDDL is a de facto standard input language for dormalependent action-based
planners. It provides facilities for description afplanningdomainand a planning
problem The description of a planning domain consistsnprily of information on
object types, predicates and operators (actionsjlewthe planning problem is
described by listing concrete objects, the inidte and a goal state or states. For
simplicity, in this dissertation we use the termatming problem” to describe both
a problem and its associated domain.

30

Methods and tools used

Let us explain the PDDL syntax used for operatacdption. For example, in a
domain of physical objects, an operatatveBriefcase ~ with two parametersirom |,
to) can be described as follows — adapted from (Moidéret al., 1998):
(:action MoveBriefcase
:parameters (?from ?to — location)
:precondition
(and
(at Briefcase ?from)
(not (= ?from ?to))

)

-effect
(and

(at Briefcase ?to)

(not (at Briefcase ?from))

(forall (?thing)

(when (in-briefcase ?thing)
(and (at ?thing ?to)
(not (at ?thing ?from))

The description says that an operatoveBriefcase has two parameterstrom and
?to . Note that parameters in PDDL are marked by haaiggestion mark as a prefix.
In our example, these two parameters are of kyjaéon

Then there comes a specification of the operatprécondition. In this case the
briefcase can be moved from locatigirom to location?to only if it currently really

is at the locatiorefrom . The fact of being physically present at some glag¢in this
example domain, modeled by predicate having two arguments: a thing and a
location. The fact that the Briefcase object ishat location?from is then written as
(at Briefcase ?from) . Please note that PDDL uses a lisp-like way oftimgi
expressions, including predicates, i(predicate argumentl argument2 ...

argumentN) instead of the more traditional formpredicate (argumenti,
argument2, ..., argumentN)

Second part of the precondition, igeot (= ?from ?to)) , denotes the requirement
that the locationsfrom and?to must be distinct.

Finally, operator’s effect is specified. Here tliteet is:

1. The briefcase is present at new locatiotatBriefcase ?to) — i.e., this
predicate will be added to the state of the world.

2. The briefcase is no longer at original location(net (at Briefcase
?from)) — i.e., the predicatet Briefcase ?from) will be removed from
the state of the world.

3. Every thing that is present in the briefcase (medleby predicatein-
briefcase) is moved along with it: it is present at the ndwcation

31

Methods and tools used

(at ?thing ?to) and it disappears from the original gnet (at ?thing
?from)) . Appropriate atoms (made by replaciaging , ?from , ?to with
concrete objects) will be added to, or removed frtira state of the world.

The third item is an example of a universally qifeett effect — one of extensions of
basic STRIPS-like core of PDDL.

For more information on PDDL and its extensionsapée see (McDermott et al.,
1998) and (Gerevini and Long, 2005).

Tools used
In this dissertation we have used the followingpkrs:

e HSP 2.0 — a planner that combines several heussticch algorithms based
on an A* algorithm with a weight assigned to theudndic part of the
evaluation function. It provides both admissiblel aron-admissible heuristic
functions; we have used it with a non-admissible tmat does not guarantee
finding optimal solution, yet, in general, it comsa solution faster (Bonet
and Geffner, 2001).

* FF 2.3 — implements a search strategy that combmiéglimbing with
systematic search. Uses a non-admissible heubiased on estimating goal
distances by ignoring delete lists, a principleisimto the one used in HSP
(Hoffmann and Nebel, 2001).

» Gamer — a sequential optimal planner that uses agigndearch planning with
binary decision diagrams (Edelkamp and Kissman@920

* MIPS-XXL — a sequential optimal planner using ateexal memory to cope
with large state-space that has to be searchedk@dp and Jabbar, 2008).

« LPG 1.2 — a planner that uses a stochastic loeaitlseprocedure, supporting
durative actions and numerical variables (Gere@Bagtti, and Serina, 2003).

* SatPlan2006 — a parallel planner that works bystedimg a planning problem
into a Boolean satisfiability problem (SAT), whidd then solved using a
general solver (Kautz and Selman, 2006).

* MaxPlan - translates a planning problem into gdabdity one, as
SatPlan2006 does. In comparison to SatPlan2006 roviges several
optimizations, e.g. instead of solving SAT proble® a whole, MaxPlan
decomposes it into a series of smaller SAT subprob| using knowledge of
the structure of the original planning problem (i€hen, and Zhang, 2006).

* JSHOP2 — a Java implementation of the SHOP2 plaimepntrast to action-
based planners mentioned above, this one is based lbierarchical task
network (HTN) planning. Instead of trying to reaahspecified goal state,

32

Methods and tools used

HTN planners try to find a sequence of actions thi&dw accomplishing
a specified task (Nau, Au, lighami, Kuter, Murdodu, and Yaman, 2003).
We use this planner in a mode that emulates ab@sed planning, as
described in Chapter 5.

3.3 Constraint programming

Constraint programming is an approach to problenvirsp that is based on
formulating and solving constraint satisfactionigems (CSPsj.Each such problem
consists of a set of variables {, %o, ..., % } with their respective domains {idd,, ...,

dn }. Each variable can be assigned a value frordatsain ¢ Along with these two
sets there is a set of constraints;{ @, ..., & } over these variables. The constraints
can be of arbitrary arity greater than zero. Thecess of solving a CSP means
finding an assignment of a value to each of théabées, such that the assignment is
consistent with all the constraints. Additionalyne of the variables can be declared
to be thecost variableand then the overall goal is to find a solutioattiminimizes the
value of this variable.

In the following we will briefly look at the followng two approaches to solving CSPs:
consistency checking and searching for a solufidach and Parali 2000).

Consistency checkinglgorithms try to transform a CSP in order to wts
complexity, while keeping the set of its solutiamschanged. These transformations
eliminate unfeasible values from domains of CSRkabes, strengthen constraints, or
add new constraints. There are many concrete #gigusi differing primarily in the
degree of consistency they are going to achieve.ddiinition of the k-consistency is
the following (Mach and Par&li2000):

Let arbitrary k-1 variables have assigned such values from their
domains, so that all constraints defined over (tki¥)-tuple of variables
are satisfied. For each othdrth) variable it is then possible to choose
such a value from its domain, so that all constsagtefined for the
resultingk-tuple of variables will be satisfied as well.

In practice, mostly used algorithms attempt to ldith the consistency of degree 1
(often called node consistency) and 2 (arc consigde Achieving higher-level
consistency is possible as well, however, theseritigns are less frequently used due
to their bigger computational complexity (Mach d@rafalt, 2000).

Searchingconstructs a solution by successively assigningegato CSP variables. In
that context, there are two crucial questions:

1. Which variable should the solver choose (amongatées that have no value
yet) to assign a value?

2 In this dissertation, we will also use terms “doaisit satisfaction” and “problem solving using
constraint satisfaction” to denote this approach.

33

Methods and tools used

2.

What value (from the set of potentially suitableshto use?

Concerning the first question, there are well-knayemeral strategies. Some of them
are (Kuchcinski and Szymanek, 2011):

1.
2.

3.

Smallest domainthe solver selects a variable with the smallestalo.
Largest domainthe solver selects a variable with the largestalom

Smallest (largest) minimal (maximal) valube solver selects a variable with
the smallest minimal (or smallest maximal, largegtimal, largest maximal)
value of their domain.

Max regret:the solver selects a variable with the largededBhce between
two smallest values in a variable’s domain.

Most constrainedthe solver selects a variable that has the biggyasiber of
constraints assigned to it. This criterion can b&leated either statically, i.e.
counting all constraints assigned (this can beuatatl at the beginning of
solving process), or dynamically, i.e. counting yordonstraints that are
awaiting evaluation.

Minimal domain over degre¢he solver selects a variable that has the snhalles
ratio of domain size to number of attached constsaawaiting evaluation.

Weighted degreethe solver selects a variable that has the higivesght
divided by its domain size. A variable weight isaue that starts at 1 and is
increased every time a failure of a constraint teelato this variable is
encountered (Boussemart, Hemery, Lecoutre and &Z0gl,).

Concerning the second question, there are agaeraeyeneral strategies, like:

1.

2.

3.

4.

choosing théowest(or highes} value from the variable’s domain,
choosing theniddlevalue from the variable’s domain,
choosing aandomvalue from the domain,

let the user specify thexact orderingof values to be chosen.

Any of these value-choosing strategies can be eghgfiobally to all variables, or one
can choose to apply different strategies for irdiral variables.

Tools used

In this dissertation we have used JaCoP (Szym&tsK,), a constraint programming
library for the Java environment. It is an openfseulibrary that allows defining
finite domain variables and constraints over théaCoP solves constraint satisfaction
problems using a combination of consistency cherhkimd depth-first search. During
searching, it is possible to apply various stragsdor variable and value selection, as

34

Methods and tools used

described above. Moreover, JaCoP allows modifying $earch using so called
plugins — a custom code that is executed at spécpbints of the search process.
Plugins can be attached e.g. to the events ofliaitig a search, exiting a search,
finding a solution, exiting a search subtree, eatun of consistency during a search,
and others.

We are considering using other solvers as well. &l@s, in comparison to the area of
action-based planning that has a well establishaaddard input language (PDDL),
here the level of portability between solvers iscmdower. Only very recently a
standard has been proposed, namely, the MiniZimgulage (Nethercote et al., 2007).

3.4 Concrete software tools used

Prototypes of our methods have been implementedhé& Java programming
language, using Java SDK (Software Development K&)and 1.6 with the Eclipse
development environment in versions from 3.4 ta @#her major software tools and
libraries include (besides those that have be@&adyr mentioned in this chapter):

» Javatools and libraries: Xtext 1.0, JAXB 2.1, J&R 0.8, JUNG 2.0, Apache
Velocity 1.6,

* integration platforms: Progress Sonic ESB 7.6.2&0dL, Apache Camel 2.5,

» visualization toolkit: graphviz 2.26.

35

4 Our approach: A general description

On our journey to semi-automated construction ofssaging-based integration
solutions we have explored two approaches: planaimg) constraint programming.
We have developed a set of four methods listedweddl of them share an approach
shown in Figure 8.

Control and data flow Environment description

Variables: a, b, ¢, d Hosts / containers:

ab c h1 (c1a, c1b), h2 (c2a, c2b), h3 (c3)
System 2

a b .
System 1: works in c1a, c1b

System 1 bo System 4 do (< 16 threads, 10 msgs/thread/min),

System 3 and c3 (< 16 threads, 40 msgs/thread/min)

a preserves message attachments contents

System 2: works in c2a, c2b
Non-functional requirements (= 4 thr, 20 msgs/thread/min)

does not preserve message attachments
Throughput > 100 messages per minute.

Availability should be ‘high’. .
Platform: Progress Sonic ESB 8.0.1
All communication with Systems 2 & 3 should be no custom aggregator available

monitored.

Messages should exit the solution in the same
order as they have entered it. Design goa|s

Minimize number of messages that use MQ.

/ Minimize number of integration services.

A method for semiautomatic Executable
integration solution construction integration solution
(based on planning or constraint (or at least its

programming) design)

Figure 8. A schema of our approach.

The input for such a method for semi-automatedgnatigon solution construction is
anintegration problenthat consists of:

1. abstract designnamely the specification of control and/or datpetelencies
between systems or services that have to be inéegraithout any technical
details related to the deployment of solution congris or to their
communication,

37

Our approach: A general description

2. non-functional requirements specification

a. mandatory non-functional properties the solutiors @ have, like
required throughput, availability, manageabilitydaso on,

b. design goals that are to be achieved, like minitromaof the use of
messaging middleware, balancing CPU load, and so on

3. description of the environmerapnsisting of:
a. properties of systems or services that have totegiated,

b. properties of integration (or mediation) servicesl a&ommunication
channels that are available — in part they arerglwe the integration
platform that has to be used.

The output of such a method is an executatikegration solution or — at least — its
detailed design. Concrete methods that implemesgiiproach are the following:

38

* Message-level, planning-based method, shortly, the ML/P method) is a
method for designing integration solutions dealmginly with aspects of
throughput, availability, monitoring, message onugr translating between
different message contents and formats, and findimg best way of
deployment at a coarse level. It does not deal witernal structure of
messages (hence “message-level”). It uses actisadb@lanning. It was
presented at CEE-SET 2009 (Mederly, Lekavy, Zavpa@sid Navrat, 2009).

« Data element-level, planning-based metljodthe DL/P method) is a method
specifically aimed at managing data elements insagiag-based integration
solutions. It uses action-based planning as wetl @nwas presented at
[IT.SRC 2010 (Mederly, 2010).

* Message-level, constraint programming-based metbothe ML/CP method)
is the first of the methods using constraint pragrang. Its application area is
very similar to the one of ML/P with a slightly exided set of design aspects
it deals with. It was presented at ADBIS 2010 (Médand Navrat, 2010).

* Universal constraint programming-based metlfodthe U/CP method} the
most comprehensive of our methods. In current gerdi solves almost all
aspects covered by previous methods along withrakadditional ones, and
goes into much more details when designing thetisolult is able to produce
directly executable code for selected integratitatf@grms. It uses constraint
programming. Its preliminary versions were presgéraé DATAKON 2010
(Mederly and Navrat, 2010a) and IIT.SRC 2011 (Mbde2011); the most
current one will be presented at DATAKON 2011 (Megleand Navrat,
2011).

Our approach: A general description

In the remaining parts of this chapter we desctitmamon features of these methods.
Then in Chapter 5 we explain planning-based methodsore detail and in Chapter 6
we show methods based on constraint programming.

4.1 Input of the methods

Our methods are devoted designing an integration solutiobased on itabstract
design, non-functionalrequirements specificatiorand a description of target
environment

4.1.1 Abstract design

Required flow of control and data

The core of the abstract design is th@w of control and datathat has to be
implemented. This flow can be depicted in variousy/sy in the following we mainly
use Business Process Modeling Notation (BPMN) ighaften utilized as a platform-
independent way of modeling control and data flestween activities, carried out
either by people or by computers.

As an example integration scenario used to illistthe methods let us consider a
hypothetical online retailer company “Widgets andd@ets 'R Us” (Hohpe and
Woolf, 2004). This company buys widgets and gaddeisn manufacturers and
resells them to customers. The company wants tonaate its purchase orders
processing. Since parts of the whole process apéemented in disparate systems,
our goal is to create an integration solution thatild interconnect these systems in a
required way (see Figure 9).

Handling of purchase orders in the integration tsatushould look like this: Orders
are being placed by customers through three systemis interface, call center and
fax gateway. These systems are connected to agratton solution via adapters that
send each received order in a separate messagdhémael dedicated to each of these
three systems. Our integration solution is resgm@dor picking up such a message
and translating it from source system-specific datadel to a common data model.
After that, it ensures that the customer’s crethinding as well as inventory is
checked. If both checks are successful, goods lapped to the customer and an
invoice is generated. Otherwise, the order is tegec

Due to historical reasons, information about stémkels is kept in two separate
systems: Widgets inventory and Gadgets inventory. edch purchase order is
inspected to see if the items ordered are widggisgets, or something efS&ased
on this information the request for checking inwentis sent to one of these systems
or to a special message channel reserved for choatiers.

% In this version of the scenario we assume thatrdar contains items of only one type. A generdlize
version of the scenario, more similar to the onesented by Hohpe and Woolf, is described in
Section 6.1.1.

39

Our approach: A general description

Start event: a
@ @ @ purchase order

from a source

system arrives

Translate from Fax
Gateway data model
to a common one to a common one

Both branches —)
have to be One of the branches is
\

executed executed, depending on type of

£ A items
[Check customer credit] Invalid
l \/ type of
items

Check widgets | | Check gadgets
inventory inventory

Translate from Call
Center data model to
a common one

Translate from Web
Interface data model

Order is
rejected, if at 4Aggregate results

least one of
the checks \

A service that

has failed is invoked

Ship the goods] [Bill the customer]

End event: an
shipping notice —
is generated

Figure 9. An example of the flow of data to be implementesing BPMN.

So, in Figure 9 we see an example of a control f&pecification (shown using
connections between model elements) as well asta fitav specification (shown
using the same connections). More detailed exgtamé&bllows.

Business and integration services

In the BPMN representation shown in Figure 9, mgkes with rounded corners
correspond to business and integration servicescations Business servicgaovide
business functionality; usually that means theywegraccess to systems that have to
be integrated (in our case these services ar€harkCredit, CheckWidgetinventory,
and so onf.0n the other handhtegration servicegmplement technical functionality

4 So, when we are speaking that we are connesljstems (applicationsyve (most often) connect
business servicdhat provide access to these systems’ functignalit

40

Our approach: A general description

that is necessary for an integration to take plémeexample, they convert messages
from one format or data model into another; theyrwessages, route or reorder them,
and so on. In our case, services for translatioonrdérs from system-specific data
model to a common one could be considered to begration ones. Further
integration services are added to the solutiomndutihe design process, as can be seen
e.g. in Figure 10.

The border between business and integration servisenot always clear. In
particular, routing and transformation services Idodeal with business logic,
integration logic, or both — so they can be congiddo be business or integration
services, depending on the situation and the viewpmd the observer. Actually, this
explanation only shifts the question of distinctibatween business and integration
services — in case of transformation and routingsendown to the question: “What is
the difference between business and integratioit?6@y business logic we mean
a functionality that is specified by business usersat least, that has to be consulted
with them. For example, a rule stating that “a studs considered to be enrolled to a
faculty if his study record contains a start dak®es not contain an end date, or the
end date is greater than the current date, ané Isaecial confirmation flag set” is a
typical example of a business logic rule. On theeothand, simple transformations
dealing with e.g. renaming the attributes (like Mam FirstName), changing
encoding of values (like male/female M/F or 0/1), and so on, are characteristic
examples of integration logic.

The creation of business and integration servisesurrently out of scope of our
methods: our task is to select, configure and conrleem appropriately into
a working integration solution.

Control and data dependencies

We distinguish between two kinds of relations be&tweservices and other
componentsof the integration solution: control and data defencies.

A control dependenchetween two components; @hd G means that Chas to be
executed before £ln the diagram shown in Figure 9 such dependeraiie denoted
by connections (directed edges) between comporigraph vertices). Of course, we
show only “primary” dependencies, not those that loa derived from them using a
transitive closure.

® By these “other components” we mean componentsefogiving and sending messages from and to
external channels. These are shown as circlesenmitilopes that denote a receipt of a message and a
sending of a message out, i.e. the BPMN Message EBtant, shown as an envelope not filled in, and
the BPMN Message End Event, shown as a filled-irekxpe, respectively.

41

Our approach: A general description

Besides connections, the control flow is describatb using diamonds. Diamonds
denote BPMN gateways and mean the following (s&® Séction 3.1):

1. when drawn with a ‘+’ sign (i.e. the BPMN Parall@ateway), a flow of
control is split into two or morgarallel flows, or more parallel flows are
joined into one in a synchronized way,

2. when drawn without a sign (i.e. the BPMN ExclusiBateway), a flow of
control is partitioned into two or moidternativeflows, or more alternative
flows are merged back into one.

A data dependencipetween two components; @nd G means that Cproduces a
piece of data that {heeds.

Data dependency implies control dependency:;ip@duces a piece of data that C
needs, then {has to be executed beforg Ce. in the control flow graph there should
be a path from ¢to G,.

In Pipes and Filters architecture (see Sectionb),.passing of control and data is
implemented by a common facility: sending a messafeerefore, from the
designer’s point of view, the simplest situationvisen control and data dependencies
are the same, i.e. when for each “primary” conttghendency between components
C,and G the output of ¢ exactly matches the input ob.(Both of these control and
data dependencies can then be implemented simplyabging the output message
from C;to the input of G

In ML methods we have made exactly this assumpfease note that in Figure 9
the control flow dependencies between components b interpreted as data
dependencies in general, and message flows incplarti On the other hand, DL/P
and U/CP methods are more flexible in this respastthey allow decoupling of
control and data dependencies, as described @dotGP method) in Section 6.1.1.

As a terminological note, byontrol or data flow specificatiomnve mean the sum of all
control or data dependencies between integratitutiso components, respectively,
prescribed in the requirements specification.

By amessage flowe mean the flow of messages at a particular mdittie solution.

A message flow is carried in a uniqgue messdgane) which could be an in-memory
or a messaging middleware-based one. In our metivedsse the Datatype Channel
patter? (Hohpe and Woolf, 2004) that requires the all ragss in a channel (and, in
our case, messages in a flow as well) to be ok#ime type. (The only exception to
this rule is the situation when there are multiphessage flows going into an
aggregator service that has only one input charninekhis case there are more

® Hohpe and Woolf's patterns are referenced henesbyg names with capitalized words.

42

Our approach: A general description

message flows in one physical channel, making itaoonpliant with the Datatype
Channel pattern.)

Specification of control and data flow in our methals

Individual methods slightly differ in the way ofegpfication of control and data flow
that they expect.

Planning-based methods (ML/P, DL/P) work wilbw of control implicitly specified
by the data dependenciemach service is described by its inputs and astpnd the
method tries to find a structure (more specifically directed acyclic graph) of
services implementing the required transformatibmput message flow(s) to output
one(s). Therefore, before using these methodsteitpeired flow of data such as the
one described in Figure 9 has to be translatedantmput/output characterization of
the services. (This process is straightforward @ad be easily automated, if
necessary.) An example of such a characterizasia@hown in Table 3. It should be
noted that implicitly specified control flow is neigeneral than explicitly specified
one used in later methods: it allows capturing altgrnative ways of achieving a
business goal. It is perfectly possible to stathwhis kind of specification instead of
the BPMN-like specification of control flow.

Table 3.Input/output characterization of services used@example integration scenario.

Service Input Output
WebOrderTranslator OrgerWebNative OrderWeb
CCOrderTranslator OrderCcNative OrderCc
FaxOrderTranslator OrderFaxNative OrderFax
OrderWeb
DeclareMergedFlow_Orders ' OrderCc Order
OrderFax
CheckCredit Order OrderWithCreditInfo
OrderWidgets
ltemTypeRouter Order OrderGadgets
OrderinvalidType
CheckWidgetinventory OrderWidgets Order\\VidgetsWithl nvinfo
CheckGadgetinventory OrderGadgets OrderGadgetsWithl nvinfo
OrderWidgetsWithInvinfo .
8
DeclareMergedFlow_Invinfo OrderGadgetsWithinvinfo OrderWithinvinfo
. OrderWithCreditinfo)) 9
DeclareJoinedFlow_CrAndInvinfo OrderWithinvinfo OrderWithCreditOrInvinfo
AggregateResults OrderWithCreditOrinvinfo ~ OrderWith CreditAndInvinfo

" This service is a virtual one; it just declaresttfiows carrying orders coming from three souraes
to be merged together.

® This service is again a virtual one — it marks givey flows OrderWidgetsWithinvinfo and
OrderGadgetsWithinvinfo together.

° This flow contains both messages carrying crediiormation and messages carrying inventory
information. In contrast, flowrderwithCreditAndinvinfo contains messages carrying both credit
and inventory information — it is being createdtbg AggregateResults service.

43

Our approach: A general description

OrderFeasibilityCheckRouter OrderWithCreditAndInvin fo OrderFe§15|bIe
OrderRejected

Shipping QrderFeasible ShippingInfo

Billing OrderFeasible Invoice

Columns meaningServiceis the name of a service in questidmput and Output
columns describe the content of the service’s imgkt output message flows.

On the other hand, constraint programming-basetadst(ML/CP, U/CP) work with
explicitly specified flow of controthey expect a graph of control like the one shown
in Figure 9. This is perhaps one of reasons theysanificantly more efficient in
designing the solution, as described in Chapter 1.

Another difference between our methods is that Mdthonds assume that control and
data dependencies are the same, as we have men#dboee. They also work with
the dataat the level of messageaw®ot looking at individual information elementbt
we call process variable®r simply variables) that are being carried in sages. In
contrast, methods DL/P and U/CP allow a developesgecify data dependencies
separately from control dependencies, and in metaild: in terms of individual
variables. They then try to find an efficient plamnt of variables in physical
messages that flow within the integration solution.

4.1.2 Non-functional requirements

An important part of requirements specification tiee characterization ohon-
functional requirements Currently we deal with the following categories o
requirements:

1. Throughput we could require the solution to be able to cardusly process
a specified number of messages per time unit,peigsecond or per minute
(implemented in methods ML/P, ML/CP, and U/CP).

Of course, buffering facilities provided by messagimiddleware enable
processing bursts of messages that arrive at higéer than expected. Yet,
here we require that the solution should be abprdoess specified amount of
messages per time urfitor a long time without a negative impact on the
processing time (latency).

2. Availability: we could require the solution to guarantee aifipdclevel of
availability, i.e. that it is able to process megsawithin defined time with
a specified probability (ML methods and indireclgo U/CP).

In current version of the methods we do not usentiiadive measures for
availability; instead, for simplicity we have chose set of discrete values to
denote “low”, “normal” and “high” availability. Use of our methods have to
decide for themselves what they understand by thesktative levels.

44

Our approach: A general description

3. Message content, format, ordering, monitoring, dgtion, and
checkpointing- these aspects are explained in Section 4.2.

4.1.3 Description of target environment

Besides requirements, design of any integrationtswl is driven by features of the
target environment: integration platform and segsithat are available. In our method
we deal with the following environment charactecst

A. First of all, each business service (and in s@ames also integration services) is
described by the following characteristics:

1. Inputandoutput

a. contentof messages entering and exiting the service herit the
level of whole messages (ML methods) or at the ll@feprocess
variables carried in them (methods DL/P and U/CP),

b. formatof messages entering and exiting the servicee-XikIL, CSV,
JSON, and so on (ML methods and U/CP),

c. technical informationabout positioning of data elements in message
parts and about preserving other data elementspatifsed parts
(methods DL/P and U/CP).

For example, these are statements like “a serdieeckCredit2
requires an input data itemader in message body and an input data
item creditPolicy in message header. It produces an output data item
credit in message body. The service keeps all items issage
header and in message attachment untouched.”

2. Throughput what throughput can the service provide? Of cauitss depends
on how it is deployed (in how many threads, proegsst what concrete
hosts). Methods ML/P, ML/CP and U/CP deal with tiesue, at different
levels of accuracy: in methods ML/P and ML/CP wstidguish between four
modes of deployment (so called parallelism leve{4): single thread, (2)
single process, multiple threads, (3) single hosiltiple processes, and (4)
multiple hosts. Each mode of deployment providegcig levels of
performance and availability, e.gheckCredit service in parallelism level 1
could achieve a throughput of 100 messages pertenand availability at the
level of “normal”. In parallelism level 4 it coulachieve a throughput of 1000
messages per minute and availability at the lef/éhigh”. The U/CP method
works with more precise estimates — we can speitiey dependence of
throughput on the number of threads the servidedoyed in, with regards to
specific service containers (an example is showraisle 10 on page 100).

45

Our approach: A general description

3. Availability: how available is the service — again, dependmgsodeployment
(ML methods).

4. Costorresource usagef the service: (1) the cost could be an abstraotber
(ML methods), reflecting service’s use of resourdée CPU, memory,
network bandwidth, software licenses, and so onallys depending on the
way of deployment. (2) Another possibility is toesgy resources consumed
by the service individually for some or all of cgdeies mentioned above.
Then we can compute the total cost of the integmagolution as the weighted
sum of measures of consumption of individual resesiby the services. This
approach is used in the U/CP method.

B. Methods also need to have some knowledge albeuimplementation platform,
for example: Does it allow combining Publish/Suilser and Competing
Consumers patterns (as does Progress Sonic ESBhaied subscriptions to
topics)? Does it offer asynchronous in-memory clets(as does Apache Camel)?
What is an effect of using some features or sesvime system resources, e.g.
utilization of messaging middleware?

4.2 Output of the methods

We work with messaging-based integration solutithas follow the Pipes and Filters
pattern (see also Section 1.2.5): they receive agessthat come through an input
channel or channels, process them by a set ofcesreibnnected by various channels,
and put them into an output channel or channels.

An example of such a solution is shown in Figure Tliis solution corresponds to a
control and data flow shown in Figure 9 combinethwine following requirements:

1. while all services in our scenario work with messagn XML format,
inventory checking ones use JSON format instead,

2. due to performance reasons thieeckGadgetsinventory service has to be
deployed on multiple hosts,

3. we need to monitor correct functioning of crediecking service and both
inventory checking services,

4. the order of messages arrivingoatierFeasibilityCheck service (point B in
Figure 10) should be the same as original ordenegsages at the input side
(at point A in Figure 10).

The solution presented is an output of the ML/P hoeét The method correctly
determined that it should use a queue to dispateBsages tacheckGadgets-
Inventory service executing at multiple hosts, employ forrmatverters at appro-
priate places, and use sequence numbers genaratafier Point A as well as the
Resequencer somewhere before Point B.

46

Our approach: A general description

As a notation we have used icons for channels ategjiation services suggested by
Hohpe and Woolf (2004) and described in Section21.5Connections between

services without an indication of channel type pl&n in-memory point-to-point
channels.)

Messages from Messages from Messages from
the Web Interface the Call Center the Fax Gateway

— Point-to-Point MQ
[sw— — @) | channels

! ! v

Translate from Web Translate from Call Translate from Fax
Interface data model Center data model to Gateway data model
to a common one a common one to a common one

e T - Point-to-Point MQ Channel
PointA =~ !

O—» D Content Enricher (sequence number generation)

EE Publish-Subscribe MQ Channel
l Routing based
/ on type of items | —— | Invalid type
I : Gl | of items
o | [e (O]
" dit JSON
customer credi 3 3 Point-to-Point MQ Channel
(monitored)
Wire Tap —
! ! (S
v

Check widgets
inventory
(monitored)

Check gadgets inventory
(monitored & deployed on multiple hosts)

ﬁE:‘_J

[][?»D oo| Resequencer

Publish-Subscribe MQ Channel

¥
M @@ JSON to XML

converter
Aggregate results

PointB —__ _ _
- Order feasibility check
(Content-Based Router)

EE Publish-Subscribe MQ Channel

)

Bill the customer

Shipping information Invoices
Figure 10.An example of a design produced by our method.

The remainder of this chapter is devoted to ouresgntation of integration solutions
using graphs.

a7

Our approach: A general description

4.2.1 Integration solution graphs

Each Pipes and Filters-based integration solutemm lze represented by a directed
acyclic graphG = (V, E) whereV is a set of vertices artell] V x V is a set of edges.
Each vertex [1V can represent either a service or an auxiliarypmmmnt. In order to
model this fact let us define a partial functiService:V — Servicesthat, for each
vertex v [J V representing a service, gives this service, amdotber vertices is
undefined. Servicesset includes all business services (these areifispéa the
integration problem) as well as integration sersice

As integration services we consider implementatioh&Vire Tap, Recipient List,
Content Based Router, Splitter, Aggregator, Ressopre Content Enricher, and
Message Translator patterns. For their descrigtiease see Section 1.5.2. Last two
patterns are used to fulfill a specific functione wse Content Enricher to insert
sequence numbers into messages (therefore weucallascomponent Order Marker)
and Message Translator is used to manipulate \esatvithin a message (for
example, moving them between message parts) fohense call it a Data Manager.

Vertices representing auxiliary components are:
1. solution’s input points (their set is designatedngsif);
2. solution’s output points (their set is designate@atpu);

3. fork points that are implemented by a Publish/StabsdChannel (i.e. a topic),
not by a service;

4. merge points — places where two or more messags fizerge in one channel
(again without using a real servic8).

Please note that these vertices exist for modglimgoses only. They do not manifest
themselves in an integration solution implementatio

In order to better illustrate our graph-based irda@gn solution representation, let us
redraw a part of Figure 10 into the form of theegration solution graph, shown in

Figure 11. Each node in the diagram (either a box, small circle or small diamond

symbol) is a graph vertex, and each connector lmtweodes is a graph edge.
Vertices represented by boxes are services, the m@peesented by small circles and
diamonds are auxiliary components. Although notisaally appealing as Figure 10,

this diagram better corresponds to our formal pried®n of an integration solution.

19 An alternative to representing channels implenmgnfork and merge points by vertices would be to
model these channels using hyperedges. A disadyawfathis representation would be, however, that
the solutions having fork point implemented usindRecipient List and using a Publish/Subscribe
Channel would have different graph structure (dexewith edges vs. a hyperedge) — something that
would present a complication for methods basedomstcaint programming (Chapter 1).

48

Our approach: A general description

Messages from Messages from Messages from
the Web Interface the Call Center the Fax Gateway
An auxiliary
component _ -~ _____——==|==z Point-to-Point MQ Channels
(solution’s input R L ==* (queues)
point)
Translate from Web Translate from Call Translate from Fax
Interface data model || Center data model to | | Gateway data model
to a common one a common one to a common one
An awdliary ___——---="""""" l Point-to-Point MQ Channel (a queue)
component (merge
point) . .
O—» |:| Content Enricher (sequence number generation)
An auxiliary
component (fork l An auxiliary
pointimplemented =~ =----_____ Publish-Subscribe MQ Channel (a topic) component
by a topic) (solution’s output
l Routing based p0|\nt)
on type of items \
Check ﬂ > @

customer credit -— Point-to-Point MQ
(monitored) Channel
y

e [0F) BE
JSON
Point-to-Point MQ

Wire Tap ! 1 l Channel

l

Check widgets
inventory
(monitored)

» <

l Publish-Subscribe MQ

Check gadgets inventory
(monitored & deployed on multiple hosts)

Channel

]
O —»-000| Resequencer

[m]
@@ JSON to XML
converter

Publish-Subscribe MQ
Channel

Aggregate results

Figure 11.A part of an example of a design produced by ouhow shown as a design graph.

Each edge; = (vi, v;) U E represents a channel carrying messages ¥raaw;. For a
given vertexv let us denote a set of its incoming ediyjg8) and a set of its outgoing

edgeOut(v).

If vi andy; are services, then the meaningept (vi, vj) can be understood easily. If
vi O Input, then ¢ is a solution’s input channel. ¥f O Output then ¢ is a solution’s

49

Our approach: A general description

output channel. I¥ is a fork point implemented using a Publish/SubgcChannel,
then all edges im(v) O Out(v) correspond to the same Publish/Subscribe Chaltfinel.
v is a merge point, thelm(v) O Out(v) correspond again to the same channel. The
exact meaning of vertices representing auxiliampgonents and their incident edges
differs in a small amount between our methods aativéen target integration
platforms.

If v corresponds to a servick(v) is a set of input channels of that service. Most
services have only one input channel; however, sepgices implementing the
Aggregator pattern can have more than one inputredaOut(v) is a set of output
channels of the service denoted by vesteRgain, while the usual number of output
channels is one, services implementing the CorBased Router and Recipient List
patterns have typically more than one output chlanne

Solution’s input and output points have no inpudl @utput channels, i.e. for each
v [J Inputandw [Outputthere isin(v) = 0 andOut(w) = [J.

Each service and each channel have a set of pieg€erhey are modeled usually by
functions with a domain o¥ or E, respectively. We call these functions modeling
properties, along with the Service function, tgobeperty functions

In the following we discuss some of the common proes of services and channels.

Channel content

A very basic question is: what is being transpontea channel? Some of our methods
(namely ML/P and ML/CP) treat channel content asnaivisible unit, denoted by a
simple symbol. We model this using a functi@ontent: E — Contents where
Contentsis a set of all possible types of message contertur sample integration
problem, Contents= { OrderWebNative OrderCcNative OrderFaxNative Order-
Weh OrderCg OrderFax Order, OrderWithCreditinfo OrderWidgets Order-
Gadgets OrderlnvalidType OrderWidgetsWithinvinfo OrderGadgetsWithinvinfo
OrderWithinvinfg OrderWithCreditOrinvinfo OrderWithCreditAndIinvinfpo Order-
Feasible OrderRejected Shippinginfo Invoice } (please see also Table 3). To be
precise, this function reflects not only messageteat as such, but gives also some
information about the context of the messages —ef@mple, “this flow contains
orders that have been rejecte@rderRejectell

We can use such a characterization to formulateyalesles: formulas that must be
valid for any solution for a given integration pleim. For example, as we know that
the credit checking serviceCheckCredit takes an order(Qrder) as its input and
produces an order with the customer credit inforomaOrderWithCreditinfy we can
state that

50

Our approach: A general description

[N [7Dom(Service), Service(v) = CheckCredit,/én(v), f //Out(v):
Content(e) = Order7Content(f) = OrderWithCreditinfo.

By Dom(F)we mean the domain of functién soDom(Servicejlenotes all vertices
[V that correspond to services. This rule shoulchkeefore read as follows:

For each vertex that corresponds to tl@heckCredit service, for its input channe
and for its output channéit holds thate transports messages with the content of type
Order andf transports messages with the content of tyjaerwithCreditinfo

As we have mentioned in Section 4.1, methods DdP @&/ CP deal with the content
of messages with more precision: they try to fimd loow to store logical data items
(process variables) in physical messages.

There are two related questions:
1. What process variables to transport in an indiviidhannel?
2. Exactly where to place these variables in messages?

Concerning the second question, a message typicatigists of a header, main part
(part 0) and other parts (attachments). It canspart data in any of these, although
there are often reasons for choosing specific pdejgending e.g. on type and size of
respective data items, on requirements and capebibf services involved, and so
on.

Let us denote a set of process variables that\a#able in the integration solution
Variablesand a set of possible positions for carrying dataessageRositions Then
we define the following functions that charactercmntent of messages flowing in
individual channels:

1. VariablePresenceE xVariables— Boolean i.e. this function determines, for
each channed [J E, a set of process variables transported in thasiicél.

2. VariablePosition: E x Variables x Positions— Boolean i.e. this function
determines, for each chanrel] E, a set of process variables transported in
this channel as well as positions they are transgat.

We acknowledge this is a simplified model, as wenca exactly capture the
situation when a message contains a process \atalme (or more times) at
a given position, e.g. in attachments. Such antevggresentation would be
necessary for example for more precise computaifoiimhe number of bytes
transported through messaging middleware. We hawsidered improving
this by and recording theumber of timesa variable is present in places where
it can be present in more copies (typically in fegaahd in attachments). But
for now we keep only simple binary information.

51

Our approach: A general description

As an example of related rule, let us considerratfa CheckCredit ~ service that is
used in an order processing scenario in such aleyt expects adrder variable in
the message body, producesradit variable in the message body (overwriting
existing value of the body), discarding all messaggachments but keeping all the
headers:

[N [7Dom(Service), Service(v) = CheckCredit,/én(v), f 7Out(v):
VariablePosition(e, Body, Order) = trueVariablePosition(f, Body, Credit) = tru&/
(Lvar[Nariables: VariablePosition(e, Header, var) = true
VariablePosition(f, Header, var) = trugy
(Lvar[Nariables: VariablePosition(f, Attachments, varfatse)

This rule should be read as follows: For each westethat corresponds to the
CheckCredit service, for its input channel and for its output channglit holds that:

1. messages transporteddicontainOrder in their body,
2. messages transportedficontainCredit in their body,

3. if a variablevar is stored in message header in messages in channelill
be stored in message header in messages in cHameltheCheckCredit
service keeps message headers intact),

4. at output ofCheckCredit there are no attachments (ObeckCredit discards
all attachments).

Such service-specific rules (determined from thecdption of data flow and
environment) are augmented by more general rulkd faa a given environment or
all environments, for example:

[l E, var/NMariables: VariablePresence(e, vas
VariablePosition(e, Header, varyVariablePosition(e, Body, vary
VariablePosition(e, Attachments, var)

meaning that variable can be transported eithehaader, body, or attachments
(reading it like this: a variable is present in sages flowing through a channel if and
only if it is present in headers, bodies, or attaehts of these messages), or:

[B[E, var, van/Nariables, var Zvar,:
- [VariablePosition(e, Body, var //VariablePosition(e, Body, vat

meaning that it is not possible to put two variabhtgo message body at once.

Channel types

Another usual property of a channel istigpe A standard way of communication is
through messaging middleware, using either PowRdmt Channels (often called
“queues”) or Publish-Subscribe Channels (oftenedaltopics” or “subjects”). The
basic difference between these types of channéfsisa message arriving at a Point-

52

Our approach: A general description

to-Point Channel is consumed byactly oneof receivers listening on this channel,
while message arriving at a Publish-Subscribe Célailsnconsumed bwgll receivers
listening on that channel. If services reside ie #ame address space, they can
communicate via in-memory channels as well, elimmgathe overhead of going
through messaging middleware.

So, at a general level, there is a funct©hannelTypeE — { InMemory Topig
Queue}. The set of values is influenced by a concretegration platform for which
we create an integration solution. For example,chpaCamel provides two types of
in-memory channels — synchronous and asynchronoes 6 therefore, in that case,
the propertyChannelTypecorresponds to a functio€hannelTypgimei E — {
InMemorySynchronoytnMemoryAsynchronoudopic Queue}.

Service deployment in service containers

Other typical properties are connected to deploymentof individual services. In
order to increase throughput and/or availabilityacervice we often have to deploy
such a service in multiple threads, in multiplegasses, or even on multiple hosts,
using the Message Dispatcher and/or the Competimg@ners patterns.

The idea of Message Dispatcher pattern is thateaialzed software component, a
dispatcher, is reading messages off the channek@ds them to a set of worker
threads (within one process). On the other handng@bing Consumers pattern is
based on the concept of having multiple independensumers reading messages
from the messaging infrastructure (more specifyicddom a channel of type Queue)
and giving them to further processing. These comsantan reside in multiple
processes. However, implementation details of tipaseerns vary among integration
platforms.

Our methods deal with this question at three legétgranularity:

1. coarse-level DeploymentMode V. — { SingleThread MultipleThreads
MultipleProcessedViultipleHosts} (see also point A.2 in Section 4.1.3),

2. finer-level: ThreadCountV — TC, ContainerCountV — CC andHostCount:
V — HC whereTC, CC, and HC denote sets of possible threads counts,
container counts and host counts, respectively,

3. finest-levelDeploymentV — { (3, t, ..., ty) | ti O TC,; } wheret; denotes a
number of threadService(v)s deployed in service contain@r*

' Even this concept of a service being deployeddoratainer using a specified number of threads can
be ambiguous and platform-specific in a situatidrere a service is to be used simultaneously at more
than one point in the integration solution. For sligity we assume here that (1) each businesscservi
is used only once, (2) individual integration seed are distinct, i.e. if we have two Wire Tapgsth
are, in fact, two independent services of type \Wiap.

53

Our approach: A general description

Concrete set3C, CC, HC, andTC,; (vO V,i =1, ..., n, where n is the number of
service containers available) and functioi®eploymentMode ThreadCount
ContainerCountHostCountand Deploymentare determined from the description of
environment. For example, Bervice(v)cannot be deployed in contain€r, then
TG, ={0}.

For optimization purposes we sometimes do not atlmevnumber of threads to have
an arbitrary integer value between 0 (or 1) angheciied maximum thread count.
Usually we restrict these numbers to be powerwof te.TCor TC,;={0, 1, 2, 4, 8,
..., max} wheremaxis a value determined from the environment desonp

Chosen deployment restricts the choice of inputnobh For example, topics are
usually not allowed to be used with Competing Comsts pattern, so we can assert
that

[N [JDom(Service), é/In(v):
DeploymentMode(v)/{ MultipleProcesses, MultipleHosts? ChannelType(e¥ Topic,

or (equivalently, at more specific level)
[N [7Dom(Service), é7In(v): ContainerCount(v) > 1= ChannelType(e¥ Topic.

Another example of a dependency between input elaamd service deployment is

derived from characteristics of synchronous in-mgnehannels: these can be used
only if services connected by this channel are @aga in exactly the same way, i.e.

in the same containers, with the same numbersreads in them. This fact can be
captured at various levels of details, dependinghenexact way of representation
used:

[N, w7 Dom(Service), £0ut(v), €7In(w):
ChannelType(e) = InMemorySynchronoasQ,
where formula Q depends on the level of abstraatmmcerning deployment used —
i.e. Q is either

DeploymentMode(v) = DeploymentMode(w),

or
ThreadCount(v) = ThreadCount(wyContainerCount(v) = ContainerCount(wy
HostCount(v) = HostCount(w),
or
Deployment(v) = Deployment(w).
Monitoring

Sometimes there is a requirement that all messggeg through a specific channel
should bemonitored that means their content should be available toaitoring
tool. This is very easy for Publish/Subscribe Clasni.e. topics, as they (by

54

Our approach: A general description

definition) allow a monitoring tool to subscribe tikem and listen to all messages
going through them. Otherwise, we can apply theeWiap pattern that provides a
special service that copies all of its input toedidated monitoring channel.

Formally we can define a functidvionitored E — Booleanthat assigns a value of
true or falseto each channel, subject to the following rule:

[[JE: [Monitored(e) = true
(ChannelType(e) = Topi@
O [7Dom(Service): Service(v) = WireTdp(e Z7In(v) 7 Out(v))) 7
Ol [7V: MonTransparent(w) = trué/(e /7In(w) // /7 /70ut(w): Monitored(f) = true
[Je [70ut(w) J/[g [7In(w): Monitored(g) = true)) |

Actually this rule is slightly more general thattbescription above: it assumes that
we allow messages to be monitored at a place shabnnected to the place where
monitoring was requested by a path not changingsagess content, i.e. by a path

consisting of vertices that are transparent wigards to monitoring, characterized by
the functionMonTransparentV — Boolean derived from the description of the

environment.

Message ordering

There can be a situation that the original ordedhgessages is lost, typically in the
case of parallel or alternative processing. Theigdes then has to employ a
Resequencer service that restores the original oikieg message sequence numbers.
If messages do not contain such sequence numbé&sjacessary to add them using
Content Enricher (of course, it has to be applidgdlevmessages are in the original
order).

We have defined two functions, naméydered E — BooleanandOrderMarked:E

— Boolean(with some extensions designed to deal with altereanessage flows
but these are not important to cover in detail$je first function describes whether
messages flowing through the chane€l/ E are (or are not) ordered and the second
one says whether the message order is marked witbge messages using sequence
numbers (or is not). Of course, it is importantsty what theeference points, to
which we relate message ordering. Usually — bunecgessarily — it is the entry point
of the integration solution.

An example of a rule concerning message ordering:a® output of a service
deployed in multithreaded mode the flow of messagest ordered.

[N [7Dom(Service), é7/0ut(v): ThreadCount(v) > > Ordered(e) = false

(An analogous formulation can be written usidgploymentModéunction.)

55

Our approach: A general description

Message format

Almost all services require messages to be in aifspe format, e.g. comma-
separated values, fixed-length records, XML, JSQ&V§Script Object Notation), or
other. The integration designer has to employ $igecbnverters appropriately. We
can model this using a functidgformat E — Formatsthat for eacle /7 E describes

the format of messages going throughas Format(e) We use this function for
message-level methods (ML/P, ML/CP).

An example of a rule: If a servicg &quires XML as its input and produces XML as
well, we should enforce that

[N [7Dom(Service), Service(v) 7,% //In(v), T 7Out(v):
Format(e) = XML//Format(f) = XML

For the U/CP method we have extended the ranghed¥driablePositionfunction
from Boolean to the set NotPresent} [1 Formats so this function describes both
whether a variable is present at a specified mrsdind what format is used.

Message duplication

When using messaging middleware, message duplicatimetimes occurs. There are
three basic approaches how to deal with it: (Lhgishe Transactional Client pattern
that ensures that the duplicate messages do rsat, ami the first place, (2) using a
special Message Filter designed to eliminate dafgg if they are already present, or
(3) using an Idempotent Receiver pattern denotergices that can accept duplicate
messages without problems.

This aspect is modeled by functi@uplicates:E — Booleanthat for eache /7 E
indicates whether in channel there can be duplicate messages present or not.
Moreover, we provide a functiofiransClient V — Booleanthat signal whether, for

v [7V, we use the Transactional Client pattern or not (#metefore, whether it cannot
produce duplicates, or it can), and a funcldempotentV — Booleanindicating if a
Service(v)s an Idempotent Receiver.

An example of a rule stating that a service nohgisa Transactional Client that is
sending messages out to messaging middleware odnga duplicates:

[N [JDom(Service), é/0ut(v):
TransClient(v) = false7ChannelType(e)/{ Topic, Queue x> Duplicates(e) = true

Checkpointing

Service containers occasionally fail. In such gitues it is convenient to be able to
resume message processing — after a containestartezl — from a known point,
defined by the developer. Let us call such poiotdé checkpoints When using
messaging middleware it is natural to implemenirtivéa messaging channels: such a
channel can keep a message until its processaxkisowledged by the service.

56

Our approach: A general description

A developer can specify a concrete channel to haideckpoint, or he or she can say
that a checkpoint should be present in one chdrorela defined set of channels.

Formally,

Checkpointl E is a set of channels that could hold a i-th cheskp(i = 1, 2, ...cp)
wherecp is the total number of checkpoints defined.

CheckpointedE — Booleanis a function that says whether a given charmenél E
holds a checkpoint.

[® [JE: Checkpointed(e) = true> ChannelType(e) = { Queue, Topic }
00 0{1, 2, ..., cp}e O Checkpoint Checkpointed(e) = true
In Table 4 we summarize functions that we use tdehthe above mentioned aspects.

Table 4.Functions used to model basic aspects of messagisgd integration solutions.

Aspect Vertex-related function(s) Edge-related fundéon(s)
All Service(v)
Content(e), or
Channel content - VariablePresence(e, var) with
VariablePosition(e, var, pos)
Channel types - ChannelType(e)

DeploymentMode(v), or
ThreadCount(v) with
Service deployment| ContainerCount(v),
HostCount(v), and

Deployment(v)
Monitoring MonTransparent(v) Monitored(e)
. Ordered(e),
Message ordering OrderMarked(e)

Format(e) or

M f t . .
essage forma VariablePosition(e, var, pos)

TransClient(v)
Idempotent(v)

Checkpointing - Checkpointed(e)

Message duplication Duplicates(e)

Columns meaningAspectdenotes a concrete aspect of integration soludesign.
Vertex-related function(sand Edge-related function(sgolumns contain names of
functions, with the domain of vertex set and edge sespectively, that model the
particular aspect.

Individual methods do not cover all the aforememid aspects. In Table 5 we
summarize support for these aspects by our methods.

57

Our approach: A general description

Table 5.Support for design aspects by individual methods.

Aspect ML/P DL/P ML/CP u/CP
Channel content Message level Variable level Meskagt | Variable level
Channel types Yes - Yes Yes
Service deployment| Coarse level - Coarse leve] Rirfarest level
Monitoring Yes - Yes Yes
Message ordering Yes - Yes Yes
Message format Yes - Yes Yes
Message duplication - - Yes
Checkpointing - - - Yes

Columns meaningAspectdenotes an aspect of integration solution desigre
following four columns contain information about @ther the particular aspect is
supported by the individual methods and, optionatywhat level.

Let us conclude this section by recapitulatingntsn ideas.

1. Our methods produce designs of messaging-basegratiten solutions that
use Pipes and Filters architectural pattern.

2. We have found a way to formalize these designsforra of directed acyclic
graph with vertices corresponding to services amdliary components and
edges corresponding to channels carrying messages.

3. We have identified key design properties of suchutemns and formalized
those using functions defined on graph’s vertex adde sets. We have
identified and formalized rules governing thesepprties so that they can be
used to find suitable integration solutions foregivintegration problems.

Because of space constraints we have listed omdcted examples of these rules
here. We should also highlight that the scope e$¢hrules varies frowery general
for rules that are valid for almost all integratiptatforms, derived directly from
enterprise integration patterns description given(Hohpe and Woolf, 2004), to
platform-specifiovhere “platform” can mean a concrete integratitatfprm product,
its specific version, or even its specific versmymbined with specialized services
created in order to support our methods at run-time

In constructing integration solutions, we did ntapsat the level of their abstract
design, though. The U/CP method provides an ouhaitis sufficiently detailed so it

can be directly translated into an executable doda specified integration platform.

Code generation for Progress Sonic ESB and for A@&amel (in part) has already
been successfully implemented; code generatiodMide ESB is underway, and for

other platforms it is planned.

58

5 Planning-based methods

Methods ML/P and DL/P use planning to create aabigt design of an integration
solution. We have chosen this approach because ther strong similarity between
creating an integration solution and planning imegal: when constructing an
integration solution, we are looking for a syst@mmnposed of services organized in a
directed acyclic graph, that transforms input mgestow(s) to output one(s), while
when planning, we are looking for a sequence abasttransforming the world from
an initial state to a goal state. From the pratpoat of view it is reasonable to use
existing planners capable of efficiently findingcBusequences of actions, i.e. plans.

The principle of these methods is following: aregration problem to be solved is
transformed into input data for an action-basedhméa, written using Planning

Domain Description Language (PDDL). The plannethien executed and its output,
i.e. the plan, is transformed to an integrationusoh graph representation (see
Section 4.2).

This approach is depicted in Figure 12.

Planning domain

and problem

Integration Problem description

problem : > . :>
description encoding

Planner

Integration

solution < ——1 Interpretation ——
description Plan

Figure 12.Basic principle of the planning-based methods.

Integration problem encoding works as followdhannelsthat are present in the
integration solution being created correspond éoplanner’sstates of the worlé- or,
more exactly, states of the world reflect cut-saftcuts of the solution graph, as
described in Section 5.1.1. The state of the wohl@nges as individual services and
other components of the solution process theirmmog message flow(s) and generate
their outgoing one(s): an operator correspondingstich a component replaces
predicate formula(s) corresponding to its inpuiMle) in the state of the world by
formula(s) corresponding to its output flow(s). Timtial state of the world then
corresponds to the input flow(s) entering the sotytand the goal state corresponds
to the expected output flow(s).

A state of the world is a conjunction of literaMost important of these literals are
those that characterize channels (message flows).dikéctly map properties of
channels into these literals. As an example, letarsider the ML/P method. In this
method we work with channel properties describedfunctions Content Format,
Ordered OrderMarked Monitored andChannelTypeThese functions are mapped to

59

Planning-based methods

the following arguments of theessage predicate symbol we use to describe message
flows: Content , Format , Ordered , OrderMarked , Monitoring , andChannel . In a
similar way we map/ariablePositionfunction to thedata predicate symbol in the
DL/P method. (More details are in sections 5.1d a3.)

Concerning properties of solution graph verticegse are mapped to the planning
operators names (and possibly also their parametessdescribed in sections 5.1.1
and 5.3 as well.

Finally, rules that describe a correct solution dransferred into operators’

preconditions and effects. The challenge is to fintepresentation of states of the
world, a set of operators, and formulation of thegconditions and effects that would
cover relevant properties and rules of the domdirmessaging-based integration
solutions and still would be processable by avégl@tanners in a reasonable time.

As for the output side, the plan (a sequence oiorst i.e. operators applied)
represents an integration solution we are lookorg Actions in the plan correspond
to the vertices of the solution graph and actiopetielencies (in the form of predicate
formulas) correspond to solution graph edges. Taesformation from the plan to
integration solution description is straightforward

5.1 The ML/P method details

In this section we show the details of the ML/P moet — a mapping from an
integration problem to a planning problem: how sie&te of the world is represented
and how the operators acting upon it look like.

5.1.1 Mapping from an integration problem to a planning problem

First of all, for purposes of the ML/P method weséalightly modified the way of
representing an integration solution using a grapstead of creating an auxiliary
vertex for each fork point implemented by a Pubfsibscribe MQ Channel (see
point 3 in the list at page 48) we have decidedréate an auxiliary vertex faach
channel implemented in messaging middleware. Theore is that this provides us
with a simple and powerful optimizing criterion: astions in the plan correspond to
solution graph vertices, when we optimize on theber of actions (this is the most
common option implemented in planners), we areadtoftrying to find a solution
that has the smallest number of components and krels — a very relevant
optimizing criterion for practical use. More on thetion of the optimal solution is in
Section 5.2.

We illustrate the mapping using our case studghasvn in Figure 9 (abstract design)
and Figure 10 (resulting detailed design), pakvloich is repeated in Figure 13.

60

Planning-based methods

Messages from Messages from Messages from
the Web Interface the Call Center the Fax Gateway
— — [S—
1! Rl F e -

Translate from Fax
Gateway data model
to a common one

Translate from Call
Center data model to
a common one

Translate from Web
Interface data model
to a common one

1 > o [
L > Point-to-Point Channel
Point3 " T T T T T T T T T T T I # """"""""""""""
o—» |:| Content Enricher (sequence number generation)
EE Publish-Subscribe Channel
l Routing based

./0—. on type of items .| —— | Invalid type
—

Gl | of items
Point4 ———--—g——————--———— o= I et

customer credit
(monitored) v

Figure 13.A part of messaging-based implementation of thepdaumtegration scenario.

Please consider a fragment of a solution showngarg 13. As there are three input
channels (message flows), the initial state in tase would be represented as a
conjunction of these three literdfs:

(message c_order_web_native xml unord ord_not_marke d_partial not_mon ch_queue flow_1)
(message c_order_cc_native xml unord ord_not_marked _partial not_mon ch_queue flow_1)
(message c_order_fax_native xml unord ord_not_marke d_partial not_mon ch_queue flow_1)

These literals capture information about the indlial channels (message flows),
using a predicate symbohessage with the seven arguments. First six of them
correspond to channel properties mentioned in @ecti.2, namely content of

messages, format of messages, ordering of messapether the order is marked

within messages, monitoring-related state, and roélagpe.

In order to simplify implementation of rules thdtacacterize a correct solution we
had to slightly modify the meaning of some of thesguments in comparison to
corresponding abstract solution graph propertytions, namely:

1. a monitoring-related state of messages has beamded from simple (“is
monitored” / “is not monitored”) to three-way disttion: whether they are not

2 As described in Section 3.2, we use a PDDL natatibere the literal contains the predicate symbol
followed by its parameters. Moreover, instead ofitimg constants using camel case (e.g.
OrderWebNative we use all-lowercasec_(order_web_native) convention, with the prefix_ for
domain-specific content types.

61

Planning-based methods

to be monitored (valueot_mon), or they are monitored (valuson), or they
are not monitored yet but should be (valu_req),

2. an indication of the type of channel that carrlesse messages, with values of
ch_topic , ch_queue , ch_memory12, ch_memory3, ch_memory4. Last three
possibilities represent various versions of in-mgmchannels: within one
container, within more containers at one host, witlontainers at more hosts.
(Actually, this assumes asynchronous in-memory lisn In case of synchro-
nous ones, we should also distinguish betwegememoryl andch_memory2 .)

These extensions are necessary in order to givenagr all necessary information it
needs to be able to add next action to the plamowitlooking back at already existing
actions (i.e. to have all the information in thereut state of the world). For example,
when the planner sees that a channel is of typ@emory3, it knows that the next
service has to be deployed using @eployment mode (multiple processes, single
host) without looking back to check the deploymmoide of the previous service.

The last (seventh) parameter is used to distingamsbng multiple identical message
flows coming out e.g. from a topic or from a ReeigiList service.

Generally, for each additional design aspect outhote would need to cover, we
would try to identify relevant attributes that cddde attached to channels or services.
Channel attributes would then be mapped to argusnmehtthe message predicate
symbol, as shown above. Service attributes wouldnbpped to operators’ names
and/or parameters.

As we can see, the state of the world describeamatdividual message flow, but a
set of message flows present at a particular pointhe integration solution. By
“point” here we understand a cut-set of a speciicof the integration solution graph
— informally, a cut that corresponds to a statehi@ message(s) processing. More
formally, we are thinking of such a cGt= (S T) of a solution graph G = (V, E), so
thatC is a partition oV, InputJ S Outputd T, and there is no such edge (u, v) [
EthatuO TandvOS

We have decided to put all the information abontessage flow into one predicate in
order to make working with parallel message flowsoperators’ preconditions and
effects easier and less demanding with respechdoekpressive power of PDDL
variant that has to be used.

In the example shown in Figure 13, after messagesng from web interface are
processed by appropriate translation service (naffieghslate from Web interface
data model to a common one”), i.e. at Point 1 stia¢e of the world would look like
this (changes are shown in bold):

(message c_order _web xml unord ord_not_marked_partial not_mon ch_ menor y12 flow_1)
(message c_order_cc_native xml unord ord_not_marked _partial not_mon ch_queue flow_1)
(message c_order_fax_native xml unord ord_not_marke d_partial not_mon ch_queue flow_1)

62

Planning-based methods

As we see, the content of messages in the firstv fllas changed from
c_order_web_native to c_order_ web and the transport channel has changed from
ch_queue toch_memoryl12 . The first is an effect of a content transformatservice;

the second is a general effect of any service.

In a similar way, at Point 2 the situation wouldkdike this — here we see changes in
the second and the third literal:

(message c_order_web xml unord ord_not_marked_parti al not_mon ch_memory12 flow_1)
(message c_order_cc xmlunord ord_not_marked_partial not_mon ch_nmenoryl2 flow_1)
(message c_order _fax xml unord ord_not_marked_partial not_mon ch_nenory12 flow_1)

At Point 3 we see an effect of joining all thesanm$ in a channel of type “queue”, and
the declaration that at this point we considenmtt@ssage flow to be ordered:

(message c_order xml ord ord_not _marked not_mon ch_queue flow_1)

At Point 4 we have again more message flows activéhe state of the world is:

(message c_order xml ord ord_marked monitored ch_me mory12 flow_1)

(message c_order_widgets xml unord ord_marked_parti al not_mon ch_memory12 flow_1)
(message c_order_gadgets xml unord ord_marked_parti al not_mon ch_memory12 flow_1)
(message c_order_invalid xml unord ord_marked_parti al not_mon ch_queue flow_1)

Finally, the flows at integration solution’s outpetdrrespond to the following goal
State:

(message c_invoice xml unord ord_marked_partial not _mon ch_queue flow_1)

(message c_order_shipping_info xml unord ord_marked _partial not_mon ch_queue flow_1)
(message c_order_rejected xml unord ord_marked_part ial not_mon ch_queue flow_1)
(message c_order_invalid xml unord ord_marked_parti al not_mon ch_queue flow_1)

Concerning planningperators the most important ones are those directly ddrive
from services available. In the ML/P method, easivise is transformed to up to four
operators, one for each of the following modes epldyment (parallelism levels,
PL): (1) single thread, (2) single process, mutigireads, (3) single host, multiple
processes, and (4) multiple hosts. What operatthd service transformed into is
controlled by: (a) the list of allowed parallelistevels given in the service
description, (b) comparing solution throughput awailability requirements (goals)
to throughput and availability characteristics loistservice deployed at a particular
level of parallelism. With a slight simplificatiowe assume that the necessary and
sufficient condition for the solution meeting itsraughput and availability goals is
that each of services involved meets these thrauglgmd availability goals
individually. We also assume that the performancd availability of underlying
messaging middleware is not a limiting factor. Wevide more sophisticated
treatment of these aspects in the U/CP method.

As an example, theheckCredit service that expects a message with content “Order
(c_order) and transforms it into a “Order with credit infeation”
(c_order_crinfo), deployed on multiple hosts, with monitoring reqd, is
represented by the following operator (symbols tisigr with 2 depict operator
parameters, symbols starting with represent object types):

63

Planning-based methods

(:action CheckCredit _PL4_M

:parameters (?ordered — t-ord ?orderMarked — t-ord m
?channel — t-ch ?flowID — t-flow)
:precondition
(and
(message c_order xml ?ordered ?orderMarked mon ?channel ?flowID)

(acceptable_input_channel_for_PL4 ?channel)

)

-effect

(and
(not (message c_order xml ?ordered ?orderMarke d mon ?channel ?flowID))
(message c_order_crinfo xml unord ?orderMarked mon_req ch_memory4 ?flowlID)

)
)

Correct use of channels is controlled bgceptable_input_channel_for_PLx
predicates that allow e.g. for PL1 the use of actogp queue or a single-process in-
memory channel. For PL4 it is allowed to use ontyuaue or an in-memory channel
going out from a previous PL4-deployed service.n$port of messages through
messaging middleware is modeled by two specialatpes,Queue andTopic , which
correspond to the auxiliary vertex types mentioaedhe beginning of this section.
Technically, if one of these operators is addedradtservice, it changes the default
ch_memoryX channel type teh_queue orch_topic and means that the service sends
its output through this kind of channel. As we hawentioned above, this allows
modeling the fact that sending messages via thesenels is more costly than using
direct in-memory connections; when using a plarthat supports action costs this
can be expressed more precisely.

Other design aspects (message formats, orderirdy,nmamitoring) are treated by
operators in a similar way. More information can foand in (Mederly, Lekavy,
Zavodsky and Navrat, 2009).

5.1.2 Optimization

In order to shorten the time needed to find a smlutve provide the user with an
option to disable processing of design aspects lsé@does not need — currently it is
possible to turn off evaluation of message formaishitoring, and message ordering.
If disabled, the respective parameters are simplifted from themessage predicate,
resulting in reduction of the state-space a plahasrto work with.

5.2 Results

We have implemented both planning-based methodRMDL/P) in the form of
prototypes. Here we describe results provided byMh/P method.

First of all, in order to evaluate our method wed&ried several existing planners.
For practical reasons we have limited our seard¢hdee accepting PDDL as an input
language. The selection of planners was guidedhbyrésults at the International
Planning Competitions (ICAPS Competitions, 2011d &g our previous experience.
Namely, we have used the following planners: GamPS-XXL, HSP 2.0, FF 2.3,
SatPlan2006, and MaxPlan, briefly characterize8Seaation 3.2.

64

Planning-based methods

We demonstrate the evaluation results here usingskelected integration problems:

e Problems 1 and 2 correspond to a part of Widged @adgets order
processing scenario. The part covered begins whagrofrom three sources
are merged (Point A in Figure 10) and ends as srdeter feasibility check
(Point B in Figure 10). Problem 1 takes into acdowmonitoring and
throughput/availability aspects. Problem 2 take® iaccount aspects of
monitoring, message format, and throughput/avditgbi

* Problems 3 and 4 capture the whole order processiagario as described in
the case study; Problem 3 does not take aspectsooitoring, message
format, message ordering, and throughput/avaitgbilito account, while
Problem 4 does.

These settings are summarized in Table 6.

Table 6.Description of problems selected for the ML/P metlkoaluation.

Problem Mes;age Parameters | Number of Domain Optimal
Scope Aspects | predicate .
arity /operator operators objects plan length
1 reduced M, TA 4 3.67 21 21 15
2 reduced M, F, TA 5 4.12 25 23 19
3 full 3 2.50 22 28 26
4 full M, F, O, TA 6.81 36 39 36

Columns meaningProblem #column contains the identification of the problém
guestion.Scope(reduced, full) describes whether the problem eams a part of the
scenario or the whole scenari@spectscolumn shows which aspects are solved:
monitoring (M), message formats (F), message anderi(O), and
throughput/availability (TA)Message predicate aritgolumn refers to the arity of the
message predicate (this arity depends on what aspectsake into account, ranging
from 3 to 7).Parameters/operatocolumn presents average number of parameters of
individual operators. These measures, along nitmber of operatorand number of
objects in the domainDpmain objectscolumn), very roughly indicate the size of
state-space and plan-space that have to be searcethjor factor of complexity of
the planning proces€ptimal plan lengths the length — i.e. number of steps — of the
optimal plan; again, we use it as an indicatiothefhardiness of the problem.

The results (quality of solution found and CPU tinezded to find it) for some of the
planners are summarized in Table 7. Please note thiese results are only
informative: some planners provided settings aiffgcperformance, e.g. possibility to
choose heuristics, weighting factors, etc. We tteefind optimal settings, but in some
cases it might be possible to find better settings.

65

Planning-based methods

Table 7.Characteristics of selected planners and resulisiafy them with the ML/P method.

Domains

Plan search

Planner . Problem 1 Problem 2 Problem 3 Problem 4
solved algorithm

Gamer cost, seq state, opt 0:89.2s 0:742.97s 6858s Error
MIPS-XXL cost, seq | state, opt O:1.74s O: 6.00s 100.4s Error

HSP 2.0 seq state, subopit 0:0.15s 0:0.43% 90s0. | O:1547s
FF 2.3 seq state, subop 0:0.48s 0O: 0.895 S0Os 0.0y Error
SatPlan2006 par SAT, opt O: 7.35s 0O: 12.57s 0:2.67 | Error
MaxPlan par SAT, opt 0: 0.02s 0O: 0.01s 0:0.02s oIiErTr

Columns meaningPlanner column indicates the planner usddomains solved
column shows which kinds of problems is the plaratge to solve: sequential plans
(seq), parallel plans (par), and action costs Jcédan search algorithndescribes
how the planner works, i.e. whether it uses stpteas search (state) or transformation
to satisfiability problem (SAT), and whether it gaatees to generate optimal plan
(opt), or it is not guaranteed to generate optiotahs (subopt)Problem 1to Problem

4 columns contain information about results of sajvihe corresponding problems
using the particular planner. Acronyms for resute: optimal plan found (O),
suboptimal plan found (SO), computation failed ¢Eyr The numeric value is the
CPU time needed to find the plan.

These results show that the ML/P method is ablding solutions for practical
integration problems using currently available pkns. Yet, the majority of the
planners had difficulties solving the most compleésoblem 4. We suspect that
primary reason is that they were not designed tckwath such a large state-space as
it was present in this problem; their executionaliyuhalted because of exceeding
available memory or because of using fixed-sizectiires and variables, not scaling
with the problem size. These problems usually tedulin runtime errors like
“memory allocation error” or “segmentation faul®lso, some of the planners have
limitations concerning the arity of predicates us@dsome cases we have been able
to increase these limits by changing source codejrbsome cases not — the latter
cases are labeled as “computation failed” in T&des well.

Let us include a few remarks concerning the stpéee size. A state of the world is a
conjunction of grounded positive literals (atom$he size of the state-space of
a planning problem is therefore equal to the nunolbsubsets of a set of all grounded
atoms. If we call this set of all grounded atafgshe state-space size is thel. 2f
the planning problem contains predicalgs..., P, thenA = Apy [App O ... O App,
where Ap; is a set of all atoms using a predic®e Among predicates used in our
planning problemsmessage has the largest number of arguments with the $rge
number of objects that can be used as argumeniisésjaso theA| is determined
primarily by Pemessage FOr example, in Problem tessage has four arguments
(Content, Monitoring, Channel, FlowID) with 10, 8, and 3 applicable objects,
respectively, giving 450 atoms Memessage FOr Problem 4 this predicate has seven
arguments (Content, Format, Ordered, OrderMarkeahitdring, Channel, FlowID)

66

Planning-based methods

with 20, 2, 2, 4, 3, 5, and 3 applicable objeaspectively, leading to 14400 atoms in
Apmessage The main goal of a planner is to reduce the aastunt of states. The state-
space search restricts the state space to statdsalde from the initial or final states.
Additionally, different heuristics are used to et prune states, which are not likely
to be a part of the final plan. Nevertheless, eenreduced state-space may be very
large. Not all planners are able to cope with sarclincrease in the planning problem
state-space. We suppose that this is partiallyusecaf time and space complexity of
individual methods and partially because many imgletations are optimized for
scaling of one planning problem attribute (e.gnlshang factor) by constraining some
other attribute (e.g. by limiting maximal predicatety). However, this issue should
be researched further in order to make a defingta¢ement.

Overall, if we would like to further increase thamber of aspects or the size of
integration problems we deal with, we would needackle this problem of state-
space expansion in some way. It is not only a questpace complexity; it is a
guestion of time complexity as well. According tooE Nau, and Subrahmanian
(1992), planning problems that have similar chamstics to our ones — i.e. having
predicates with parameters, operators that arengivéhe input, and non-empty delete
lists — are, in the worst case, EXPSPACE-completenjore exactly, telling if a plan
exists, is an EXPSPACE-complete decision probldris worst-case estimation may
or may not be relevant for our situation; neverhs] domain-independent planning is
computationally difficult and often intractable (@dus and Kabanza, 2000), and
results of our experiments are consistent with fag. We describe two possible
ways to overcome this limitation at the end of thapter.

Returning to our experimental results, when comsideexperiences from solving
these and other integration problems, as the nuitstode come HSP 2.0 planner (it is
fast, although it produces suboptimal plans in soases) and MIPS-XXL and Gamer
(they are slower, but generate optimal sequeniaas).

The planners are of different types, for examplaesgenerate sequential plans while
other parallel ones. What type of planner do wealt need? Generally, it depends
on what we want to optimize. Some of the possiediare:

1. integration solution complexity (number of compotsemsed in the solution),
2. latency (time needed for an integration solutioprimcess a message),
3. throughput (number of messages processed by thgwmoper time unit),

4. resource consumption (e.g. network bandwidth, CiRl¢ bf message broker
and/or application servers, etc.).

(These and other optimization criteria are discdigeemore depth in the context of
the U/CP method in Section 6.1.2.)

67

Planning-based methods

At this moment, for planning-based methods we hsectiterion 1, corresponding to
the shortest sequential plan. We have also triech¢orporate the criterion 4 by
assigning costs to individual actions based onuresoconsumption — it is possible,
but it limits the set of available planners to #hdbkat are able to work with action
costs and, as our experience shows, it also md&esipg significantly slower. If we
would like to optimize latency (criterion 2) we dduwuse a parallel planner with
durative actions (i.e. actions that have been aedi@n execution time). We decided
to stay with the goal of finding the solution witie smallest complexity and leaved
the issue of exact optimality definition to be smvin methods based on constraint
programming.

Given this assumption about solution optimality wee that optimal sequential
planners with no other extensions are sufficienaralel planners, especially
MaxPlan, are quick to find the optimal solution wfartunately, they generally
optimize makespan (number of steps of plan execlutiostead of the number of
involved actions. This way the solution usually @ams more software components
than necessary.

We have also created several additional scenar@msnsing from the real-life expe-

rience of the author of this dissertation (Mederhd Palos, 2008) and have verified
that the solutions produced by the prototype imgetation are correct and optimal
in the sense of number of components.

More detailed evaluation report that includes dpsions of integration problems,
PDDL files, output produced by individual planneas well as the discussion of
results achieved by particular types of plannerslmfound in (Mederly and Lekavy,
2009) and is available on the attached CD-ROM masliaell.

5.3 Other planning-based methods

In the DL/P method we tried to address anothero$edesign problems: how to
manage the data that flows within an integratiolutsmn. We temporarily left out
other aspects, like throughput, availability, seevileployment, and so on.

In a way similar to the ML/P method, as its inphistmethod expects data flow
specificationusing input/output characterization of servicesthe form shown in
Table 3. As an illustrative case study we use aate that is graphically shown in
Figure 14. However, the method also needs to knehlationships between data
elements that flow within the solution; therefor@xpects a data model as part of its
input. In our case study we use the model shoviigare 15.

The method then tries to arrange data manipuladEmwices (Splitter, Aggregator,
Content Filter, Message Translator, and services cfipying and moving data
elements within messages), other integration sesvi€Content-Based Router,
Recipient List), as well as ordinary business s®&wi(e.g. CheckCredit) into a

68

Planning-based methods

comprehensive integration solution, so that eachicegets its input and provides its
output as needed.

An output corresponding to the above mentioned samgegration problem is shown
in Figure 16.

Incoming orders
Start event: a purchase order
from a source system arrives @

M=o . Message can be sent
Each message is sent to

to one or both
both branches T + branches

|

(Check customer ‘ Check Check
credit widgets gadgets
inventory inventory

Processing continues
here: Orders that can

Aggregate
results
not be fulfilled are

rejected; otherwise, =~ ————
billing and shipping is
initiated.

Figure 14.An example of required flow of data — an input ttee DL/P method.

c-order-
full-info
1 / K1
c-order-with- c-inv-
credit-info info
1 r X1 ?* Inventory information for
d c-credit- c-item- widgets and gadgets,
c-order info inv-info respectively.
f b PR
c-order- c-order- c-item-w- c-item-g-
lines header inv-info inv-info
c-o_rder- Order line for widgets and
line gadgets, respectively.
c-order- c-order- | ©
line-w line-g

Figure 15.An example data model — an input for the DL/P métho

69

Planning-based methods

c-order

E Recipient List
c-order = c-order-header + c-order-lines

A

Content Filter
D —» [(filtering out c-
order-header)
v v c-order-lines

O Splitter (sending each order line

Check Credit L= E in a separate message)

c-order-line (sequence of messages)

c-order-with-credit-
info = c-order +

c-credit-info c-order-line-w (seq.) _/_ c-order-line-g (seq.)
._

._
A v
Check Widget Check Gadget
Inventory Inventory
point1--4- - - - -———-------"+4--——-"""""""""""""“"F-—"—"—"-"-"—"—-"—"——-
c-item-g-inv-info (seq.)
c-item-w-inv-info (seﬁ)‘ O = 0 e
' v “ O Aggregator (merging information

about all items into one message)

] c-inv-info
> [] — [] |-
O Aggregator (adding inventory
l information to the rest)

c-order-full-info = c-order-with-credit-
info + c-inv-info

Figure 16.An example integration solution created by the Din@&hod.

In order for this method to work, the state of wald should describe the content of
messages in the channels in more detail than th&>Mhethod did, i.e. using the
VariablePresencandVariablePositionfunctions instead of th€ontentfunction. We
have chosen the following representation: If messag a flow identified agow-id
contain data of typesontent-type ; stored in message partgssage-part ;, then
the following literals would be present in the dgstoon of the state of the world:

(data content-type 1 message-part ; flow-id)
(data content-type » message-part , flow-id)
(data content-type » message-part , flow-id)

For example, if considering the point “Point 1"tive solution shown in Figure 16, the
state of the world would be the following:

70

Planning-based methods

(data c-order part-0 flow-1)

(data c-credit-info part-other flow-1)
(data c-order-line-w part-0 flow-2)
(data c-order-line-g part-0 flow-3)

As we can see from the description of state ofatbdd, for its manipulation we need
to have tools that are more powerful than thosedesen the ML/P method. For
example, in the ML/P method we model the effectRetipient List component (the
one that creates a clone or clones of an inputagestow) in the following way. (We

show the most relevant parts in bold. For simplicite have omitted aspects of
message formats, monitoring and ordering.)

(:action RecipientList_PL1
:parameters (?cnt — t-content ?chan — t-channel ?f low — t-flowid)
:precondition
(and
(message ?cnt ?chan ?fl ow)
(acceptable_input_channel_for_PL12 ?chan)
)
-effect
(and
(not (nmessage ?cnt ?chan ?fl ow))
(message ?cnt ch_nl2 flow_ 1)
(message ?cnt ch_nl2 flow_2)
)
)

In the DL/P method we have to work with more literat once using quantifiers
(shown in bold):

; copies entire flow' to 'flow-new’
; - as a precondition, 'flow' is not empty, 'flow-n ew' is empty
; - as an effect, everything present in 'flow' is d uplicated in ‘flow-new’

(:action RecipientList
:parameters (?flow ?flow-new - t-flowid)
:precondition
(and
(not (= ?flow ?flow-new))
(exists (?cnt - t-content ?p - t-part)
(data ?cnt ?p ?flow))
(not (exists (?cnt - t-content ?p - t-part)
(data ?cnt ?p ?fl ow new)))
)

-effect
(forall (?cnt - t-content ?p - t-part)
(when (data ?cnt ?p ?flow)
(data ?cnt ?p ?flownew))))

)

The quantifiers are available in the ADL featuretteg PDDL (Fox and Long, 2003).
This feature is not widely supported, so the seduitable existing planners was rather
small. Based on our previous experiences, for tethad prototype implementation
we have selected the FF planner (Hoffmann and N&bel).

We have evaluated the prototype using variantshefWidgets and gadgets order
processing scenario such as the one shown in Figuréhe method has been able to
find a solution, although in some cases we had émually adjust the method’s

71

Planning-based methods

options to help the planner to construct the ptareasonable time. It seems that using
currently available planners this method is ablestive only relatively simple
problems.

Although we originally intended to optimize this thed and find a more suitable
planner to solve planning problems it generatesqareate a specific planner for it),
we have chosen to employ constraint programminge&ss as is described in
Chapter 1.

For completeness we should mention one more mdtboet We have developed a
way to construcservice interface adaptetbhat are able to adapt selected attributes of
a service interface, namely message content, fotnaatsport protocol, authentication
and confidentiality mechanisms. We have used alsimpcoding of the state of the
world using a set of predicate symbols correspapdinthe above attributes, with
some additions — predicate symbols for messagelatain and authorization, and
functions for message rate and total cost.

Individual integration services that could be usadthe construction of an adapter
were again characterized by their preconditionsedfetts, for example the validation
service could require an input message to be in Xdtmat, it could process up to
400 messages per minute, and (on average) rejdeierf the input messages.

Planning problems that were generated by this ndettequired the numeric

extensions of PDDL, i.e. PDDL version 2.1 LevelRbX and Long, 2003). For an
evaluation we have used LPG (Gerevini, Saetti,s&riha, 2003) and JSHOP2 (Nau,
Au, llghami, Kuter, Murdock, Wu, and Yaman, 2003armers. (As for the latter,

although being a hierarchical task network planmer,have used it in a mode that
emulates action-based planning.) Concerning otleerners, even if they declared
they can solve numerical domains, they did not suppur problems — for example,
Metric FF planner could not work with operatorstthad non-constant effects on the
metric value.

In a way similar to the ML/P method, this was arempt to formalize some aspects
of integration solution design along with a prelauy evaluation. Though, instead of
continuing to more depth here, we moved to worlhwitessaging-based integration
solutions. More information on the service intedadaptation method can be found
in (Mederly, Lekavy and Navrat, 2009).

5.4 Planning-based methods: a conclusion

Methods that we have implemented demonstrate tigpbssible to use action-based
planning to solve design problems in the domainmassaging-based integration
solutions.

72

Planning-based methods

We have identified several issues that requird&rrattention:

1. Our current methods do not scale well with regaodsroblem size and/or the
number of aspects employed: As we have shown, asorg the number of
properties of services and channels as well agasang the number of inte-
gration problem objects (e.g. message content Yypads to a significant in-
crease of the state-space size, which presentsbéepr for many of currently
available planners, and, generally, makes findiptaa difficult.

There are some possibilities of how to cope witls thsue, though. One of
them could be using domain-specific knowledge, wgyssted e.g. by Kautz
and Selman (1998) or Bacchus and Kabanza (200@nAxample, authors of
the latter work have proposed a domain-dependemtiseontrol mechanism
based on first-order temporal logic representatanthe search control
knowledge. They have shown a significant improver{enultiple orders of

magnitude) of execution time for some of the cleasplanning problems, in
comparison to domain-independent planners.

Yet another way of overcoming the issue of planr@amplexity would be to
partition the problem of finding an integration @wdn into smaller subprob-
lems, and solve them in a sequence — in a way ainkd the approach
described in Section 6.1.3.

2. The notion of “optimal” solution is quite coarsea)drity of existing planners
either do not support action costs at all, or thesst values have to be
constant. In the first case, the only optimizatoiterion is the plan length, i.e.
the number of components used. In the second easeare able to do a
limited optimization (i.e. optimization taking intaccount component cost
aspect only), at an expense of significantly sloe@mputation.

Nonetheless, action costs seem to be sufficiemdptomize commonly used
metrics (e.g. component cost, or the number of agess or bytes going
through communication middleware), so they are abbp adequate for the
practical purposes — albeit limited to optimizimgdne dimension (at a given
time) only. What remains to be solved, is the tiooenplexity, as described
above.

Overall, we have shown that planning presents &ilplesapproach to integration
solutions design. Although there are some openessswe believe it would be
possible, after further research, to overcome theawever, in the time available to
work on this dissertation we have decided to expédso a entirely different approach
to problem solving, namely the constraint satisfact

73

6 Methods using constraint programming

In this section we describe two methods, namely GR./and U/CP, which use
constraint programming in order to create messalgased integration solutions.

These methods are based on a transformation ofntagration problem into a
constraint satisfaction problem (CSP) in such a thay a solution of the CSP can be
transformed back into a solution for this integratproblem (see Figure 17).

Constraint Solution
Satisfaction (variables’
Integration Problem Problem values) Integration
problem E— Encoding ————> | CSP Solver | ———> | Interpretation | ———> solution
description description

Figure 17.Basic principle of the methods based on constm@imgramming.
Principles of the transformation are the following:

1. Given the integration problem, we create a skelefoime solution graph (for
a description of a solution graph please see Sedtid 1).

2. For each vertex and edge of this graph we createt af CSP variables: in
principle, value of each property function, appliedthis vertex or node, is
represented by one or more variables (exceptianexplained below).

3. Each design rule is represented using one or nuisti@ints over respective
CSP variables.

Let us now cover these principles in more detdiisst, how do we create a skeleton
of the solution graph, based on known abstract gdesand non-functional
requirements?

Our basic assumption isthe integration solution graph strongly resemblég t
control flow structure, which the solution has toplement -in particular,between
each two business services connected by a corgpamdlency in the abstract model,
there is a message flow in the integration solutidhe rationale behind this
assumption is that sending of a message is the basthanism used to implement
control and data flow between solution componests,it is natural to create a
message flow between any two services connectedcontrol flow.

Therefore, the initial skeleton of the solutiongras created as a copy of the control
flow graph.

We are not finished yet, though. Besides businesdces and integration services
that implement control constructs (fork, join, dgon, and so on), an integration
solution contains other integration services ad (eef). Wire Tap, Resequencer, Data
Manager). The problem is that we do not know inasmde how many of these
services will be needed, and therefore how manticesr the solution graph should
contain. In the case of planning-based methodsvihis not an issue, as the solution

75

Methods using constraint programming

graph has been constructed by a planner. Howewer, we have to create it

beforehand. The way out is to insert a sufficienmber of empty slots that will

potentially contain integration services. Concrgtele replace each edge in the
control flow graph by a user-defined number of sldor integration services

connected by messaging channels.

After applying this rule, the model shown in Fig@ewould be translated into an
integration solution graph, part of which is presenin Figure 18. Nodes (boxes,
circles, and diamonds) are vertices of the graph @mnections between them are
edges. Circles with question marks represent $toténtegration services added as
described above.

Translate from Translate from Translate from
Web Interface Call Center data Fax Gateway

data model to a model to a data model to a
common one common one common one

[Each message ig? ; ﬁ’b

sent to both
branches — the

Content-Based Router:
selects an outgoing
channel depending on
the type of items
ordered

question is whether e
to use Recipient List,
Publish-Subscribe
Channel, or a ‘ . @—»@
Scatter-Gather
pattern
implementation
Check Check
widgets gadgets
credit inventory inventory

Figure 18.A fragment of an integration solution sought for.

As we have already stated, the whole process lbkdghis: the integration problem
is transformed into a constraint satisfaction peablCSP), which is then solved by a
CSP solver. After finding a CSP solution, it isergreted as an integration solution
that we were searching for (see Figure 17).

In fact, the method allows us to use more iteratiand a user involvement in this
process. After getting a CSP solution (or, actyalyen during the solving process),
the method — either by itself or as instructed bgru- can update the CSP (or create it
anew) and use the solver to find its solution agéims cycle can repeat while needed.

76

Methods using constraint programming

Moreover, the user is able to select heuristicsl tisespeed up the solution process, as
described in Section 6.1.3. The situation then $die the one shown in Figure 19.

Optional user
interaction, e.g.
selecting the

heuristics Final

Integration Problem Initial CSP solution Integration
problem Encoding —————> | CSP Solver | c——> | Interpretation | ——> solution
description description

Partial or Updated
whole or new
solution CSP

Problem Encoding
— Change

Optional user interaction,
e.g. changing heuristics,
imposing new constraints

Figure 19.Iterative use of constraint programming in our roeth

In the following we describe the details of the B/@ethod. We have chosen this
one, because it is basically an enhanced versiaa pfedecessor ML/CP.

6.1 The U/CP method details

6.1.1 Input of the U/CP method

This method allows the developer to specify a @nffow between solution
components more precisely than previous methodsfdlowing constructs can be
used: (In Figure 20 they are shown using UML attidiagram fragments, as well as
using one of textual domain-specific languages (§)Sleveloped to serve as an input
for U/CP method.)

1.

sequence- a developer can indicate that servicgs, ..., S have to be
executed in a sequence (see Figure 20a);

decision node- it denotes the fact that the flow of control thones using one
(or more) of outgoing edges; they can be then nielgek in amerge node
(Figure 20b). Please note that ttpath keyword in the textual DSL denotes
the language used for specifying the conditiorti{ia case it is XPath);

fork, optionally witha join — these constructs are interpreted in such a sty t
the flow of control continues using all outgoingged, and is (optionally)
synchronized at a join node (Figure 20c) — thisstmtt corresponds to the
Scatter-Gather pattern (Hohpe and Woolf, 2004);

for each— services specified in a subsequence have to éeuted once for
each part of specified input variable. At the erfdaosubsequence, the
specified output variables might have to be mergsgether and passed
downwards as a new variable (Figure 20d); see @lsmposed Message
Processor pattern (Hohpe and Woolf, 2004). In tlise, after executing;,S

77

Methods using constraint programming

78

theorder has to be split into individuakderLine s and for each one, $as

to be executed. Resultingneinfo values should be aggregated into
orderinfo ~ value. Then & should be run. There is also a possibility of
omitting the synchronization point at the end that case the whole process
would finish inside the subsequence;

arbitrary control flow dependency between servieesdeveloper can specify
that a service S&an start only after service 8ad finished its processing
(Figure 20e).

S1();

N R

RS
S | S0
ER e

Sn();
(a) sequence

S1();

if (xpath("condition"))
S2();

else
S30);

sS40

[condition]

(b) decision and merge
S1();
fork-and-join

{

S4();

(c) fork and join
S1()s
for-each (orderLine in order)

{

lineInfo = S2(orderLine);

1 orderinfo }

aggregate (lineInfo into orderInfo);
S3()

s1();
S52();
wait-for "S5";
53 ()

)
)
)

S5();
56();
S7();
wait-for "S2";
58 () ;

(e) arbitrary dependencies

Figure 20.Main elements of abstract control flow between sewin the U/CP method.

Methods using constraint programming

Please note that, except for the for-each casehawe omitted the data flow
description from our example, in order to conceetan the control flow description.

Moreover, this method allows structuring an intéigra solution into a set of
processesEach process has its own control and data fleeipation. Processes can
be connected using axecute procesesontrol construct that has the semantics of
“invoking” the child process from the parent one FHigure 21 we can see an example
of process R invoking process £ again using UML as well as the textual DSL. In
this case an integration solution has to executaecss in the following order::$$,

Sy, S, S, S In current version of the method there cannotcpeles in process
invocation. (In future we plan to relax this resion. However, also today it is
possible to model cycles in process invocation lgnaging communication via named
messaging channels.)

Process Pa Ps | - 8 | @

Process Pg H S, H S5]%[Ss %

process Pa () process Pb ()
{ {
S1(); S4 ()
S2(); S5();
call Pb(); S6()
S3(); return;

} }
Figure 21.An example of subprocess invocation in the U/CPhoett

Another important aspect of this method is thathaee decoupled data flow from the
control flow: a developer declares a setvafiablesin a process and then specifies
how these variables are used, usually as inputoatglit parameters of service and
process invocations, and in some control constrigesision, for each). The method
then tries to determine what variables will haveirtivalues carried within individual
message flows, and at what positions — in messaaeehn, body, or attachments.

In current version of the method we have decidesl \thriable scope to be one
process. Processes exchange data using formatarad parameters, in a way similar
to the traditional programming model.

An example of control and data flow specificati@pnesented using UML activity
diagram is shown in Figure 22. The same speciboatiritten using our textual DSL
Is shown in Figure 23.

This diagram shows an extended version of Widgets gadgets orders processing
scenario originally introduced in Section 4.1 (Begure 9).

79

Methods using constraint programming

Check Customer |
Credit T

creditinfo

L Check Widgets 1
T Inventory T

Check Gadgets
Inventory

-

[widgets] (90%) linelnventoryInfo order creditinfo inventorylnfo

W W W
Determine Overall
Order Status
W

status

orderLine

orderLine orderLine

linelnventoryinfo

[gadgets]

(9%) Info

[status =
NOT-OK]

(15%) _ [SendTo: Rejected
order | Orders Channel

This block
executes once for
each order line, in
no particular
order.

concurrent

orderLine[SendTo: Invalid
[otherwise] | Message Channel

(1%) J

-

Figure 22.An example of specification of control and datanlfmr U/CP method, using UML.

process ProcessOrder (Order order)
{
fork-and-join
{
{
Credit creditInfo = CheckCredit (order);

for-each (Line orderLine in order) using "//wg:Lines/wg:Line"
{

LineInventoryInfo lineInventoryInfo;

exclusive choice

{

case xpath ("substring($orderLine//wg:Productld,1,1l) = 'W'") ratio 0.9:
lineInventoryInfo = CheckWidgetInventory (orderLine) ;

case xpath ("substring($orderLine//wg:ProductId,1l,1) = 'G'") ratio 0.09:
lineInventoryInfo = CheckGadgetInventory (orderLine);

default:
reject "Invalid item type" sending orderLine;

}

aggregate (lineInventoryInfo into InventoryInfo inventoryInfo);

}

Status status = ComputeOverallStatus (order, creditInfo, inventoryInfo);
if (xpath("S$status/wg:Status = 'true'") ratio 0.85)
{
fork
{
Bill (order) ;
Ship (order) ;
}
}
else

{

forward-to "RejectedOrders" sending order;

}

Figure 23.An example of specification of control and datanifmr U/CP method, in the textual form.

80

Methods using constraint programming

The version of the scenario presented here differa the original one in that it has
been complemented by the specification of data flmtween services. In textual
DSL representation these are self-explanatory; MLUactivity diagram they are
expressed in the form of input and outpins of individual activities. Each pin is
annotated by a name of variable or variables thatilsl be present as an input or an
output of the service. (So, for example, serv@eckCustomerCredit takes a
variable order and produces a variabl@editinfo . Service ComputeOverall-
Status takes variablesrder , creditinfo , and inventorylnfo and produces a
variablestatus .)

The scenario differs from the original one alsahat it allows an order to contain
order lines of more types (for both widgets andggasl). Therefore, the integration
solution has to split an order into individual neorresponding to products ordered,
evaluate the availability of each product indivilgaand then join the resulting

information together. This split-and-join featuraswnot present in ML methods.

On the other hand, in the U/CP method we expedh @aocess in an integration
solution to have exactly one input. That is why #db®ve mentioned process starts in
a place where orders coming from three sourcepuaréogether (marked as Point A
in Figure 10 at page 47). In order to model congpteiginal integration scenario we
would have to add three auxiliary processes thatldvonplement initial processing
of messages coming from three sources up to tle@iversion to the common data
model; each of these processes would then invakentdin process(ocessOrder).

6.1.2 Finding integration solutions by the U/CP method

Let us describe how the U/CP method finds integnaiolutions in more detail. In

this section we discuss the basic version of ththogkas shown in Figure 17 at page
75. In the following section we will concentrate tre iterative use of constraint
satisfaction problem solving along with user intgi@n (Figure 19 at page 77).

Algorithm 1. Finding an integration solution in the U/CP metlibdsic version).

FindIntegrationSolution()
begin

CreateControlFlowGraph();

CreateSlotsForintegrationServices();

CreateAuxiliaryDataStructures();

CreateCSP();

SolveCSP(); /I in parallel thread: DisplaySol utions();
end.

CreateControlFlowGraph transfers block-structured specification of thatecol flow
like the one shown in Figure 24a into unstructygrdph-oriented) form of a directed
acyclic graph shown in Figure 24b. As describetthatbeginning of this chapter, each
edge of this graph will be ultimately transformedbi a channel — so, basically, what
we see here is the skeleton of the future integmagolution.

81

Methods using constraint programming

Vertices of this graph correspond to:
1. service invocations (vertex type Execute and, ierlphases, IntService),

2. individual control flow constructs (vertex types dite, Merge, ForEach,
ForEachEnd, Fork, Join),

3. other actions (vertex types Start, End, SendTo,]NoGtart and End are
auxiliary vertices per definition of integrationlston graph in Section 4.2,
SendTo and NoOp are services (although in the geseration phase they
can be implemented in a way different from regskwices).

Arbitrary dependencies (WaitFor constructs, se@€i@0e) are converted into Fork —
Join vertices pairs.

process ProcessOrder (Order order) Start

{
{ Fork

Credit creditInfo = CheckCredit (order); \)
1 ForEach
‘ {
for-each (Line orderLine in order) using "..."
{ Choice
LineInventoryInfo lineInventoryInfo;
exclusive choice

Exec:CheckCredit

{ N SendTo
case xpath("... = "W'") ratio 0.9: Exec:CheckWidgetinventory
lineInventoryInfo = CheckWidgetInventory(orderLine); Exec:CheckGadgetinventory
case xpath("... = 'G'") ratio 0.09:
lineInventoryInfo = CheckGadgetInventory(orderLine); /
0);

{
fork-and-join £

}
ForEachEnd

}

reject "Invalid item type" sending orderLine;
aggregate (lineInventoryInfo into InventoryInfo inventoryInf
Join

default: Merge

}
}
Status status = ComputeOverallStatus (order,
creditInfo, inventoryInfo); Exec:ComputeOverallStatus

(a) block-structured specification of the control flow (b) graph-oriented skeleton of an integration solution

Figure 24.An example of a transformation from block-structuspecification of the control flow into
graph-oriented skeleton of the integration solufitne U/CP method).

The second step in Algorithm 1, nametyeateSlotsForintegrationServices :
represents replacing each edge in the graph by@esee of edges and vertices of
type IntService (integration service). The numbiemeegration services that should
be used is configurable; usually, the default va is sufficient.

At this point we have created an integration solugraph as defined in Section 4.2.
The only two differences are that (1) some vertiaéls not be used in the final
solution (those of Integration Service type that thethod will find unnecessary), and
(2) in the final solution some more edges will besent (see the Data flow issue).
And, of course, we do not know the values of serad channel properties.

82

Methods using constraint programming

CreateAuxiliaryDataStructures deals with pre-computing some properties of the
solution, for example:

1. message rates that are expected to be presewlividureal channels,
2. process variables that could be (potentially) preseindividual channels,

3. solution regions that (potentially) need to be ricb@nected by additional
channels needed to transport process variableD@ae-low design issue),

4. pairs of components that could not be interconmedig Split-and-Join
services (as these should be well-nested).

CreateCSP is the core of the method; here we create CSRhas and then impose
constraints over them. We create a set of CSRhlas for:

1. each solution graph vertex, i.e. business or iategr service or auxiliary
component,

2. each solution graph edge, i.e. a channel,

3. some other entities, e.g. servers hosting servimetamers or potential
channels (see data flow design issue below).

Variables and constraints creation is done by tsang the integration solution graph
(in no particular order) and creating these erstiie defined by the method.

In this step we also add supplementary user-speotfbnstraints to the CSP.

SolveCSP is done by executing a selected CSP solver. Therseve have used looks
for the optimal solution iteratively: after finding solution with a cost C, it adds a
constraint “cost < C” and continues with findinghet solutions. So, the solver
produces a sequence of solutions with graduallyedesing costs. This is very
convenient for us, as we can present the develmaiution as soon as it is found,
without knowing that other (better) solutions exide or she can decide to accept a
solution or to wait for other ones or for a conausthat no better solutions exist.

As soon as any solution is found, it can be digdayto the developer
(DisplaySolutions). After examining a solution, the developer carpbase to
generate executable code for the specific integrgpiatform (or to store a solution
for later use, but these details are not impotiang).

Now, let us describe how the method creates CSBblas and constraints.

First of all, we have divided the scope of the rodtinto individualdesign issuesA
design issue is a more or less independent aspattatdesigner would take into
account when creating an integration solution.

83

Methods using constraint programming

We distinguish between two kinds of design issudse first category comprises
issues that directly influence the appearance ohtgration solution — for example,
the Channel types issue deals with selecting aropppte type for each of channels.
In the following we call them structural designuss, or desigraspects They
approximately correspond to issues we have merdion8ection 4.2. Into the second
category belong those issues that provide infomnadbout properties of the solution
— for example, the Throughput issue indicates hamyrmmessages per time unit can
be processed. These will be calfedtrics

Among design aspects there are:

1. General issuesthese are issues that need to be tackled in dedigmy
integration solution. The main one is: how to inmpé:t control structures (for
each, fork, join, and so on) and what integratiemvises to use.

Solution graph representatiofEach of these control structures is represented
by one or two vertices in the solution graph. (8&ues having a start and end
nodes, i.e. fork with join, for-each with for-eaehd, choice with merge are
represented by two vertices, others by one vert®agh place for an
integration service is represented by a vertexels w

CSP mapping realizationWe use a CSP variableimplementationType — **
analogous to the functiadBervice V — Services We define such variable for
all vertices that have an ambiguity with respedbh&r implementation, i.e. for
majority of control structures and integration sezg. A domain of this
variable is a set of all possible implementatiohs given vertex determined
by the target platform, by constraints stated ey dksigner, and by the other
design aspects we are currently dealing with. @@mple, the “fork” part of
the fork-and-join construct can be implemented giftecipient List, Split and
Join Paralléft, or Publish/Subscribe Channel. These options apped to
three values in the domain of the corresponding €&table. However, the
last value is available only when we are dealinthv@hannel types aspect —
otherwise, only the first two values are present.)

2. Message content what process variables will be transported in ptafsi
messages flowing in individual channels?

Solution graph representationtsing a functionVariablePresence:E x
Variables— Boolean.

13 CSP variables are showdaurier font and are almost always related to some objégpically to a
vertex or an edge of the solution graph. We shaw fdict by using a notatiow.variableName — or
E.VariableName

% Progress Sonic ESB-specific component implemeritingScatter-Gather integration pattern.

84

Methods using constraint programming

CSP mapping realizatior-or each edge we create a vector of CSP variables
denoting whether a given process variable is besrgsported in messages in
the corresponding channel. We assume a Datatypen€hpattern is used, i.e.
that messages in this channel are of the same-tygmch message contains
exactly the same process variables. So, for eagk Edve create a vector
E.VariablePresence[Var] that has values of 1 for variablega() that are
carried in messages flowing throughand values of O for variables that are
not.

Positions and formatswhere exactly to put each variable in messages? In
many platforms, there are three basic possibiliiesa message body, to a
message header, or to a message attachment. Hgs dkecision has some
consequences with respect to e.g. preserving thabla value in some
situations, as described below.

Solution graph representationtsing a functionVariablePosition: E x
Variables x Positions— Boolean.

CSP mapping realizationin a way similar to the mapping for variable
presence, for each edgewe create a vector of CSP variabkesariable-
Position[Var,Pos] denoting whether a given process varialde is being
transported in messages in this channel at a posibs. Positions are
platform-specific; for Apache Camel we use “headdpbdy”, “attachments”
while for Sonic ESB we use “header”, “bodypart”’,ofdext” with an
additional variable indicating which of the processiables is known to reside

in a special bodypart numbered 0, if any.

Domain for these CSP variables is { 0, 1 }; howevewe take into account
alternative data formats for one process variablg. (CSV, XML, fixed-
length, and so on for a variable of type Recordlost XML, DOM,
java.util.Map, and so on for a variable of type M#pe domain is defined as {
0, 1, 2, ...f } wheref is the number of possible data formats for thidipaar
variable.

Data transformations:in order to make integration solution specification
concise it is sometimes useful to be able to leawt auxiliary data
transformation services from the model. The methbdn solves their
positioning for the developer.

Solution graph representatiotlsing places for integration services.

CSP mapping realizationVe extend the domain of integration services’ ype
to contain one value for each of possible transé&bion services and bind
these values twariablePresence and/orVariablePosition CSP variables
using appropriate constraints.

85

Methods using constraint programming

86

5. Data flow is about ensuring that data are present at platese they are

needed. For an example please consider Figureif2ba: have a sequence of
services pand 3, where $ requires variablevand produces variable,vand

S, requires both variables and v, how to achieve this? If we would use a
naive approach to message-oriented communicatienmessage entering S
would contain variablevand message exiting it would contain variablelv
this message flow would be directly connected iptls service would be
unable to find value ofMn the input message.

The solution is either to use an auxiliary data ipalation service DM to put
vy into some place of message that is preserved degeied from input to
output) by $, as shown in Figure 25b. Many services do keegcintalues
stored in message header and/or in message attatshifi¢hat is not possible,
we should send value of, via separate message flow with the help of fork-
and-join construct, as displayed in Figure 25c.

Solution graph representatiomn current version of the method we solve this
problem outside solution graph (as described below)

CSP mapping realizationWe create a network of possible data flow
connections between candidate vertices. As careliatices we consider all
integration services and all fork and join poinEor each such possible
connection one CSP variableofinectionPresence) is created. This variable
indicates whether this connection is used and ,ifheav exactly. Technically,
these variables are assigned to a candidate flstindéion vertex and indexed
by candidate flow source componeptst.ConnectionPresence[Source]

(Dest = destination vertex, Source = source veriBx¢se variables can have a
value of “none” (no connection), or one value foacle possible
implementation — in current version these are t&pHAggregator” (general)
and “Split and Join Parallel” (specific for SoniBE).

. Channel typeswhat channel type to choose for individual messéoges?

Basic possibilities are: in-memory, MQ topic, MQege, as discussed in
Section 4.2.

Solution graph representationUsing a function ChannelType E —
ChannelTypes

CSP mapping realizationfFor each edgeE we create a CSP variable
E.ChannelType that has a domain of all channel types possibleafgiven
platform.

. Threads:how to deploy individual services — into what @néers and into

how many threads in each? This is crucial to a&higwals in the area of
throughput and availability.

Methods using constraint programming

Solution graph representatiotising a functiorDeploymentV — { (i, to, ...,
ty) |t O TC,,} (see Section 4.2).

CSP mapping realizationFor each vertexw we create a vector of CSP
variablesv.ThreadsPerContainer[Cont] indicating the number of threads in
which the respective component executes in theagutCont .

V2
(a) data flow problem

v1in body vz in body v3in body
v4in attachment V4 in attachment v4in attachment

(b) one solution

V1

V4 V1, V2 V3

Vi V2

(c) another solution

Figure 25.An example of a problem and its solutions for thtadlow design aspect.

. Containers: a “lightweight version” of the preceding aspect nstead of
capturing the exact number of threads per contalrexe we only work with
the total number of threads, containers and hosts.

Solution graph representationtsing functions ThreadCount V. — TC,
ContainerCountV — CC andHostCount:V — HC (see Section 4.2).

CSP mapping realizationFor each vertex we create the following CSP
variables: V.ThreadCount , V.ContainerCount , and V.HostCount |,
representing the total number of threads, contsjreerd hosts, respectively, in
which this component executes. If using along lith Threads design issue,
these variables are computed from vectoTareadsPerContainer[Cont]

Monitoring: how to ensure monitoring of message flow at cenaimts of the
integration solution?

Solution graph representatiotdsing a functiorMonitored E — Booleanand
MonTransparentV — Boolean

87

Methods using constraint programming

CSP mapping realizationin a way similar to ML methods, each edges
assigned a variabeMonitored that specifies whether the respective channel
is monitored by a Wire Tap upstream (valWe_Up, or it should be monitored
by a Wire Tap downstream (valwer_NEEDE) or it need not be monitored by
Wire Tap at all (valuelo_NEED. This differs from a mathematically abstract
point of view presented in Section 4.2 in ordenriake CSP solving more
efficient. Also, the MonTransparentfunction is regarded directly in the
constraints, and is not modeled using CSP variables

10. Message orderinghow to ensure that messages arrive at specified pbthe

integration solution in the same order as they vaeher specified point?

Solution graph representatiortJsing functionsOrdered E — Booleanand
OrderMarked:E — Boolean

CSP mapping realizatiorAgain, in a way similar to ML methods, each edge
Is assigned a variablordered that specifies whether the message flow in
this channel is ordered with respect to a defin@dtpn the solution, or not.
We have simplified the situation in such a way tvatassume each message
has a natural sequence number (e.g. order ideaidfic number) already
present. However, it would be easy to include eXplE.OrderMarked
variable in this method as well, if necessary.

11.Checkpointsin case of service container failure the processwuld restart

from last checkpoint — usually the place wherentessage flow is taken from
the messaging middleware. The method allows updoify concrete places or
wider intervals that should contain a checkpoint.

Solution graph representatiotlsing a functiorCheckpointedE — Boolean

CSP mapping realizatiorfzor each edge there is a variable.Checkpointed
that specifies whether this channel will serve abeckpoint.

Concerning metrics, the current version of the metsupports these ones:

88

1. Number of messages and/or bytes transferred througgsaging middleware:

as a throughput of message broker is limited, ithes usual measure we want
to optimize. In-memory channels are generally preteover MQ-based ones
in situations where their functionality suffices.

. Number of bytes transferred in all channelhen deciding about the

placement of process variables in channels we lysuant to optimize the
total number of bytes transferred.

(Weighted) number of integration services usgherally we want to design
simple solutions, i.e. solutions that contain as f@mponents as possible.
One of the reasons is the maintainability of suahtgons, although in an ideal

Methods using constraint programming

situation the developer would not need to work vgémerated solution in any
way. Another reason is that in the current versibthe method we work with
the CPU usage of business services only — butratieg services have an
impact on CPU as well, so it is reasonable to mimgntheir use.

4. Throughput: we can make an estimate of the overall throughguthe
integration solution provided we know approximatdues of throughput of
individual services in concrete deployments (cordes/threads). We can then
use this value for specifying requirements, typycah the form: “solution
throughput must be greater or equal to a givenevalu

5. Host load:in a way similar to throughput estimation, we caake an attempt
to predict the load that the integration solutioawd impose on individual
computers hosting service containers. Then we canulate constraints like
e.g. “no host should be utilized to more than 1G%socapacity”, or “all hosts
should be utilized in a balanced way”.

6. Number of threads in containensie could try to minimize this value in some
situations, but we do not expect this metric toalseimportant as previous
ones.

CSP mapping realizationFor these metrics we usually create appropriat® CS
variables, likeHost.HostLoad for each host whose load we want to measure. Then
there is a generaost variable that is bound to be equal to a user-fipdoiveighted
sum of metric variables.

This list of issues can be further extended, faanegle by adding elimination of
duplicate messages (implemented in the ML/CP méthudasuring and optimizing
message processing latency, using product-spdeidittires for fault tolerance, like
backup containers in Sonic ESB, and so on. Andisieof candidate design issues is
mentioned at the end of Section 6.4.1 where we sanmam experiences of applying
the method to a set of real-life integration praine

In Table 8 we summarize major types of CSP varg@abkeed currently in the U/CP
method, arranged according to a primary desigreisisely are related to. Please note
that CSP variables can be shared between desiggsiss.gimplementationType Of

a vertex (issue General) is used virtually in antheo issue. Likewise,
ThreadsPerContainer variables are used in the Channel types, Thré&2aistainers,
Throughput, Host load, and Threads in containetses.

Please also note that some design issues do magt &my new CSP variables (at this
level of abstraction), because they just use exjstones. For example, issue
“Component cost” just adds a connection betweernicés' ImplementationType
variables and the total cost of the solution.

89

Methods using constraint programming

Design rulesdescribed in Section 4.2 are translated into camts over these
variables. In principle, these constraints are v&rygilar to the design rules; their

formulation is influenced by the need to efficigrdblve the CSP.

Table 8. Themost important CSP variables used in the U/CP naketho

Design issue Edge Vertex Other
General - ImplementationType
Message content VariablePresence[Var] -
Positions & formats | VariablePosition[Var, Pos -
Transformations - -
Data flow - ConnectionPresence[V]
Channel types ChannelType -
Containers - ThreadsCount,
ContainersCount, HostsCount
ThreadsPerContainer[C],
Threads) ThreadsPerHost[H] -
Monitoring Monitored -
Ordering Ordered -
Checkpoints Checkpointed
ey | Lo, |
Host load - LoadPerHost[H] H.HostLoad
Throughput - Throughput -
Threads in i i i
containers
Component cost - - -

Columns meaning: ThBesign issuecolumn contains the design issue to which the
information about CSP variables is relatédige and Vertex columns contain CSP
variables pertaining to this issue, attached taitgmi graph edges and vertices,
respectively.Other column contains other CSP variables, i.e. thos¢ &ne neither
attached to edges nor to vertices. Use of bracketesents a vector of CSP variables,
e.g. VariablePresence[Var] denotes the situation thatariablePresence is a
vector of CSP variables indexed by process varigkteonyms used here aréar =
variable,Pos= position,V = vertex,C = containerH = host.

6.1.3 Optimization

A naive approach to using constraint programmingildrdransform an integration
problem into a CSP and then let a solver solveithout any further considerations.
This leads to good results for small problems,fgetpractically-sized ones (like our
case study) such an approach could take an unabtgdbng time to produce
expected solutions.

In order to shorten the time needed we had to taldut the solving process more
carefully. We have done the following:

For variable selection(the first question) we have decided to combinkcted
general heuristics for solving CSPs mentioned ictiSe 3.3 with our own situation-

90

Methods using constraint programming

specific ones. For example, when solving the chianhesign issue there is an option
of starting withChannelType variables and then to consider all the otherspraltieg

to selected heuristic. When solving data flow dessgue there is a possibility to start
with the variable denoting the count of non-zemnectionPresence variables and
continue with their concrete values.

For value selectior{the second question) we generally useloinest valuestrategy.
We have constructed domains in such a way thdother values are — when possible
— the “cheapest” ones. For example, in-memory cblgnare assigned the value of 0,
and MQ-based ones got values of 1 and 2. Therdéfiersolver first explores cheaper
solutions before trying more expensive ones.

As the results described in Section 6.4 show, éonglex cases these heuristics alone
are not sufficient to shorten the time needed far ¢omputation to an acceptable
value. Therefore we have decided to allow solvimgliviidual design issues
independently, or in related groups — i.e. in a wagilar to how would a human
designer approach such a problem.

Dependencies between individual design issuesuanenarized in Figure 26.

“logical” solution design

d B
[if counting bytes] Message content* Transformations
Messages/bytes Positions & formats* Data flow

[if counting messages /
or bytes in MQ]

Channel types* Checkpoints
Component cost |
Containers* Monitoring
Threads in
containers T
Threads* Ordering
o %
Host load “physical” solution design
Asterisk (*) denotes obligatory design issue.
Throughput

Figure 26.Dependencies between design issues solved by € ethod.

91

Methods using constraint programming

White boxes represent structural design issuey, gnas represent metrics. (Please
note that the General design issue is not showshatuld be solved in any case and
virtually every other design issue depends onAih)oriented line between two boxes
denote a dependency: the line source is dependdhiedine target. For example, the
Positions and formats issue cannot be solved withioel Message content issue.
Some issues are obligatory, i.e. they have to beedan all integration scenarios in
order to get an executable solution: for example, always have to decide about
message content or threads used for services’ eaecGome other issues are present
only in certain integration scenarios — there areasons that do not require e.g.
implicit data transformations, data flow among raaljacent components, or message
monitoring features. In some cases these non-dbigassues have to be solved
along with their obligatory peers, for example if ategration problem requires
implicit data transformations and/or advanced data, it is not possible to solve the
Message content issue without considering thesetves.

Moreover, in Figure 26 we can see a rough divifietween “logical” and “physical”
structural issues. The former deal with the contdnihessages that flow within the
solution, while the latter deal with the deploymelfitthe solution components to
concrete containers and the choice of individuaheiels implementations.

So, how would a developer proceed through solvingoaplex problem, i.e.

a problem that cannot be reasonably quickly solaednce? Typically, he or she
would start with the logical set of structural issuEven among them it is possible to
postpone solving the positions issue to the sepbiade (i.e. solve Message content +
optionally Transformations + Data flow first, anddftions and formats afterwards).

Then one can try to solve physical issues, nameht&ners, Threads, Channel types
and Checkpoints together. If necessary, also tshke split and Containers can be
solved first, then Channel types with Checkpoint§lareads or Ordering. However,
if one needs to evaluate throughput (that is th@aluseason for parallelizing the
processing) he or she has to know exact numbetwedds: so, generally, we advise
to compute Containers + Threads + Channel typesttieg Monitoring can be solved
along with Channel types, or later. These possidsliare summarized in Figure 27.

A developer influences the solution constructioocpgss by specifying a sequence of
solution construction stepsEach step is characterized by a number of optiost
important ones being:

1. adomain(scope) of the construction step, i.e. which paftshe integration
solutions we are dealing with in this step — theidanit of construction is one
process, so each domain is defined as a set ot§ses;

2. design issues (aspects and metrics) we are taknegot in this step;
3. additional options for the current step, like howny integration services to

create, which heuristics to choose, and so on.

92

Methods using constraint programming

!

Message content
(with Transformations and
Data flow, if necessary)

‘ Positions & formats]

Containers

S
Channel types
(with Checkpoints, if

necessary)
Threads Ordering

Monitoring

®

Figure 27.Possible pathways through the solving process.
The overall algorithm then looks like this:

Algorithm 2. Finding an integration solution in the U/CP metliadvanced version).
FindIntegrationSolution()

begin
CreateControlFlowGraph();
CreateAuxiliaryDataStructures_GlobalLevel();
for each construction step:
CreateSlotsForintegrationServices();
CreateAuxiliaryDataStructures();
CreateCSP();
SolveCSP(); /l'in parallel thread: D isplaySolutions();
RemoveUnusedintegrationServices();
RecordSolution();
end for
GenerateCode();
end.

CreateControlFlowGraph is basically the same as in Algorithm 1. We creatgaph
for the whole integration solution.

93

Methods using constraint programming

CreateAuxiliaryDataStructures has been split into two parts: selected activities
(namely computing message rates) are executedjlabal level; others are done at
the level of individual steps.

CreateCSP is in principle the same as in Algorithm 1. Howeveis technically more
complex because we must take into account resolts previous steps as well as the
fact that some parts of an integration solutioniarscope of the current step, while
others will be solved only in the future. Our apgwb is:

1. We create a CSP only for those parts of an integraolution that are in the
scope — with an exception of CSP variables thatagerize inter-process
interfaces.

2. We define a set of key design decisions — rougpgaking, these correspond
to CSP variables listed in Table 8 connected tactiral design issues — and
after solving a CSP, we store these decisions fater| use (the
RecordSolution step in Algorithm 2). When creating any subsequesP,
we strictly impose any design decisions made befare do so within
CreateCSP .

RemoveUnusedintegrationServices is a step necessary to keep the size of the
design problem from unnecessarily growing.

Besides working with heuristics and design aspscistion we have done a number
of attempts to make computation faster. Generbigé are dependent on the concrete
CSP solving algorithms and their implementatiomsth®y are not much important at
the conceptual level:

As an example of these attempts, we have undertalsggnificant effort to optimize
computations related to the Data flow aspect bkilupfor adequate formulations of
relevant constraints. The resulting formulation bancharacterized by a certain level
of redundancy.

Another example is the computation of various seErvileployment characteristics
(total number of threads, containers, hosts, nurobérreads per host, load per host,
and throughput) given information about threads quertainer this service executes
in. One possibility is to use a set of numericaistaaints, like

V.ThreadsCount = Sum(forall Cont : V.ThreadsPerCont ainer[Cont])
V.ContainersCount =

TotalNumberOfContainers — Count(forall Cont : V.T hreadsPerContainer[Cont], 0)
V.ThreadsPerHost[Host] = Sum(forall Cont @ Host : V .ThreadsPerContainer[Cont])
V.HostsCount = TotalNumberOfHosts — Count(forall Ho st : V.ThreadsPerHost[Host], 0)

These constraints are shown using a simple langihageve have devised to describe
constraints generated by U/CP methad.ar i abl ename denotes a CSP variable with
a given name attached to a vertexf the solution graphSum(forall Entity :

vari abl ename[Entity]) describes a new CSP variable that is constrainelet

94

Methods using constraint programming

equal to a sum of variableari abl enane[Enti ty] for all instances of Entity, where
Entity is typically a host (Host) or a containerof@). Cont @ Host symbolically
means that we have to take into account only tlcos¢éainers that are deployed on a
given host.Count(forall Entity : variablenang[Entity], value) means a
new CSP variable that is constrained to be equa tmmber of variables among
vari abl ename[Entity] vector (for all instances of Entity) that have theue of
val ue. Finally, Expressionl = Expression2 signifies a constraint that tells that
these two expressions must be equal.

We tried to replace all these computations by senglumeration of all acceptable
values of a vector containing these variablgsthreadsPerContainer[Cont] ,
V.ThreadsPerHost[Host] , V.ThreadsCount , V.ContainersCount , V.HostsCount
V.LoadPerHost[Host] , V.Throughput

The latter approach allows us to provide more ateuresults for host load
computations and is more efficient in some casesvdyver, its use is limited to
situations with relatively smaller number of congxs and threads (e.g. only
problems P1.1 and P1.3 from the set shown in Tahlen page 111) and in some
situations it leads to significantly slower solutisearch process. For example, results
in Table 12 have been computed with the first apginpas the second’s use has led to
approximately 3-5 times worse computation times.

6.2 Implementation
We have implemented both methods (ML/CP, U/CPhénform of prototypes.

For solving CSPs we have used the JaCoP (Javar@ong®rogramming) solver in
versions 2.4.1, 2.4.2 and 3.0 (Szymanek, 2011)htkt themselves are implemented
in Java.

6.3 Evaluation of the ML/CP method

In this section we shortly compare the performaoicéhe ML/CP method with the
ML/P method that has a similar scope. We use theesategration problems as in
Section 5.2 and (Mederly and Lekavy, 2009), namely:

* Problem A here corresponds to Problem 2 in Seé&ian
* Problem B here corresponds to Problem 4 in Seéti®n

* Problem C here corresponds to Problem 4 in Se&i@dnenhanced with the
message duplication elimination aspect (not covdrgdhe ML/P method,
though).

* Problem D here corresponds to Problem J in (Medammty Lekavy, 2009). It
deals with the transfer of data between StudenbRRlscand Human Resources
information systems and Central Database of Perab@®menius University
in Bratislava.

95

Methods using constraint programming

Results of solving these problems using our mettredshown in Table 9.

Table 9.Results of the evaluation of the ML/CP method.

. Optimal All Optimal

. Business Int. . . .
ID | Domain Aspects services | com solution solutions | solution in
P- (sec) (sec) ML/P (sec)
A |W&G-part | M, F, TA 5 10 0.17 0.44 0.43
B | W&G-full |M,F, TA O 11 20 0.33 30.04 15.47
C | W&G-full |M, F, TA O, D 11 29 2.80| 7,012.36 n/a
D | University | M, F, TA 11 20 0.20 1.87 55.00

Columns meaning: ThéD column contains the identification of the integrat
problem in question. Th&®omain column denotes the domain of the respective
problem. TheAspectscolumn shows which of the design issues the proldeals
with, using the following acronyms: monitoring (MYnessage formats (F),
throughput/availability (TA), message ordering (Odnd duplicate messages
elimination (D). TheBusiness serviceolumn shows the number of business services
that constitute the problem. Th&. comp.(integration components) column gives the
number of integration services, messaging middlewanannels, and messaging
transactions used in the optimal solution. The negxb columns characterize
performance of the method: the first one descritmes many seconds of CPU time it
took the method to produce the optimal soluti@pt{mal solutioncolumn); the
second describes how many seconds of CPU timektttee method to conclude that
no better solution existAl(l solutionscolumn). Although the second time interval is
the most important one, from the practical poinviefv the first one is also relevant,
as after this time the optimal solution (albeitheitit knowing for sure that it is really
the optimal one) can be displayed to the user.

For comparison purposes we include also the CP#¥ tieeded by the ML/P method
to find a solution, where applicable. Although ftrecessors that have been used for
computations are slightly different, the numbergvte an indicative comparison of
these methods’ performance.

These results show that this method can desigmetefiaspects of integration
solutions for practically-sized integration probkenfAlthough the numbers of servi-
ces and integration components can be seen as snaaly real integration solutions
are not of much larger scale.) What should be — actually, was — extended,
however, was the set of aspects being tackled éyribthod, as implemented in the
U/CP method.

6.4 Evaluation of the U/CP method

For U/CP we have created three prototypes. BagjorRhm 1 has been implemented
in Prototype 1 (called also P1), and more advaidgdrithm 2 in Prototype 2 (called
P2). While the core of the method, i.e. integrapooblem encoding, is the same, the
P2 allows decomposing the solution creation: battizbntally — to sets of integration

96

Methods using constraint programming

processes, and vertically — to sets of design sssfiesupport for data formats has
been added in this prototype as well.

Recently, a third prototype (P3) has been createdaell. It aims to demonstrate a
practical usability of the method for constructiegl-world integration solutions. The
implementation of the method core responsible fagating integration solutions
design is in P3 exactly the same as in P2. The diffarence is that P3 uses a custom
textual domain-specific language (DSL) to formuletiegration problems, instead of
XML used in P2. Also, it is integrated with EclipdeE (Integrated Development
Environment}® in order to be more programmer-friendly, providiag editor with
syntax coloring, error checking while typing, cartassistant, hyperlinking and more
(provided by the Xtext language development frant&vdDue to time constraints,
P3 lacks some features that are present in P2xample the Transformations aspect
and some of the metrics. However, it is only a oasof implementing their support
in the new DSL,; after that is done they will beyudlnctional in P3.

In order to thoroughly evaluate this method we tayeng to answer the following
questions:

Q1. Is the methodeasible(usable in practice), that means:

a. Is it universal enough, i.e. can it be applied tolass of integration
problems that is sufficiently wide?

b. Is it able to create integration solutions in rewdse time?

c. Is it correct, i.e. do integration solutions crelatsy it meet specified
functional and non-functional requirements?

Q2. Is the method amprovemenbver existing approaches?

We will answerQ1 by selecting a set of integration problems takesmf the
literature, i.e. mainly (Hohpe and Woolf, 2004)ddrom real-life integration projects
undertaken at Comenius University in years 2007120Hor these integration
problems we will create input data for the meththidig answering)1a), execute a
method prototype implementation to measure the tmeeded to find a solution
(answeringQ1b), manually inspect the solutions found (parti@hsweringQ1¢ and
finally deploy selected solutions to real integwatiplatform and execute them
(answeringQ19. Details are given in sections 6.4.1 to 6.4.3.

In answeringQ2, we will compare the method to (1) the developn@nntegration

solutions using product-specific graphical editiegvironment (Progress Sonic
Workbench) that could be seen as a simple modeédrapproach to integration and
to (2) existing model-driven approaches publishedéademic literature (Scheibler

!> Eclipse is an open source, extensible developmiatform, originally started as an environment for
developing software in Java (Eclipse Foundatiod,120

97

Methods using constraint programming

and Leymann, 2009; Sleiman, Sultan, and Frantz9R0this is described in Section
6.4.4.

6.4.1 Formulating integration problems

First we prepare a set oftegration scenariasi.e. general descriptions of situations
for which we want to create integration solutioBach scenario is then enhanced with
concrete details (complete non-functional requinetsieenvironment description and
design goals) in order to create one or motegration problemsWe check whether
the input language of the method is powerful enaiogbapture all the details needed
to construct a working integration solution forigem problem.

We have selected the following eight integratioarsrios:
1. Widgets and gadgets order processing (Hohpe andf\2604)
2. Loan broker (Hohpe and Woolf, 2004)

3. Transfer of data from academic information syst&tS] and SAP Human
Records module (SAP) to central database of perdosienius University
integration project)

4. Canteen menu web presentation (Comenius Univargggration project)

5. Transfer of data about thesis and dissertatioma #dS to external plagiarism
detection system (Comenius University integratiovjqrt)

6. Transfer of data about defended thesis and diseersaas well as fulltexts of
these works from AIS to university library inform@at system (Comenius
University integration project)

7. Transfer of personal data from Central databaggeofons to the information
system of dormitories and canteens (Comenius Usityeintegration project)

8. Transfer of students’ admission confirmations frédmademic information
system to Central database of persons (Comeniusetsity integration
project)

In the following we describe these scenarios mtosety.

Scenario S1: Widgets and gadgets

Our first integration scenario is based on the redkde version of Widgets and
Gadgets order processing system, as describedciio®é.1.1. (Its original version
has been explained in Section 4.1.)

The flow of control and data is shown in Figure &2page 78, repeated here for
convenience.

The first integration problem (P1.1) then has thioWing characteristics.

98

Methods using constraint programming

Flow of control and datas as specified above.
Non-functional requirementsr the integration solution are:
1. The solution has to provide a throughput of attlé@sorders per minute.

2. The following services have to be deployed at 33 Ehan two hosts in order
to achieve required availabilitgheckCredit , CheckWidgetinventory , and
ComputeOverallStatus

3. Input and output of the following services havelt® monitored:Check-
Credit , CheckWidgetinventory , CheckGadgetinventory , and Compute-
OverallStatus

4. Messages arriving at input endpointssdf andship services have to be in
the same order as messages that are presentoaginaing of the process.

L Check Customer |

T Credit T

/ [widgets] (90%) _ [Check Widgets L
orderLine Inventory

orderLine

creditinfo

linelnventoryInfo

order creditinfo inventorylnfo

W W W
Determine Overall
Order Status
W

status

order

-

[gadgets]

(9%) [status =

NOT-OK]

(15%) _ [SendTo: Rejected
T Orders Channel

This block

executes once for
each order line, in -
no particular [otherwise]

(1%)

concurrent

order.

-

Figure 28.Specification of control and data flow for Widgeitsd gadgets order processing scenario.
We want to provide an integration solution for fbkkowing environment
1. As an integration platform, Progress Sonic ESB18has to be used.

2. When implementing Fork and Join and ForEach coostyuwwe should use
only built-in “Split and Join Parallel/ForEach” sares; we have no custom
Aggregator service available.

3. For some reasons, in order to distribute processitgymore containers we
want to use queues (not Sonic-specific shared wgbscriptions).

4. We can use 5 containers running at 3 hosts: Haswith containersVG-Cla
and WG-C1h hostH2 with containersWG-C2aand WG-C2h and hostH3
with a containeiVG-C3

99

Methods using constraint programming

5. All services excepComputeOverallStatus

require their input and output to
be present in the message body. Moreover, theytpraserve any context in
message header nor in attachments. (Except stantM®ReplyTo and
JMSCorrelationID header fields, of course.) In cast, the Compute-
service is implemented in such a way that it cecept its
input in message body as well as in attachments paeserves values stored
in message header, body, and attachments.

OverallStatus

6. Business services can be deployed into contairsesh@wn in Table 10.

Table 10.Parameters of business service deployment forratieg problem P1.1.

100

. . Maximum # of Messages per
Service Container .
threads minute per thread
WG-Cla 8 10
CheckCredit WG-C1b 8 10
WG-C3 8 20
WG-C2a 8 60
CheckWidgetinventory WG-C2b 8 60
WG-C3 8 120
CheckGadgetinventory WG-C3 2
ComputeOverallStatus <any> 6
Ship WG-C3 8 20
Bill WG-C3 8 20

Table description: For each servicBe(vice column) we see the list of
containers the service can be deployeddantainercolumn). Deployment is

a subject of technical constraints that are beybedscope of this method, for
example platform dependencies, availability of rezpi software, co-location

with external resources like database managemestérsag, and so on. For
each service and container there is (1) a maximumber of threads the

service can be deployed in the respective contgMeximum # of threads

column), and (2) the number of messages that cagrdmessed per time unit
(in this case per minute) in one threddefsages per minute per thread
column).

Please note that although this implies a linear ehad performance, the
method in its present form can work (with some fations related to the
number of containers and threads) with any functi@ maps the number of
threads in concrete containers to service throughhat remains, though, is
an assumption of the independence of performance ingfividual
service/container pairs — e.g. that a throughpotiged by a service 1Sn
container G is independent on the deployment of a servican $ontainer ¢
(or G, or any other). In reality, however, these sewioéten use shared
resources (CPU and memory of hosts, external regslike database servers,
and so on), so their performance characteristics b= more complex. We
leave such dependencies to be resolved by a huesigngr or to a future
research.

Methods using constraint programming

7. Integration services can be deployed in any coatausing up to 64 threads.
Design goalsre:

1. Minimize the number of messages flowing through sagsg middleware
(counted with weight 1, i.e. the cost increasediars the number of messages
flowing through MQ per minute).

2. Minimize the weighted number of integration sersicavith the weights
summarized in Table 11.

Other integration problems (P1.2-P1.8) are derifredh this one by changing the
environment description, namely the number of doeta and service threading
constraints, as described in Section 6.4.2.

Table 11.Costing weights for integration services for intgmn problem P1.1.

Service Cost
Wire Tap 1
Data Management 1
Fanout (fixed Recipient List) 2
Split and Join Parallel 20
Split and Join ForEach 20
Resequencer 100

Columns meaning: Th&ervicecolumn contains a name of a service andGhbst
column contains the cost of its use within thegrégion solution.

Scenario S2: Loan broker

This integration scenario is again taken from tle®kbon enterprise integration
patterns (Hohpe and Woolf, 2004, p. 361).

In this case we want to create an integration smiutor a loan broker that would
allow it to provide a potential customer with thesbloan quote. The process that has
to be implemented starts when the broker receiesrarequest from the customer.
First the credit bureau is to be contacted to gadit score for the client. Next a list
of banks that should be inquired is created usimglebase. Then individual banks
are contacted in order to get their offers. Aslés¢ step, the best offer is selected and
returned to the customer.

The flow of control and data for this scenariohswn in Figure 29.

101

Methods using constraint programming

loanRequest
= Get list of banks =

[bank #2 is

loanRequest
= Get credit score=
loanRequest

[bank #1 is
in the list]

bank1Request

Contact bank #1 in the list]
[bank #3 is
bank1Response bank2Request in the list]
[bank #4 is
Contact bank #2 in the list]

bank2Response bank3Request

Contact bank #3

bank3Response bank4Request

Contact bank #4

bank4Response

responses

I
Select best
quote

loanQuote

Figure 29. Specification of control and data flow for Loan keo scenario.

Please note that there are data transformationshwotn in the control flow diagram

— l.e. transformations fromloanRequest and credit to bank requests
(banklRequest , ..., bank4Request) that are specific for individual banks and a
transformation from bank responsesanklResponse , ..., bank4Response) tO
aggregated variablessponses . These transformations should be prepared by the
developer and listed in the environment descriptidre method is free to place them
anywhere it considers suitable, without requirihg tleveloper to clutter the control
flow specification with these technical details.

Scenarios S3: Students and employees of a univeysit

A major integration project at Comenius UniversityBratislava, the largest Slovak
university having more than 27,000 students and0G4,2mployees (full-time

equivalents) has been dealing with the transferthef data about students and
employees from source systems, namely Studentsréfee@md Human Resources,
into more than 20 applications that need persoat oh order to effectively provide

their services. This project runs from 2004, camily adding new “client” systems,

new features, and adapting to changes in systerdsdape and integration
requirements. There were two major changes, tseifirJanuary 2008 when the 17-
years old Human Records system was replaced bydetm&AP R/3 Human Records
(HR) module; and the second in summer 2009 whed8hgears old Student Records

102

Methods using constraint programming

was replaced by a modern Academic information systalS). What is the most
important from an architecture point of view isttllaese changes did not force any
change at the side of “client” systems: they wesmpletely absorbed by two key
integration applications: Central database of pegd&€DO) and University Personal
ID (UOC™) generator.

Scenario S3 deals with the transfer of studentd’ employees’ data from AIS and

SAP, respectively, into central database of persalmg with generating personal

IDs. This scenario is quite complicated, having@8cesses with 125 components
and 85 variables in total; it is executing in 6 t@aners. The scenario description
consists of more than 450 lines of text in 4 XMLcdments. Execution dependences
among its processes are shown in Figure 30.

CDOzImportFromAis.Full

/ CDO:zImportFromAis.OneAisld

AlS: ExportPersons All
CDOzImportFrgmAis.Inc
/ AlS ExportPersons.OneAisld
AlS:UnwrapPersons

remental
CDOImportFromAis.Common
/ * COO:ImportFromAis.Others

UOC: Ais

CDO:ImportFromAis. Students

UOC:Ais Response (/ AlS:ImportEmployees
/ |15 ImpontPersonallnfo.lds.Molloe

UOC:Operator
CDO:ImportFromSap

AlS:ImportPersonalinfo.lds

OC:5ap
CDO:UtIl.GetPersynallnfo SAP-ExporfPersons
Al ImponPersonallinfo.CDO
CDO::Export.General SAP: Setloc

AlS ImportPersonallnfo.AlS

Figure 30.Dependencies among integration processes in SoeBari

Complexity of this solution is given by significadifferences between data models,
data formats, and data transfer technologies usedI8 at one side and central

'® These abbreviations are determined by officiav&konames of these applications; they are used in
the integration problem specification and integnatsolution design, so we will use them in the et
well.

103

Methods using constraint programming

database of persons and personal ID generatoe athier. Moreover, at many places,
there are technical restrictions like the necedsityommunicate with AIS in batches,
as it is obviously not able to import or exporttaké data about 32,000 persons (about
4 gigabytes) in one web service execution. Also fthectionality provided by the
integration solution is significant: it transferatd from AIS to central database of
persons — both in “full” nightly batch synchronimwet mode as well as in
“incremental” mode, i.e. when “person change” evensignaled by AIS. It also
transfers data about students’ university cardgingy passwords, photographs, and
status from database of persons to AIS. It doesighr business-level validation of the
transferred data and signals any errors to theorssiple persons by e-mail. It
transfers data from SAP to central database ofopsras well. The solution also
generates new or assigns existing personal IDB p@sons at the university.

Besides the control and data specification thatn$an input of the U/CP method

there are a lot of programming components of thist®n that are (at least for now)

created manually by the integration designer. s ttase there are more than 25
XSLT (Extensible Stylesheet Language Transformadiatylesheets, 5 web service
invocation or receive scripts, 7 custom Java ESBiees and a couple of JavaScript
functions. Automating the creation of some of thesmponents is the focus of our
future work.

More information about an older version of thisegpation scenario can be found in
(Mederly and Pélos, 2008).

Scenario S4: Canteen menu web presentation

In comparison to the previous scenario, this oneels/ simple: it implements a
solution that converts an existing SOAP/HTTP irgeef giving information on a daily
menu (provided by an application installed at oh€Comenius University hostels)
into a plain HTTP-based interface that providesregate information on a weekly
menu. A simple PHP script (outside of this solufitmen takes this information and
displays it to users of the hostel's web site.

Scenario S5: Theses and dissertations (plagiarisrheck)

We have implemented a small integration proje@@@nenius University, connecting
AIS to an external plagiarism detection system §Bsg¢ The functionality of this
solution is similar to the scenario S4 above: invasts existing SOAP/HTTP
interface having two operations (“Get a list of k&t “Get data on a work in CRZP
format”) provided by AIS into a new, much simplétTTP-based interface that
provides information on the works, but this timéngsa format specific to Theses.

7 CRZP = national registry of thesis and dissertatim Slovak Republic

104

Methods using constraint programming

Scenario S6: Theses and dissertations (transfer défended works)

This integration solution is used to fetch metadatd full texts of works from AIS
and to store them into library information systéasides this main process, there is a
couple of auxiliary ones e.g. a process for prangss selected work or a process for
fetching metadata about all processes in two stwppdormats (CRZP and ISO 2709
ones).

Scenario S7: Personal data for dormitories

After processing data from AIS, SAP and other sesifsee scenario S3), the central
database of persons emits personal data changecatains. These are used for
keeping selected destination systems’ data up{®-@ne of such systems is ISKaM
(“Informa¢ni systém pro koleje a menzy*) — a system for margagormitories and
canteens. The goal of integration scenario S7 redeive such a change notification,
translate it to specific format for ISKaM (reque$ts web services used to update
person and update its card), execute those sepraodgeport failures if there are any.

Scenario S8: Students’ admission confirmations

As a part of the process of students’ enrollme@@nenius University the data about
their admission confirmations (including photograghat are uploaded by students)
are transferred from AIS into the central databzfggersons. This is implemented by
a dedicated simple integration solution.

Formulating integration problems — a conclusion

Concerning the formulation of the method’s input $genarios S1 to S8, we were
able to prepare it without significant restrictions

Yet there were a couple of issues: some were effanical character, and others were
more conceptual. Here is a list of the most impdrtames:

1. Multiple usage profiles:In scenario S3 we are looking for an integration
solution whose parts will be used under two différ@gimes: nightly transfer
of all persons’ data (raw size about 150 megahyt@&me message; sent once
per night) and continual transfer of individual gamns’ records (small
messages of about 10-50 kilobytes each, but meruént; in peak times of
students’ enroliment they come as fast as hundpssishour with bursts
counting tens of messages per seconds).

One possibility how to deal with this is to credaws different integration
solutions, each optimized for one of these scemaiN@t, mainly because of
maintainability and manageability reasons, we wanhave one solution for
both cases. The method should therefore be modii@tlow specifying more
usage profiles (message peak rates, messageaizksp on) and to compute
solution cost based on weighted sum of costs celatéhese profiles.

105

Methods using constraint programming

106

A related point to improve is that in the future tmethod should distinguish
betweenhard limits (e.g. message sizes, number of iterations in dche

cycles, and so on) angsual (average) valuesVhile the former should be

used for deriving some solution properties (e.getlvar a process variable can
be placed to a header limited to 64 KB in sizeg, lditter should be used for
determining various solution cost attributes, litee average number of
messages transferred through MQ per time unit. ¢tidd be modeled using

two usage profiles: (1) a “worst” case, (2) an ‘fagge” case.

Both these changes are of a technical nature. TWeayyd mean changing
today’'s scalar values (e.g. channel’'s messageamateariable’s size) to be
vectors (e.g. channel's message rate and variable&s for various usage
profiles). Until that time the developer has thédieing possibilities: (1) to
generate separate integration solutions for indaidusage profiles, (2) to
specify non-functional requirements (e.g. variablees and message rates)
and design goals (e.g. weights of costs relatdd@ousage) in such a way that
they would reasonably cover all usage profiles,(y to make the most
important design decisions (e.g. deployment of kegrvices into
containers/threads) himself or herself and letrtte#thod compute the rest. In
our scenario S3 we used a combination of the seanddhe third approach.

. Aggregator timeout value computatidm. current version of the method the

developer has to specify timeout values for ford-gmn and for-each
constructs (i.e. how long has the system wait fessages to come in) by
hand. However, these values are quite importarftetaetermined correctly,
because they influence (among other things) thebeurof threads necessary
for Split and Join constructs.

We will be able to estimate these values when tathad will be enhanced to
compute message processing latency — it is thesiudf our future work.

Intricate message sequencing issuesscenario S3 we have a situation in
which we want to serialize processing of “full” atfidcremental” data coming
from AIS. The reason is that we would like to dieal a person change event
to “outrun” full data batch produced before thaémty because in this way the
event would be lost (overwritten) by the full dagtch.

Current version of the method is not able to deh whis issue, and it is our
intent to add it in the future — it would require to slightly generalize the
Ordering design aspect, e.g. to work across presessid choice-merge
component pairs. Until that time the developer tmageview a generated
solution and modify it by hand to ensure that thessage sequencing
requirements are met. Or, he could specify custonstcaints that will ensure
that a solution generated by the method would nihesie requirements.

Methods using constraint programming

4. Message compression scenario S3 there are channels that neecmgort
very large messages — namely, XML messages comigall personal data
from AIS are up to approximately 200 megabytesize.sWhile there is no
problem transporting such large messages in menmorgase of MQ-based
channels it is more appropriate to compress them.

Although this could be theoretically solved usingafisformations aspect
(modeling compressing and uncompressing services ingdlicit data
transformations), applying this approach would reggolving Channel types
and Transformations issues together. For largeasimenthis could present a
performance problem.

For the time being we have decided to solve tligasn the code generation
phase by applying message compressing and uncasimgeservices to each

MQ-based channel transporting messages of a sateettteeds a defined

threshold. However, this can be inefficient in aartsituations, as it could lead

to repeated and unnecessary compressing and unessim@g message content.
Therefore in the future we plan to create a deagpect dedicated to this issue
and solve it along with (or after) Channel typeseas.

Overall, we were able to formulate method’s input the chosen set of integration
problems. This leads us to a conclusion that ththadeis sufficiently universal, and

has a potential to be applied to a wide range t&Egration problems. Obviously, it

cannot presuppose all peculiarities of messagisgdantegration solution design that
can occur; what is important is that it should déeahe developer to solve these
special cases ‘by hand’ and to include his or bart®n into the generated solution.

In the future we plan to apply the method to ottesl-life integration projects in
order to more thoroughly check its universality aactontinue its development, e.g.
towards eliminating the issues discovered as vgelhereasing its practical usability.

6.4.2 Creating and checking integration solutions

Results for the scenario S1 (Widgets and gadgets)
We executed the method for the problem P1.1, vaghfollowing settings:

1. We solved these design issues: Message contentnn€lsa Threads,
Containers (always), and Data flow, Positions, Mg, Ordering
(optionally, see Table 12). We skipped Data trams&tdions, as they are not
needed in this case. Also Checkpoints issue wasised. Each combination
of design issues formed a test case, i.e. we hadsi@ases in total. For each
test case we tried to find out how successful Wwastethod in finding optimal
(or near optimal) solutions, and with which heucsst

2. Concerning heuristics, we alternated between ugiegeric “Weighted
degree” and “Most constrained (static)” variabl®asing strategies because

107

Methods using constraint programming

in preliminary tests these two had shown to beablet for our purposes. We
optionally combined them with our custom “chanrfelst” strategy.

3. The CPU time consumed was limited to 3, 10, 60, @00 seconds. This
would correspond to various modes of use by thesldeer — e.g. “quick
solution preview”, “generating a ‘good enough’ gan”, and “having the
time to create optimal solution”.

4. Between each two business services and control dlements, the method
inserted 1 place for an integration service. F@s giroblem this value was
sufficient.

We statically checked the correctness of the gée@solutions, namely:

1. whether the message routing logic was correct vagipect to the control and
data flow that had to be implemented,

2. whether non-functional requirements concerning éxpected throughput,
redundancy of deployment, monitoring, and messagdering listed on page
99 were met.

All checks were successful. The solutions found #red CPU time needed for the
computations are shown in Table 12.

Table 12.Results of solving problem P1.1 by the U/CP metRoatotype 1.

ID DF | Pos | Mon | Ord 3s 10s 60s 600s Opt
g 1459/ 1.3s 1459/1.3s| 1450/13s| 1459/13s W%lfézhs
Wb WD Wb WDl \wpmcs+ch
1731025 1731/ 029 1726/22.1s| 1725715565
wgl Y | woMcs+Ch| wbmMCs+ch MCS+Ch MCS+Ch
MCS/WD+Ch | MCS/WD+Ch
14687215 1466/ 3.4s| 1463/ 21.1s| 1463/ 21.1s 53.9s
wg2 Y MCS+Ch MCS+Ch | WD/MCS+Ch | WD/MCS+Ch WD+Ch
MCS/WD+Ch | MCS/WD+Ch WD+Ch WD+Ch | WD/MCS+Ch
1888/0.1s
g3 vy MCS+Ch 1798/7.8s| 1798/7.8s| 1798/7.8s
MCS/WD+Ch | MCS/WD+Ch | MCS/WD+Ch | MCS/MWD+Ch
WD/MCS+Ch
1461/ 360.95 388.7s
g y 1462/\:/.;5 1462/;/.35 1462/\:/.;5 Woesan Woseh
WD+Ch | WD/MCS+Ch
17331 035 1733 05a 172712808 17267197.93
wgS Y Y | womcs+ch| woMcs+ch MCS+Ch MCS+Ch
MCS/WD+Ch | MCS/WD+Ch
14707265 146874.3s| 1465/ 26.25| 1465/ 26.25 66.95
wg6 Yy | v ; MCS+Ch MCS+Ch | WD/MCS+Ch | WD/MCS+Ch WD+Ch
MCS/WD+Ch | MCS/WD+Ch WD+Ch WD+Ch | WD/MCS+Ch
1889/0.1s 188970.1s
wg? vy |y MCS+Ch MCS+Ch| 1799/14.8s 1799/14.8s
MCS/WD+Ch | MCS/WD+Ch | MCS/WD+Ch | MCSMWD+Ch
WD/MCS+Ch | WDI/MCS+Ch
370.1s
1459/ 1.4s 1459/ 1.4s| 1459/57.9s| 1459/ 1.4s
wg8 Y WD WD WD WD WD+Ch
WD/MCS+Ch

108

Methods using constraint programming

ID DF | Pos | Mon | Ord 3s 10s 60s 600s Opt

wg9 v v 1650/ 2.1s 1649/9.3s| 1595/34.8s| 1593/301.7s)
WD/MCS+Ch WD/MCS+Ch | WD/MCS+Ch | WD/MCS+Ch

1468 /2.2s 1466 / 3.6s| 1463/ 23.4s 1463/ 23.4s 59.9s

wglo | Y - Y MCS+Ch MCS+Ch | WD/MCS+Ch | WD/MCS+Ch WD+Ch

MCS/WD+Ch MCS/WD+Ch WD+Ch WD+Ch | WD/MCS+Ch

wgll | Y) v v 1653 /2.5s 1652 /9.4s| 1598/34.2s| 1595/271.7s)
WD/MCS+Ch WD/MCS+Ch | WD/MCS+Ch | WD/MCS+Ch

1461/ 382.3s 412.2s

wg12 | Y v 1462/\/%/.35 1462/\/%/.;)5 1462/\/%/.;)5 WD/MCS+Ch WD4Ch

WD+Ch | WD/MCS+Ch
1733/ 0.3s 1733/ 0.3s 1727129.2s| 1726/ 206.0s

wgls YooY Y | woMcs+ch| wbmcs+ch MCS+Ch MCS+Ch ;
MCS/WD+Ch | MCS/WD+Ch

1470/ 2.7s 1468 /4.5s| 1465/ 27.2s 1465/ 27.2s 69.0s

wgld | Y Y Y MCS+Ch MCS+Ch | WD/MCS+Ch | WD/MCS+Ch WD+Ch

MCS/WD+Ch MCS/WD+Ch WD+Ch WD+Ch | WD/MCS+Ch

wgls | Y v v v 1799 /0.6s 1799/0.6s| 1790/51.8s| 1742/565.15)
MCS+Ch MCS+Ch | WD/MCS+Ch | WD/MCS+Ch

Columns meaning:

+ |D =test case identification;

e design issuesDF = data flow,Pos = positions,Mon = monitoring,Ord =
ordering (*Y” means that in the test case we haekled this design issue);

* 35 10s 60s 600s = results obtained when limiting CPU time to partar
value — we show here:

o the best solution cost achiev&df the solution cost was proved to be
optimal for the test case, it is shown in bold;

o CPU time needed to get the best solution,

o heuristics that were used to achieve this ré$ulsing abbreviations:
MCS = Most Constrained (StaticyyD = Weighted DegreeCh = our
own “channels first” strategy; notation afb+Ch means that heuristic
“a” was used for discriminating between Channeletyariables and
heuristic “b” was used for discriminating betwedrtlze other ones;

e Opt=if a proof of optimality was obtained within 68@conds, then we show
the CPU time needed and heuristics that were ssitdés this respect.

Discussion: From Table 12 we can make the follovadhgervations:

'8 please note that the cost valuecamnotbe compared across rows, as each set of aspecisese
different integration services in order to satifg requirements — however, the cost value in amy r
should gradually decrease left-to-right, as thehmetprogressively discovers better solutions.

19 Of course various heuristics did not lead to cotimguthe solution using exactly the same CPU time.
In order to list heuristics here we require theetineeded was no worse than 110% of the best result.

109

Methods using constraint programming

1. The method has been able to find an integrationtisol (although not always

the optimal one) for the problem P1.1 even witthia strictest time limit of 3
seconds. It means that from the time complexityvpi@nt it is suitable for the
interactive use (performance for other integraposblems is described later).

It is much easier to find a near-optimal solutidrart the optimal one.
Moreover, even that is much easier than to continat no better solution
exists. This is not a big limitation for practiaade, because the developer is
often satisfied with a solution that is “good enbug

3. There is no single “best” combination of heuristics

a. For 6 test cases there was a single combinatidreofistics that was
among the best for all four columns (wg0O, wg8: Wkyg3, wg7:
MCS/WD+Ch, wg9, wgll: WD/MCS+Ch) but for remainih@ cases
there was no single “best” combination.

b. If we count the times a combination of heuristicasvamong the best
for all 64 situations (i.e. combinations of a tease and a CPU limit —
there are 64 of them in total), we get results show Table 13.
Generally we can say that “channels first” strategyhe useful one,
yet there are 14 situations when it was bettetamase it.

Table 13.Results of individual combinations of heuristicsntegration problem P1.1.

110

Heuristics Usefulness

WD/MCS+Ch 29
MCS/WD+Ch 22
MCS+Ch 19
WD 14
WD+Ch 10
MCS 0

Columns meaning: TheHeuristics column contains a combination of
heuristics we have used to solve a set of 64 situmtandUsefulnessolumn
shows the number of situations this combination a@asng the “best” ones,
as described above.

This means that either we should give the develdperpossibility to try
different heuristics combinations, or we should the method using more
heuristics combinations in parallel to be ablede the best result found.

Also interesting (although not much surprising)his fact that relatively small
changes in constraint templates often lead to fsegmit changes in the time
needed for the computation. This is not visiblghis evaluation, but can be
observed when repeating these tests on varioumrersf a method prototype
implementation. Even a change as small as modifyiiegg names of CSP
variables has lead to different order of varialitede assigned their values,
resulting in significant change in computation time

Methods using constraint programming

Changing the deployment possibilities
The size of CSP solution space that has to belssdiis influenced by many factors.

Besides integration problem size and design asgecfdoyed we suspected that the
number of deployment possibilities could play angigant role.

In order to check this hypothesis we have preparset of integration problems P1.2-
P1.8 that differ from P1.1 in the number of contasnand the number of threads
business services can be deployed in.

Problems P1.1, P1.3, P1.5, P1.7 and P1.8 allowehdls per business service in a
container, while problems P1.2, P1.4, and P1.6vaid of them. Problems P1.1 and
P1.2 work with the default of 5 containers, whilmlgems P1.3 and P1.4 use a
reduced number of containers (WG-Clb and WG-C2bremeoved) and problems

P1.5 and P1.6 use an increased number of thenedfdr container we add its copy to
get 10 containers in total). P1.7 and P1.8 areiabeersions of P1.1 that contain 5

and 15 additional containers, respectively, thatno& be used for any business
service (only for integration services).

Then we run an analogy of test case wgl4 (see T&)l¢o find a solution. Results
are shown in Table 14.

Table 14.Characterization and results for problems P1.1-Risig Prototype 1).

Max. threads Optimal
per business Number of Optimal P . All solutions
Problem S : o solution
service in containers solution’s cost (seconds)
. (seconds)
container
P1.1 8 5 1465 26.4 67.[
P1.2 64 5 327 0.9 18
P1.3 8 3 1465 24.4 63.6
P1.4 64 3 327 0.4 1.6
P1.5 8 10 447 7.6 10.b
P1.6 64 10 327 11 2.1
P1.7 8| 10 (5 + 5 unused) 1465 30}3 71.2
P1.8 8| 20(56+15 unused|) 1465 37,0 93.8

Columns meaning: The first three columns charamtean integration problem, as
described aboveOptimal solution’s costs the cost of the optimal solutio®ptimal
solutiondenotes the CPU time needed to find the optimatisa. All solutionsis the
CPU time needed to conclude that no better solwiasts. Both of these times are
measured in seconds.

Discussion: As the results show, increasing the barmof threads and/or containers
made the integration problem significantly easiesdlve — the cost of the solution (in
this case determined primarily by MQ channels usedgnerally lower than the cost
of the baseline problem P1.1. It is then of no gsepthat problems P1.2, P1.4, P1.5
and P1.6 took much less time to solve, despite léinger search space in the
dimension of threads in containers. This means amat use them to measure an
effect of increased deployment complexity on corapah time.

111

Methods using constraint programming

Therefore, problems P1.7 and P1.8 have been irtenlun order to increase
deployment complexity without simplifying the intagjon problem.

When we compare the results for problems of sincdtanplexity, i.e. P1.3, P1.1, P1.7
and P1.8 (these are problems with the solution eb4¥65 having 3, 5, 10, and 20
containers, respectively; they are shown in Taldlenlbold), we see a slight increase
in processing time (see also Figure 31).

100
90
80
70
60
50
40
30 A
20
10

0 T T T
3 containers 5 containers 10 containers 20 containers

O Best solution
| All solutions

Processing time [seconds]

Deployment complexity

Figure 31.Dependency of processing time on the deploymenptmxity.

The effect of the number of containers on the msicg time is therefore not as
strong as we originally expected, and the methable to work with relatively large
numbers of containers. (For completeness we naie tthis test was done with
Prototype 1.)

Effect of design problem partitioning

In order to assess the effectiveness of probletitipaing, described in Section 6.4.3
and implemented in Prototype 2, we have solvedatiave mentioned integration
problems in a sequence of construction steps. Whe hexecuted test cases
summarized in Table 15.

Table 15.Ways of design problem partitioning used for theleation.

Partitioning symbol Content | Positions | Threads | Channs | Monitoring
CoPTChM (baseline) Step 1
CoP-TChM Step 1 Step 2
Co-P-TChM Step1 | Step 2 Step 3
CoP-TCh-M Step 1 Step 2 Step 3
Co-P-TCh-M Step 1 | Step 2 Step 3 Step 4

Columns meaningPartitioning symbolis an abbreviation of the way of problem
partitioning that is described using the remainiivg columns. In a particular row,
when a set of columns is merged together undendhge “Step N” it means that the

112

Methods using constraint programming

corresponding aspects are solved together in thie $dlution step. For example, a
row containingCoP-TCh-Mshould be read like this: In the first step, Cohtend
Positions aspects are solved. Then, in the sectap] $hreads and Channels are
solved. Finally, in the third step, Monitoring ishged.

Results are shown in Table 16.

Table 16.Effects of design problem partitioning on the imeggn solution creation.

Problem Partitioning Best solution | All solutions | Cat of the best solution found
P1.1 CoPTChM (baseline) 6.5 48.8 1465
P1.1 CoP-TChM 6.5 50.1 1465
P1.1 Co-P-TChM 7.5 53.%5 1466
P1.1 CoP-TCh-M 0.3 0.3 1465
P1.1 Co-P-TCh-M 0.3 0.3 1466

Columns meaning: The first column contains an ifieation of an integration

problem. Second column symbolically describes titpning used (see Table 15).
Last three columns contain the CPU time used td fime best solution and all
solutions, respectively, and a cost of the bestitesl. CPU times are shown in
seconds.

In this particular case we can see that separdtiggcal aspects” (Content, Positions)
from “physical ones” (Threads, Channel types, Manirity) was not as helpful as one
could expect — it did not even lead to lower compah times. The reason is that
these logical aspects are, in this case, quite Isirtg solve. However, separating
Monitoring from Threads + Channel types reducedetineeded to find the best
solution almost 22 times (6.5 vs. 0.3 seconds)thaedime needed to find all solutions
almost 163 times (48.8 vs. 0.3 seconds). In othexgration problems with more
complex logical aspects is the separation of Cdraed/or Positions aspects more
important — for example, when solving P2.1 and R&ith Content and Positions
together, the method was not able to find any &oiuin 600 seconds, while when
solving these aspects in separation it could fireddptimal solution in 21.9 seconds.

It is natural that when solving individual aspecatssolation, the method is sometimes
unable to find the optimal solution. In the aboxperiment we can see that when we
separated Content from Positions, we got a subaptsolution with the cost 1466
instead of 1465. The difference is in one supetifudata management integration
service (cost 1) — when solved the Content aspieetnethod made several decisions
whose cost manifested itself only in subsequemss{én this case, when solving
Positions issue). However, when creating the metlveel have tried to arrange
individual aspects in such a way that these “unkngly expensive decisions” would
be minimized. First results indicate that we warecessful in this respect.

Results for the other scenarios

In a way similar to the scenario S1 we executednii@hod to find solutions for
integration scenarios S2-S8. The results are surpethin Table 17.

113

Methods using constraint programming

Table 17.Results of the U/CP method for scenarios S1 to S8.

Best All

Problem Aspects Proc.| Vertices Edges Var| Cont| solution solutions

(seconds) | (seconds)
P1.1-WG CoP-ChT-M 1 19 (29) 20 (26) 6 5 Q.3 D.3
P2.1-LB CoTr-P-ChT| 1 23 (47 29 (53) 13 3 21.9 Tintepu
P3.1-Uni CoP-ChT| 23 125(142) 129 (146) B85 6 30.4 530.
P4.1-Uni CoPChT] 1 8(9 7(8) 7 1 0(8 a.8
P5.1-Uni CoPChT] 1 9(9 8(8) ¢) 1 0(9 q.9
P6.1-Uni Co-P-ChT| 9 74 (89) 91 (106) 67 1 4.4 1.4
P7.1-Uni CoPChT] 1 22 (24) 23 (25) 9 1 Q.3 D.3
P8.1-Uni CoD-P-ChT]| 1 18 (29) 19 (26) 10 1 0.6 D.6

Columns meaning: The first column contains intagmatproblem identification.
Second column shows design aspects as well aspdmitioning (Co = Content, D =
Data flow, P = Positions, Tr = Transformations, €&hannel types, T = Threads, M
= Monitoring). Proc. is the number of processes within the integrawoblem.
Verticesand Edgesdescribe the size of the control flow graph (tinst number, i.e.
before parentheses) and the size of the solutiaphgfthe second number, i.e. in
parentheses) and roughly correspond to the nunfbewntrol constructs and control
flow dependencies (the first numbers) and the nurabservices and channels within
the solution (the second numbergar. is the number of process variabl€ant. is
the number of containerBest solutiorandAll solutionsare CPU times necessary to
find the best solution and all solutions, measunesecondsTimeoutmeans that the
solution finding process did not finish in allottéthe (600 seconds), however, by a
manual inspection we have found that the solutiohas produced in this case is
indeed the optimal one.

As we can see, our method is able to provide iategr solutions in an acceptable
time. For bigger problems it is necessary to emplimblem partitioning in order to
achieve a time that is short enough to be usednininteractive development
environment.

6.4.3 Executing created integration solutions

In order to verify that a generated solution reatigets its specification we prepared
the following testing environment for scenario S1:

1. We created business services according to TabtenJiage 100. The services
perform only a simulation of their real functiongeCheckCredit service
returns a predefined value depending on a custdadeatifier. However, we
implemented their throughput limitations by insegti appropriate delay
instructions into them.

2. We prepared five containers as specified in poidt i# environment
description on page 99. We put them at one testinghine, along with the
messaging broker — because the services just gedultne throughput

114

Methods using constraint programming

limitation by delaying the processing without adiyaising the CPU, there
was no need to actually distribute the processirdjfferent hosts.

3. We created a testing client that sent a specifiedber of order requests per
minute (60 in this case, as given by non-functiaeguirement #1 on page
99), with the characteristics corresponding to eggions given in the
requirements specification — probabilities of indwal choice branches and
the number of times each “ForEach” cycle is to Becated. It counted
responses and measured the time needed to get them.

Then we chose a problem wgl4 (see Table 12) amatettea solution using the
method. We deployed the solution into our testingimnment and started it. We
executed the testing client and verified:

1. whether the replies were correct with respect eortdguests (as described in
the functional specification),

2. whether the solution was able to process the gtatelaad.

The test lasted for 20 minutes in order to find thike the integration solution was
able to sustain the prescribed load for a longepgef time. During that time the test
client generated 1200 requests, in exactly 1-secongbrval, i.e. 60 requests per
minute.

The test was successful: all the replies were cgrend the solution was able to
process the load, as described in the following.

First, we have observed that messages in chanitklsot built up, meaning that the
solution was able to process them continually.

As for processing times, we expected the followdmgjribution: We had three classes
of requests:

1. orders with invalid product types: 120 of tHém
2. orders rejected due to insufficient credit andfwentory: 180 of theff,
3. orders accepted: the rest, i.e. 900.

For each of these classes we expected the follopingessing times — assuming a
message is processed by an idle system and takingaccount the control flow

% The specification assumes that 1% ofaatler lines were of invalid type, and each of testing orders
consisted of up to 10 order lines. We construcgstirtg input so each order had exactly 10 ordeslin
and 10% of orders contained 1 invalid order linaking for 1% of all order lines being invalid.

I The specification assumes that 15% of ordersejeeted due to insufficient credit and/or inventory
and 85% are accepted. 15% out of 1200 is 180.

115

Methods using constraint programming

between business services shown in Figure 28 asid tttroughput characteristics
listed in Table 10:

1. 120 orders with invalid product types should becpssed very quickly,
because they take a very short part through theathyocess without being
processed by a business service with limited thrpug

2. 180 rejected orders: from 3 to 6 seconds.
3. 900 accepted orders: from 7 to 10 seconds.

Real distribution of processing times is shown iguFe 32. Although in the figure we
do not distinguish orders by the above categomescan see that 120 orders were
processed under 1,000 milliseconds and the rest frmaon 4,000 to 22,000 ms to
process, with the distribution roughly correspoigdio the expected processing times
mentioned above. Variations are due to the fadtttleasystem was not idle at all: the
threads were busy servicing orders, so some ofagesshad to wait, generally for a
short time. Only 18 orders (1.5% of all orders)koaore than 16 seconds to process —
this is probably due to burst conditions causinggerary accumulation of a small
number of messages at the entry channels of ingavidusiness services. Overall,
processing times were close to our expectations.

400

345
350 —
300 —+

248
250 + =

200 +
154160
150 7 [

Number of cases

100

50

0

5000 f o

1000
2000 | ©
3000 | ©
4000 /0 &
6000 | ™
7000
8000 [
9000 B ©
10000
11000
12000 B o
13000 | @
&
.
o
&5
.
o
o
AO
.

Processing tim

Figure 32.Distribution of time needed to process an inconardgr.

We also measured the number of messages that wemigh the messaging
middleware. The total number of in-process messagesived by MQ was 28,140,
what means 1,407 per minute. This corresponds tpugha prediction given by the
method (1,419 messages per minute). The differsndee to the fact that the method

116

Methods using constraint programming

cannot predict the actual distribution of invaltems in orders, so it cannot know
exactly how many messages are rejected in the eiofdthe process. Anyway, we
consider this calculation to be sufficiently precier the practical purposes.

Executable code generated for scenarios S4, S55arths been put into routine use
at Comenius University in Bratislava. Scenariosa®fl S8 are in operation as well;
they will enter routine use in few weeks. Severaltp of scenario S3 have been
successfully executed in test environment; its folplementation using U/CP is

expected in the near future.

6.4.4 Comparison to existing approaches: A product-specific
graphical editing environment

We have an intensive four-year experience with kbgweg integration solutions
using a professional tool, namely Progress Sonickdémch (various versions
ranging from 7.0 to 8.0), so we can try to comghedevelopment process using this
tool and our method.

Similar to other commercial integration tools, Fexsgs Sonic Workbench provides a
graphical editing environment for composing intéigrasolutions. Due to the features
of underlying execution platform (Progress SoniBE3he need to write concrete

code is significantly reduced — for most of thedithe developer just picks business
and integration services, configures them apprtglyiaand connects them together.
Yet, as we have also partially described in (Medexhd Pélos, 2008), some

drawbacks of this environment are:

1. The complexity of integration solutions createdaissignificant factor that
limits their understandability and therefore maimadility.

2. Concepts of service types, services, endpointqyraia (topics and queues),
threading, deployment of services in containersl B&B processes are not
easy to learn. Author of this dissertation hadatetfour days of intensive on-
the-job training (mentoring) combined with a coupfemonths of study and
practicing in order to become productive as a dgesl in this environment.

3. The negative effects of solutions’ complexity armapéfied by the lack of
adequate visualization and browsing capabilitieqrédver, although it is
possible to write comments and notes directly integration solutions, it is
not easy to display them in a visually conveniemnmer while editing the
solutions.

4. Some tasks, like creation of a new process andyieg it in a container, take
more developer’s actions (mostly clicking and fligftin forms) than would be
necessary.

Points 3-4 above could be considered not essamalrather easy to overcome. As
for point 3, it would be possible to create an addtool for visualization and

117

Methods using constraint programming

browsing of existing integration solutions. Conéegnpoint 4, the situation is getting
better as the product evolves and can be improvdder by creating a specialized
add-on tool as well.

Yet the integration solutions’ complexity (point 8 perhaps the most significant
drawback. The developer has to deal with many teehrdetails, like how to
transport pieces of data to particular points @& #$lolutions e.g. by storing them at
appropriate places of messages, whether to useMessage Service (JMS) queues,
topics, or in-memory channels, how to direct mesdémyv into appropriate container
or containers, how to ensure message validation, logging andtingdand so on.
These details are not hard to solve per se, buhwbenbined, they quickly conceal
the core integration logic that has been implenteraied make whole integration
solution hard to understand and maintain. For gkirmase study on this point, please
see (Mederly, 2009a).

Our method directly attacks this problem of compiexBy taking care of technical
details, it allows the developer to concentratéhi® abstract control and data flow
model. Moreover, these abstract models are muchpleimthan the final
implementation, so they can be more easily commede: and modified, if necessary.

Quantitative measurements

In order to determine how “much simpler” are thabstract models we have tried to
compare the complexity of development of integrasolutions using Progress Sonic
Workbench and U/CP using a quantitative measurement

Our first experiments were based on measuring tih@mne of source code needed to
create such solutions. Their results are publishedart in (Mederly and Navrat,
2011). The most important findings are summarize@ h

First of all, it is not possible to compare the amoof code needed directly. The
reason is that the integration solutions are cdeate Sonic Workbench using

graphical editors, while U/CP uses a textual laggud herefore we have decided to
estimate the amount of code using thenber of symbolthat the programmer has to
employ.

In the textual language of U/CP we count as symbofs example keywords,
identifiers (names of processes, services, datestypr variables), and strings (e.g.
network addresses, file names, and so on). We aumitiary symbols like semicolon,
brackets, ‘=" sign (except cases where it stand|foassignment command), and so
on.

22 Although Sonic ESB has a mechanism for dynamiaztiiyosing between in-memory and MQ-based
channels (called intra-container messaging), thegesituations when its use makes the behavidreof t
solution harder to understand correctly.

118

Methods using constraint programming

In the graphical language we count as symbols ifilenstand strings as well, but also
making a choice from presented options, draggiogmnaponent from a palette, etc.

In both cases we do not count comments; althougheirgraphical language we count
the step names, as without using them the code dwbel unintelligible for a

programmer.

An example of symbols counting is shown in FiguBe &sterisks indicate symbols

counted.
Step Mame: Validate %
Step Motes:
¥ Fault Handler:
g’é?’ Yalidate H *
SERVICE
H]
Service Mame: | Service: X.TransformService %
¥ ¥ML Transforrnation
—1-*1% <Part Index> % + <Part ContentlD> **-=
Name value % (m— 4 request *r= |
Drop Default Output False
JavaScript Helper Files Undefined Target Action
JavaScript Rule File . ”
Message Part 0 % Ackion: Add New Message Part w
Styleshest Parameters Mew Part Index: ®atthend O
Stylesheet URL sonics: ff fwork efLoansEshh idate.xsl %
validating False Content Type: textfxml
(a) Progress Sonic Workbench
* * * * * *
Xml status = execute ("Validate.xsl", request):;
(b) UICP

Figure 33.An example of counting the number of symbols useidtoke a XSLT Validate service in
Progress Sonic Workbench and U/CP.

We divided the symbols used into three categories:

1. Control flow— these are symbols used to describe the flonoofral in the
integration solution. Here come e.g. service intioca branching, looping,
and so on. Auxiliary symbols (used in e.g. a modldelaration) are counted

here as well.

2. Data flow — these are symbols used to implement working pitbcess
variables (U/CP) and messages and message panis)(So

3. Deployment- these symbols are used to specify the deploywfetite inte-
gration solution into the execution environmentaffmeans specifying e.g.
concrete containers, threads, communication entfpahannels, and so on.

In Figure 34 there are results of analyzing the @mof code required to implement
two sample scenarios described in (Mederly and &aw2011). The first one is

119

Methods using constraint programming

a modified version of the loan broker scen@ti¢S2) and the second one is the
canteen integration scenario (S4).

250

202
200
" @ Progress Sonic Workbench
2 m U/CP
E 150 +—
>
0
= 116
; 105
o 100
€ 80
=}
z
54
50 +— 1 43
29
7
0 : : ‘
Total Control flow Data flow Deployment
Category
(a) Loan broker scenario
90
82
75 A
@ Progress Sonic Workbench
(2]
o 60 m U/CP
Qo
€
>
[2]
S 45 +—— =
] 35
Q
€ 0] 2
z
19 20
16
15 1
3
0 |
Total Control flow Data flow Deployment
Category

(b) Canteen menu presentation scenario

Figure 34.Number of symbols necessary to implement two sasg#@arios using Progress Sonic
Workbench and U/CP.

We acknowledge that comparing the number of symbsél is only a very rough
estimation of the development complexity. The dffereded to write a program using

% The reason for modifying the scenario for (Medealyd Navrat, 2011) was to be able to better
compare our run-time performance results with #sults of (Scheibler, Leymann and Roller, 2010),
as described in the paper.

120

Methods using constraint programming

a given number of symbols depends strongly on Whnat of symbols they are and
how complicated is their determination (when cregtor changing a program) and
understanding (when debugging, or before makingaamge during maintenance).

Nevertheless, as we can see, U/CP brings a signifieduction of the number of
symbols used to describe a program — from 202 €o(il&. a reduction by 43%) and
from 82 to 39 (by 52%), respectively. Most sigrait is the reduction that concerns
the deployment. What is not visible from the grapbwever, are the characteristics of
the code that has to be created. In our opiniam,nilbst important change concerns
the way in which data is treated. As can be seso @ Figure 33a, in Pipes and
Filters architecture (represented here by Progsessc Workbench) we work with the
content of messages flowing in the system: we hadaow what is stored in which
part of messages at a service’s input, and we ipeistareful to put appropriate
content to suitable parts to be present at sewioetput. In contrast to it, in the
abstract design for U/CP, we just declare what ggscvariables should serve as a
service’s input and output (see Figure 33b). Thehot then takes care of the
appropriate placement of the data in messages emetages all the necessary code to
manage it. So, even if data-management code isedday only 24% (from 105 to 80
symbols) and 43% (from 35 to 20 symbols), whaimgartant is the change of the
characterof the code.

In order to get more objective results we are glagran experiment using two
programmers developing the same solution usingethes environments, measuring
the time needed to create and modify such a salutio

Other aspects

As a by-product, the method addresses points 2#tiomed at the beginning of this
section (learning curve, documentation and visatibn, and deployment, respective-
ly) as well:

e Although it is still useful for the developer to dwm the details of ESB
concepts, it is no longer strictly required.

« As for point 3, this method accepts multiple repregations of input models,
namely using domain-specific languages that are Xd&ed (implemented in
Prototype 2), Java-like (Prototype 3) and graph{p&nned). It is now very
easy to write comments directly into models. Furti@e, in Prototype 2 we
have implemented a design documentation genetabig able to graphically
show both abstract and concrete designs, i.e. iogit and output of our
method. An example of such a graphical represemaif a part of concrete
design for scenario S1 is shown in Figure 35.

* Finally, concerning point 4, our implementation t@ns a solution
deployment module that automatically creates all ttecessary artifacts,

121

Methods using constraint programming

including all the ESB processes, endpoints, MQ gaeand all configuration
files, reducing unproductive “clicking” by the ddwper.

ProcessStart
In: order (WG::Order)

lm[ﬁﬂj

CheckAll Start (Fork)

/ﬂu[}nﬂ ‘\\ order]
AN

s

CheckInventory Start (ForEach) N,

ForEach line (WG:Line) \\
m order (WG:Order) \

(iteratively for each item). \\

Check the

CheckCredit
‘Check Credit
Tine [an] In: order: order (WG-Order)
Out: credit: credit (WG:Credit)
Check the customer credit.
CheckInventoryF orOneltem Start (Choice)
In: line
— T
/ (oh03. . \“\ e o
CheckGadgetInventory Reject CheckWidgetInventory
i Rt Tava B e i,
In: Line: line (WG-Line) . . In: line: line (WG:Line)
nfo: lineInventorylnfo (WG-Li rylnfo) In- Ime (WG-Line) Out: lineInventoryInfo: linelnventoryInfo (WG-LinelnventoryInfo)
lineTaventory o fxnd] J lineTnventory o] credit [xnd]
CheckInventoryForOneltem End

\hehwnmyhﬁ: [xmd]

CheckInventory End (ForEachEnd)

Aggregate lineInventoryInfo (WG:LinelnventoryInfo)
mto mventorylnfo (WG:Inventorylnfo)

\;mmm =] (conten)

CheckAll End (Join)

inventorylnfo fd]
order]
credit [umi]

Figure 35.An example of graphical design documentation predusy the U/CP method
implementation.

122

Methods using constraint programming

Other integration platforms

If we would try to generalize this comparison thet messaging-based integration
solutions development environments or platformge(lApache Camel or FUSE
Integration Developer), the most important poirgnt (partially) point 2 is still true.
As for the other points, we cannot say for certagiwe have not enough experiences
with these tools yet.

In the context of considering various platforms, st®uld mention a strong point of
our method: its platform independence. From theratisdesign it is easily possible
to generate integration solutions for diverse irdégn platforms. Of course, this
assumes that the business services that are cothpuseintegration solutions do
already exist on such platforms. This is true fune of the services, for example, ser-
vices implemented in JavaScript or XSLT can be q@bnvith almost no changes;
achieving this kind of portability of other servicéfor example, Java-based ones, or
external web services) is a topic of our furthesesach and implementation work.

Drawbacks of using the method

There are certain drawbacks of using our methodconirse. The main one is a
drawback common to majority of model-driven appresc Although being quite
universal, our method and/or its implementatione aslimited number of control
constructs and make concrete assumptions abosgbthgons being created, e.g. how
the messaging variables are transported withinipautt messages. There could be
situations where this method would not find a golutas efficient or elegant as a
developer would create “by hand”.

In (Mederly and Navrat, 2011) we compare the perforce of two integration

solutions using (1) native Progress Sonic ESB implaations, and (2) Sonic ESB
implementation created by the U/CP method. Eachtisol has been tested using
messages of two sizes: 1 KB and 10 KB. Resultsamamarized in Figure 36.

30,0

=)
c
3 239
b @ Progress Sonic Workbench
9]
& 2001 19,6 B U/CP
3
o 16,0
©
@ 130 132
£
= 9,4
— 1004 | ’
a 7,6
< 54
(o]
=}
I
£

0,0 T T T

Loan broker (S2), Loan broker (S2), Canteen (S4), Canteen (S4),

message size 1KB message size 10KB message size 1IKB message size 10KB

Figure 36.Comparison of performance of integration solutiossg native and U/CP-generated
implementations.

123

Methods using constraint programming

The observed decrease in the run-time performamdée third and fourth case is
caused by the fact that in the native ProgresscSiomplementation of S4 we have
used a feature that is — for the time being — natlable in U/CP. As part of further
development of U/CP we plan to include it, alonghvdeveral other features, directly
in the method. Other observed slight decrease enpirformance (23.9 vs. 19.6
messages per second) is supposedly caused by tmabpnplementation of some

run-time support components for U/CP-generated tisols. Again, we plan to

improve that in the future. More details concernihig comparison can be found in
(Mederly and Navrat, 2011).

6.4.5 Comparison to existing approaches: Model-driven approaches
published in academic literature

Unfortunately, we did not have a possibility to wawith implementations of two

published approaches to model-driven creation ofssaging-based integration
solutions, namely (Scheibler and Leymann, 2009) @teiman, Sultan, and Frantz,
2009). However, after careful studying these pualilons, as well as (Scheibler and
Leymann, 2008), (Scheibler, Mietzner, and Leyma2®08), (Scheibler, Mietzner,

and Leymann, 2009), (Scheibler, Leymann, and RoR€d40), (Frantz, Corchuelo,
and Gonzales, 2008), and (Frantz, 2011), we cam tte following:

1. Methods described in the publications above alloesdeveloper to design a
solution using abstract components related to priserintegration patterns.

2. These methods then generate an executable solbdsad on the given
design, for a chosen integration platform.

The developer is therefore freed from the need titevplatform-specific code for

integration solutions. However, he or she has wvide a detailed design of the
solution, so his or her situation is similar to Sieiation of a designer using product-
specific graphical editing environment like Progredonic Workbench. There is a
difference in that the solution is — at least iredty — platform independent.
Unfortunately, when changing the platform, any folah-specific design decisions
the developer has made must be revised.

Our method, in contrast, is able to make a numbdépatentially platform-specific)
design decisions by itself. Moreover, it allowseliminate some auxiliary services
(currently transformation, logging, and validationes) from the model altogether.
This has a positive effect in that a model of theegration solution is much more
concise and, at the same time, truly platform-irselent. Key benefits for the
developer include easy creation of new solutionscky understanding and good
maintainability of existing ones.

6.4.6 Other follow-on implementation projects

All three prototypes evaluated in this chapter gatgecode for Progress Sonic ESB
integration platform. Besides that, a separate emgintation of the U/CP method for

124

Methods using constraint programming

Apache Camel platform has been created as weltombines slightly modified
design-creating module from Prototype 2 with a yegvkated code generator. It has
been created as a master thesis of Peter B(&ilada, 2011) under a supervision of
the author of this dissertation.

As part of three U/CP prototype implementationshage created a simple graphical
user interface intended for displaying the abstdasign, the process of solving CSPs
(showing the search tree as well as proposed vaiu€SP variables), and resulting
solutions. Two bachelor-level students have createaore advanced graphical user
interface for Prototype 2 (MarSalek, 2011), (Midtwmal 2011), again under a
supervision of the author of this dissertation.okerall functionality is similar to the
original one; however, it is more comfortable ancbvides several additional
functions that make the navigation through abstoigign and concrete solutions
much easier. An example of this interface is showrigure 37.

6.5 Methods using constraint programming: a conclusion

As can be seen from the evaluation of methods basedonstraint programming,
namely the U/CP method, this approach is very #&¥ecin creating designs of
integration solutions. We observed that this metfeodl, to some extent, ML/CP as
well) is able to solve more complex design problemits more design aspects than
our methods based on planning, and generally doesiishorter time.

We have found these additional facts, partly exyphg the above observation:

1. Formulating an integration problem using CSP (neterms of variables and
constraints) is, in some way, easier than formudgiti as a planning problem.

Let us consider abstract design rules, such astbbewn in Section 4.2.1,
expressed as first-order logic formulas over vaembcorresponding to
solution graph vertices and edges, and functiomsesponding to vertex and
edge property functions. Our experience suggesitstiiey are much easier to
convert to the language of CSP variables and ansdrthan to the language
of planning problem predicates, operators and t¢dbjecat least for simple
(and, therefore, effective to work with) varianisRDDL language we have
used. We have identified two major reasons for. ttdis In variants of PDDL,
which we used, we had only a limited set of cortdravailable, comparing to
the set of constraint types we could use in comdtg@arogramming-based
methods, and (2) in planning-based methods in génee are forced to
express properties of the solution as properties adrrent state of the world
(i.,e. a “current” cut of the solution graph), while CSP we can easily
reference any part of an integration solution gttame.

125

Methods using constraint programming

EULNTERTTRERES

L cuoibiay
L o)
MpssuEog-uep-0aoll | u@Inaexy
UOWLWOD SIyWolpodw| :SSa301d
HI04:L00) Bwey
diod adfL

S8)NQUIIE [E1BUBY

[4]

-d9 [suosiadl | 1'50ud

umouyun

-d2 [semado] L) yoyd

aINIaxXy

-d2 [bal] gz eous

VTZ.SS \

Tpu?
:Eb:xr_:—.“c..._
g
-0 [bail L Loua
]
Mels |oj -
-

NENEEREL I

E
—EsaE_c:_. 2
o -

-d2 [simsanbag

2on] L L's0Ud

—:§=xc:_

4

[1]
IDEs
[+

-d2 [siawosigl 1L Loys

2JN2=2x3

|
g

UOLILIO D SIYLL0J JUoduu]

[
umowyun|]
RN

-d0 [swapnisgie] 11 Egud

ayoaxy | o
[+

-d0 fisanbayspeoplasdes] |1 LoU2

J0M8s

=}

-1

A Se%e-»-E|E

o
X suonnios uoneibajul e

1

poid payIayd Mous

20[T'SprojuleuosIaduodw

DOMON'SPI OJul|EUOSISdHOdW
sprojujeuosiaduodu
0aDojujeuosIsduodw
Sy ojuleUSIadUodw
saafodwIpodw
pISIYaUQ sU0SIaduodn ISy [A]
Iy suosiadHodx 3=y [
sy =i-é
oJujjeuosIadian’nn=0ad (4|
deswosjpodwi:oad [A]
SJUBpM§ siyWwol Juodwzodd [4]
s12up0 siywel juodwi:oad [A]
pISIyauQ siywol juodwi:0as [A]
[EJURWAIU| STy W0l juodwizoad [4]
IIng'siywod suodwi=oad [4]
UOWIWOY SIyWwoel Juodwi:oad [A]
lesauagypodx3:0a2 [4]
000 =4
des:o0n [4]
1012124 0:00N [A]
asuodsay'siy:I0n [4]
sI¥:20N [4]
oon =i 4
: §3INpoW U| $8553001d =}

X S9lgBUBA m EoEn

7 23U YIBAS MOUS m
E

ma_._u:u:;c__mmi E 73237 “08 1502 34 ‘01 IS0 1 0% 1500 §1'Z¥5 1 1502 SOSW DIY ‘2.9 150D 1 JO N0 | UONAIOS E

noke| SMOpUIAL SMOPUIY disH S10j0D

(==

suonnjos uoneibag @Y
2

Figure 37.Advanced version of the graphical user interfagegtie U/CP method (MarSalek, 2011).

126

Methods using constraint programming

2. Probably due to facts listed above, we have beentalimplement a rich set
of design aspects and metrics within the U/CP neeifid and 6, respecti-
vely), and we strongly believe that further aspactd metrics can be added as
necessary.

3. As metrics can be used to reflect designers’ peefmgs by binding their
values to the cost variable (potentially in a fasfnveighted sum), we have a
very flexible tool for defining what we consider be an optimal solution. In
planning, our possibilities for optimization cri@mare more limited (see point
2 in the list in Section 5.4).

4. In case of constraint satisfaction we have foundiagy of partitioning the
design problem, described in Section 6.1.3. Assaltethe U/CP method can
successfully solve bigger problems, with more desigpects, than the other
methods. Moreover, further increasing the sizerobjems and the number of
design aspects and metrics, which are used fovengntegration problem,
seems to be feasible. As for planning approach,e@periences suggest that
implementing such a partitioning within the framfeptanning-based methods
would be harder, probably significantly harder, lathout further research
we cannot state anything for certain about it.

127

Conclusion

In this dissertation we have tried to confirm dute the following two hypotheses:
Hypothesis 1:

It is possible to partially or fully automate thetdiled design and
implementation of messaging-based integration goist given their
abstract design (control and data flow specificajionon-functional
requirements, design goals and environment -charstics,
utilizing planning and constraint satisfaction meds.

Hypothesis 2:

Methods of partial or full automation of design aimaplementation
mentioned in Hypothesis 1 can lead to more consmece code
compared to traditional way of integration solutidavelopment.

As for Hypothesis 1, we have constructed four mesh@vL/P, DL/P, ML/CP and
U/CP). All of them are based on our own abstracti@h@f an integration solution
using graphs with properties of their vertices addes modeled as functions that we
have introduced in Chapter 4.

By evaluating these methods in Chapters 5 and Bave shown the following.

First of all, the process of creating detailed gesf an integration solutiocan be
partially or fully automated, given the abstractiga, non-functional requirements,
design goals and environment characteristics df ausolution.

Second, action-based planning can be used for rdegigintegration solutions
(Chapter 5). Its use is advantageous in the séasét tdoes not require the developer
to explicitly specify the control flow between indiual services; it suffices to state
their input/output requirements. On the other hangheriments with the ML/P and
DL/P methods have shown that (1) the time needefintb a suitable design is
significantly longer than when using methods bamedonstraint satisfaction, (2) the
number of design aspects that the planning-basdtoah® were able to take into
account is limited, and (3) the notion of solutmptimality we were able to work with
when using planning was rather coarse. The firetdiaservations can be summarized
in a way that our planning-based methods do ndé seall with the problem size and
the number of design aspects. However, we see entot for improving these
methods in the future, in particular by utilizingrdain-specific knowledge within the
planning process (see Section 5.4).

Third, constraint satisfaction can be used for gleéag integration solutions as well
(Chapter 6). Advantages of its use are:

129

Conclusion

1. U/CP method based on constraint satisfaction is @blconstruct integration
solution designs quickly enough to be used as qfaat design tool. We have
implemented such a tool in the form of an Eclipségim and successfully
used it to create several real-world integrationtsans.

2. A transformation of abstract design rules formudate Section 4.2.1 into CSP
constraints is more straightforward than their $farmation to operators’
preconditions and effects within our planning-basexthods. This enabled us
to implement a rich set of design aspects and osetvithin the U/CP method,
which could be further extended as necessary. Desigtrics also provide a
very flexible way of defining the criterion of stion optimality.

3. We were able to implement a partitioning schemetifigr design problem,
described in Section 6.1.3. This provided us witjpad performance as well
as scalability with regards to the problem size #mel number of design
aspects considered.

Therefore, we have confirmed Hypothesis 1.

Concerning Hypothesis 2: Based on our subjectigesssnent, as well as on two case
studies, which we have prepared, we can say tlatstlurce code that has to be
created for the U/CP method is significantly momnase than the source code
written directly for an integration platform. Ddtare described in Section 6.4.4. We
can reasonably assume that more concise sourcecandpositively influence other
properties of the solution, namely the effort neetle create and maintain it, as well
as the number of defects present.

Therefore, the main goal of this dissertation, nigme

“To find a way of partially or fully automating therocess of design
and implementation of messaging-based integratiolutisns, in
order to improve some of their characteristics,”

has been fulfilled.

Future work

As for future research, there are a number of gquestworth looking at. We can
roughly divide them to “more conceptual” and “megehnical” groups.

Among “more technical” future work directions thene:

1. Evaluating the benefits of using the U/CP methodenexactly, utilizing other
source code metrics as well as quantitative measnts of the effort needed
to create and maintain integration solutions. Wenplo make these results
more general by carrying out experiments on sewetadration platforms.

130

Conclusion

2.

Implementing additional design aspects, includingse that we have
identified in Section 6.4.1, e.g. message latessy@, more complex message
sequencing issues, data compression, multiple yzafées, and so on.

Enhancing the method to be able to work with platfindependent form of
business and transformation services (for exampfegenerating platform-
specific wrappers to incorporate such servicesargolution).

Among conceptual questions there are:

1.

Is it possible to apply the approach used in outhogk in areas other than
messaging-based integration solutions, namelyire igchnical design of web
service compositions?

If we add domain-specific information to planningoplems generated by
ML/P and DL/P methods, how much will it help theuphers to find solutions
(i.e. plans) more quickly?

What other techniques could be used besides plgnaimd constraint
programming alone? Would it be helpful to try tondmne these two
techniques? Or, would techniques known from opanatresearch (e.g. mixed
integer linear programming) be useful?

Software development companies often have a kindiesign guidelines that
describe standard solutions for typical design jemls. Integration solution
development is no exception — for example, theeedasign manuals showing
how to create a process with specified characiesige.g. synchronous or
asynchronous, query or update, and so on). Wolne gossible and beneficial
to extend our methods so that they will be ablentdude such guidelines
when proposing solution designs? Would it be alsssiple to use our
methods to verify that the application of particudaidelines is indeed the op-
timal way to go in a given situation, and to proptseir change, if necessary?

Is it possible to automate other aspects of integrasolutions development,
for example creation of transformation services toointegrate our methods
with existing frameworks in this area, like the BIZLE Model-Based
Integration framework (Agt, Bauhoff, Cartsburg, Kpen Kutsche, and
Milanovic, 2009)?

131

References

van der Aalst, W. M. P, Dumas, M., & ter Hofstede,H. M. (2003). Web Service
Composition Languages: Old wine in new bottles?.Phoceedings of the 29th
EUROMICRO Conference “New Waves in System Architet{EUROMICRO’03)
(pp- 298-307). IEEE Computer Society.

Agt, H., Bauhoff, G., Cartsburg, M., Kumpe, D., Kche, R., & Milanovic, N.
(2009). Metamodeling foundation for software andadategration. Ininformation
Systems: Modeling, Development, and IntegrationirdTHnternational United
Information Systems Conference, UNISCON 2009, Sydestralia, April 21-24,
2009, Proceedingfpp. 328-339)Springer.

Al Mosawi, A., Zhao, L., & Macaulay, L. (2006). Aadel driven architecture for
enterprise application integration. Proceedings of the 89Hawaii International
Conference on System Scienee06 (p. 181c). IEEE Computer Society.

Arshad, N., Heimbigner, D., & Wolf, A. L. (2007). éployment and dynamic
reconfiguration planning for distributed softwansstems.Software Quality Journal
15(3), 265-281. Springer.

Bacchus, F., & Kabanza, F. (2000). Using tempargicls to express search control
knowledge for plannindArtificial Intelligence 116(1-2), 123-191. Elsevier.

Bernstein, P. A. & Haas L. M. (2008). Informationtagration in the enterprise.
Communications of the AGN1(9), 72-79. ACM.

Bertoli, P., Botea, A., & Fratini, S. (2009). Thirdternational competition on
knowledge engineering for planning and schedulif®eport of the board of judges.
Retrieved August 11, 2011, from http://kti.mff.cioz/~bartak/ICKEPS2009/down-
load/report.pdf.

Bonet, B., & Geffner, H. (2001). Heuristic Seardarther 2.0.Al Magazing 22(3),
77-80. AAAI Press.

Boussemart, F., Hemery, F., Lecoutre, C., & Sais(2004). Boosting systematic
search by weighting constraints. BCAI 2004: 16th European Conference on
Artificial Intelligence, August 22-27, 2004, ValemcSpain(pp. 146-150). IOS Press.

Brad&, P. (2011). Model-driven application integratio(Master’s thesis). (in
Slovak).

Britton, C. (2000).IT architectures and middleware: Strategies forlthmg large,
integrated system&oston, MA: Addison-Wesley Professional.

Chappell, D. A. (2004)Enterprise service bus$ebastopol, CA: O'Reilly Media.

133

References

Charfi, A. & Mezini, M. (2004). Hybrid web serviceompositions: Business
processes meet business rulePiloceedings of Second International Conference on
Service Oriented Computing (ICSOC'@pp. 30-38). ACM.

Charfi, A. & Mezini, M. (2005). Middleware servicésr web service compositions.
In Proceedings of WWW 20QBp. 1132-1133). ACM.

Charfi, A. & Mezini, M. (2005a). An aspect-basedgess container for BPEL. In
Proceedings of the 1st workshop on Aspect oriemieldleware developmemCM.

Charfi, A. (2006). Aspect-oriented workflow langesg AO4BPEL and applications
(Doctoral dissertation).

Cook, M. (1996).Building enterprise information architectures: Rgereering
information systemdJpper Saddle River, NJ: Prentice Hall.

Courbis, C., & Finkelstein A. (2005). Towards adp&eaving applications. In
Proceedings of 27 International Conference on Software Engineerif@SE 2005)
(pp. 69-77). ACM.

Cummins, F. A. (2002)Enterprise integration: An architecture for enteige
application and systems integratiddew York, NY: Wiley.

Czarnecki K., & Eisenecker U. (200@enerative programming: Methods, tools, and
applications.Boston, MA: Addison-Wesley Professional.

McDermott, D., Ghallab, M., Howe, A., Knoblock, (Ram, A., Veloso, M., . . .
Wilkins, D. (1998). PDDL - The Planning Domain Defion Language Version 1.2.
Yale Center for Computational Vision and Controech Report CVC TR-98-
003/DCS TR-1165

Druckenmdller, B. (2007). Parameterization of EAlttprns (Master’s thesis). (in
German).

E2E Technologies (2010). E2E | Bridging businesslanRetrieved August 11, 2011
from http://www.e2ebridge.com/

Eclipse Foundation (2011). Eclipse newcomers FAQri&ved August 11, 2011 from
http://www.eclipse.org/home/newcomers.php

Edelkamp, S., & Jabbar, S. (2008). MIPS-XXL: Feamrexternal shortest path
search for sequential optimal plans and externahdir-and-bound for optimal net
benefit. In6th International Planning Competition Booklet

Edelkamp, S., & Kissmann, P. (2009). Optimal syntplanning with action costs
and preferences. IRroc. of the 21st International Joint Conference Artificial
Intelligence (IJCAI 2009)pp. 1690-1695). San Francisco, CA: Morgan Kaufmann
Publishers.

134

References

Erol, K., Nau, D. S., & Subrahmanian, V. (1992). @ complexity of domain-
independent planning. IRroceedings of the Tenth National Conference offiéidl
Intelligence(pp. 381-386). AAAI Press.

Fikes, R. E., & Nilsson, N. J. (1971). STRIPS: Awmapproach to the application of
theorem proving to problem solvingrtificial Intelligence 2(3-4), 189-208.

Fox, M., & Long, D. (2003). PDDL2.1: An extension PDDL for expressing
temporal planning domaindournal of Artificial Intelligence Research0, 61-124.

Frantz, R. Z., Corchuelo, R., & Gonzéles, J. (2008jvances in a DSL for
application integration. Ii\ctas del Taller de Trabajo Zoco’08 / JISBD Integjéan
de Aplicaciones Wefpp. 54-66).

Frantz R, Corchuelo R, & Molina-Jimenez C. (2009pwards a fault-tolerant
architecture for enterprise application integratisolutions. InOn the Move to
Meaningful Internet Systems: OTgh. 294-303). Springer.

Frantz, R. Z. (2011).Runtime System Retrieved August 11, 2011, from
http://www.tdg-seville.info/rzfrantz/Runtime+System

Frohlich, P., & Link, J. (2000). Automated testeaeneration from dynamic models.
In ECOOP 2000—Object-Oriented Programmiipgp. 472-491). Springer.

Gerevini, A., Saetti, A., & Serina, |. (2003). Ptaimg through stochastic local search
and temporal action graphs in LPIaurnal of Artificial Intelligence Research((1),
239-290. Al Access Foundation.

Gerevini, A., & Long, D. (2005BNF Description of PDDL3.0Retrieved August 11,
2011, from http://zeus.ing.unibs.it/ipc-5/bnf.pdf.

Hammer, M., & Champy, J. (1993Reengineering the corporation: A manifesto for
business revolutioNew York, NY: HarperCollins.

Hentrich, C., & Zdun, U. (2006). Patterns for pres@riented integration in service-
oriented architectures. IfProceedings of 11 European Conference on Pattern
Languages of Programs (EuroPlop Qpp.141-189). ACM.

Hoffmann, J., & Nebel, B. (2001). The FF planningtem: Fast plan generation
through heuristic searclournal of Artificial Intelligence Research4(1), 253—302.
Al Access Foundation.

Hohpe, G., Woolf, B. (2004)Enterprise integration patterns: Designing, buildin
and deploying messaging solutioB®ston, MA: Pearson Education.

Hohpe, G. (October 15, 2004Are "Pattern" and "Component" antonyms$etrieved
August 11, 2011, from http://www.eaipatterns.comoéings/16_patternscompo-
nents.html

135

References

ICAPS Competitions.(January 20, 2011). Retrieved August 11, 2011mfro
http://ipc.icaps-conference.org/

Induruwana, C. D. (2005). Using an aspect oriertge@r in SOA for enterprise
application integration. IRroceedings of the IBM PhD Student Symposium a?rithe
International Conference on Service Oriented Conmmgu(iCSOC 2005§pp. 19-24)
CEUR Workshop Proceedings.

Kautz, H., & Selman, B. (1998). The Role of domspecific knowledge in the
planning as satisfiability framework. FRroceedings of International Conference on
Artificial Intelligence Plannindpp. 181-189).

Kautz, H., & Selman, B. (2006). SatPlan: Planning satisfiability. In 5th
International Planning Competition

Koehler, J., Hauser, R., Sendall, S., & Wabhler,(R005). Declarative techniques for
model-driven business process integratlBi Systems Journad4(1), 47-65.

Kolb, P. (2008). Realization of EAI patterns in Apa Camel. (Student Research
Project.)

Kuchcinski, K., & Szymanek, R. (2011). JaCoP ligrarser's guide Retrieved
August 11, 2011, from http://jacopguide.osolpro.fguideJaCoP.html

Linthicum, D. S. (2003).Next generation application integration: From simpl
information to web serviceBoston, MA: Addison-Wesley.

Mach, M. & Parak, J. (2000). Problems with constraints: From theory to
programming KosSice, Slovak Republic: Elfa. (in Slovak).

MarSalek, M. (2011). User interface for methodsifagegration solution generation
(Bachelor’s thesis). (in Slovak).

Mayer, P., Schroeder, A., & Koch, N. (2008). MDD4&QModel-driven service
orchestration. InProceedings of 12 International IEEE Enterprise Distributed
Object Computing Conference (EDOC 200&). 203-212)IEEE Computer Society.

Mederly, P., & Palos, G. (2008). Enterprise sentices at Comenius University in
Bratislava. InProceedings of EUNIS 2008 VISION IT - Vision for ifil higher
education(p.129) University of Aarhus. Available at: http://eunis/d&pers/p98.pdf.

Mederly, P. (2009). Towards automated system-lseelice compositions. IWIKT
2008, & Workshop on Intelligent and Knowledge Oriented HhRedogies
Proceedinggpp. 101-104). Slovak University of Technology iraBslava.

Mederly, P. (2009a). Towards a model-driven apgnotx enterprise application
integration. In5" Student Research Conference in Informatics andrrimdtion

136

References

Technologies Proceeding¢pp. 46-53). Slovak University of Technology in
Bratislava.

Mederly, P., Lekavy, M., Zavodsky, M., & Navrat, P2009). Construction of
messaging-based enterprise integration solutioing U8 planning. InPreprint of the
Proceedings of the 4th IFIP TC2 Central and Eastdpean Conference on Software
Engineering Technique€EE-SET 2009, Krakow, Poland, October 12-14, 2(j§)2
37-50). Krakow: AGH University of Science and Teclugy.

Mederly, P., Lekavy, M., & Navrat, P. (2009). Seesiadaptation using Al planning
techniques. InProceedings of the 2009 Fifth International Confere on Next
Generation Web Services PracticééWeSP 2009, 9-11 September 2009, Prague,
Czech Republifpp. 56-59) Los Alamitos, California: IEEE Computer Society.

Mederly, P., & Lekavy, M. (2009). Report on evaloat of the method for
construction of messaging-based enterprise integralutions using Al planning.
Retrieved August 11, 2011, from http://www.fiit.susk/~mederly/
evaluation.html

Mederly, P. (2010). Semi-automated design of irgign solutions: How to manage
the data?. In6" Student Research Conference in Informatics andrrimition
Technologies Proceedingp. 241-248). Slovak University of Technology in
Bratislava.

Mederly, P., & Navrat, P. (2010). Construction ofssaging-based integration
solutions using constraint programming.Llecture Notes in Computer Science Vol.
6295: Advances in Databases and Information Systeldsh East European
Conference, ADBIS 2010 Novi Sad, Serbia, Septegther, 2010 Proceedindpp.
579-582). Springer.

Mederly, P., & Navrat, P. (2010a). Automated desigmessaging-based integration
solutions. In Datakon 2010: Proceedings of the Annual Databasenf€rence,
October 16-19, 2010, Mikulov, Czech Repulyip. 121-130). University of Ostrava.
(in Slovak).

Mederly, P. (2011). A method for creating messagfiaged integration solutions and
its evaluationInformation Sciences and Technologies Bulletinhef ACM Slovakia
3(2), 91-95.

Mederly, P., & Navrat, P. (2011). Pipes and FiltersProcess Manager: which
integration architecture is “better”?. Datakon 201Xto appear) (in Slovak).

Mellor, S.J., Scott, K., Uhl, A., & Weise, D. (200MDA distilled: Principles of
model-driven architecturdBoston, MA: Addison-Wesley Professional.

Michalko, P. (2011). User interface for methods ifdegration solution generation
(Bachelor’s thesis). (in Slovak).

137

References

Mierzwa, Ch. (2008). Architecture of ESBs in suppof EAI patterns. (Master's
thesis). (in German).

Milanovic, N., & Malek, M. (2004). Current solutierfor web service composition.
IEEE Internet Computinghovember-december 2004, 51-59. IEEE Computere8oci

Milanovic, N., Cartsburg, M., Kutsche, R., Widikel,, & Kschonsak, F. (2009).
Model-based interoperability of heterogeneous mftion systems: An industrial
case study. InModel Driven Architecture-Foundations and Appliceis: 5th
European Conference, ECMDA-FA 2009, Enschede, #theNands, June 23-26,
2009. Proceedingfp. 325—-336). Springer.

Model Labs (2011). Welcome to Model Labs (compaombépage). Retrieved August
11, 2011, from http://www.modellabs.de/

Nau, D., Au, T. C., lighami, O., Kuter, U., Murdqgck W., Wu, D., & Yaman, F.
(2003). SHOP2: An HTN planning systendournal of Artificial Intelligence
Research20(1), 379-404. Al Access Foundation.

Nethercote, N., Stuckey, P., Becket, R., Brand,DBick, G., & Tack, G. (2007).
Minizinc: Towards a standard CP modelling langua@enciples and Practice of
Constraint Programming — CP 20@@p. 529-543). Springer.

Object Management Group (201@QMG Unified Modeling Language (OMG UML),
Superstructure. Version 2.3. Retrieved August 11, 2011, from
http://www.omg.org/spec/UML/2.3/Superstructure/PDF/

Object Management Group (201Business Process Model and Notation (BPMN)
Version 2.0Retrieved July 28, 2011, from http://www.omg.opgs/BPMN/2.0/PDF

Pan, A., &Viiia, A. (2004). An alternative architecture for ficg data integration
Communications of the ACM, &j, 37-40. ACM.

Papazoglou, M., & van den Heuvel, W.-J. (2007).vi8er oriented architectures:
approaches, technologies and research is$hesvLDB Journal, 1,6389-415.

Papazoglou, M. P., Traverso, P., Dustdar, S., Leym&., & Kramer, B.J. (2006).
Service-oriented computing research roadmap. Ine@bF., Kramer, B.J.,
Papazoglou, M.P. (eds.pagstuhl Seminar Proceedings 0546mRternationales
Begegnungs-und Forschungszentrum fir Informatik F()B Schloss Dagstuhl,
Germany.

Rauf, I., Igbal, M. Z. Z., & Malik, Z. I. (2008). ML based modeling of web service
composition — a survey. Rroceedings of Sixth International Conference oftvgoe
Engineering Research, Management and Applicatipps 301-307). IEEE Computer
Society.

138

References

Russell, S. J., & Norvig, P. (2003)rtificial intelligence: A modern approact™
ed.). Upper Saddle River, NJ: Prentice Hall.

Schalkoff, R. J. (1990Artificial intelligence: An engineering approacHightstown,
NJ: McGraw-Hill.

Scheetz, M., von Mayrhauser, A., & France, R. (392&nerating test cases from an
OO model with an Al planning system. Boftware Reliability Engineering 1999
Proceedings 10th International Symposium (pp. 250-259). IEEE Computer
Society.

Scheibler, T., & Leymann, F. (2008). A Framework fexecutable enterprise
application integration patterns. In Mertins, Kaét(eds.)Enterprise Interoperability
Il (pp. 485—-497). Springer.

Scheibler, T., & Leymann, F. (2009). From modellittg execution of enterprise
integration scenarios: the GENIUS tool. kommunikation in Verteilten Systemen
(KiVS)(pp. 241-252). Springer.

Scheibler, T., Leymann, F., & Roller, D. (2010). éexting pipes-and-filters with
workflows. In2010 Fifth International Conference on Internet anegb Applications
and Servicegpp. 143-148). IEEE Computer Society.

Scheibler, T., Mietzner, R., & Leymann, F. (200BRAI as a service — combining the
power of executable EAI patterns and SaaSPiaceedings of 12 International
IEEE Enterprise Distributed Object Computing Coefece (EDOC 2008(pp. 107-
116) IEEE Computer Society.

Scheibler, T., Mietzner, R., & Leymann, F. (2008Mod: platform independent
modelling, description and enactment of paramedblés EAlI patternsEnterprise
Information System8(3), 299-317. Taylor & Francis.

Schmidt, D. C. (2006). Model-driven engineerir@omputey 392), 25-31. IEEE
Computer Society.

Schmidt, M.-T., Hutchison, B., Lambros, P., & Plepp R. (2005). The enterprise
service bus: making service-oriented architectaed. IBM Systems Journadi4, 781-
797.

Schmidmeier, A. (2007). Aspect oriented DSLs fosibass process implementation.
In Proceedings of the 2nd workshop on Domain speasjiect language®\CM.

Schmit, B. A., & Dustdar, S. (2006). Systematicige®f web service transactions. In
Technologies for E-Services, 6th International V8bdp, Revised Selected Papers
(pp- 23-33). Springer.

139

References

Skogan, D., Grgnmo, R., & Solheim, I. (2004). Webv&e composition in UML. In
Proceedings of the"BIEEE International Enterprise Distributed Objecb@puting
Conference (EDOC 2004pp. 47-57). IEEE Computer Society.

Sleiman, H., Sultan, A., & Frantz, R. (2009). Todsautomatic code generation for
EAI solutions using DSL tools. IXIV Jornadas de Ingenieria del Software y Bases
de Datos (JISBD 2009%an Sebastian, Spain, September 8-11, 009134-145).

Szymanek, R. (May 30, 2011)JaCoP - Java constraint programming solver.
Retrieved August 11, 2011 from http://www.jacop.eu/

Tayi, G. K., & Ballou, D. P. (1998). Examining dajaality. Communications of the
ACM, 4%2), 54-57.

Trowbridge, D., Roxburgh, U., Hohpe, G., Manolesbu, & Nadhan E. G. (2004).
Integration patternsMicrosoft Corporation.

Umapathy, K., & Purao, S. (2007). Exploring altdives for representing and
accessing design knowledge about enterprise irttegrain Proceedings of 26
International Conference on Conceptual Model{pg. 470-484). Springer.

Umapathy, K., & Purao., S. (2008). Representingaswkssing design knowledge for
service integration. IProceedings of IEEE International Conference onviges
Computing (SCC 2008pp. 67-74) IEEE Computer Society.

Wada, H., Suzuki, J., & Oba, K. (2006). Modelinghffanctional aspects in service
oriented architecture. IRroceedings of IEEE International Conference onviges
Computing (SCC'0Gpp. 222-229). IEEE Computer Society.

Wang, Y., & Taylor, K. (2008). A model-driven appah to service composition. In
Proceedings of 2008 IEEE International Symposium Samnvice-Oriented System
Engineering(pp. 8-13). IEEE Computer Society.

Xing, Z., Chen, Y., & Zhang, W. (2006). MaxPIan: tpal planning by decomposed
satisfiability and backward reduction. Rroceedings of Fifth International Planning
Competition, International Conference on Automateldnning and Scheduling
(ICAPS 06)pp. 53-56).

Xu, Y., Tang, S., Xu, Y., & Tang, Z. (2007). Towardspect oriented web service
composition with UML. InProceedings of ® IEEE/ACIS International Conference
on Computer and Information Scien@p. 279-284). IEEE Computer Society.

140

Appendix A: About the author

Pavol Mederly was born in Bratislava, Slovak Repubh May 17, 1974. In 1997
he received master's degree in informatics at Faafl Mathematics and Physics,
Comenius University in Bratislava. After that, herked as a lecturer at Faculty of
Mathematics and Physics, Comenius University (\208) as well as a software and
systems engineer and integration specialist atrimition Technology Center at the
same university. Presently he is a PhD studenheatRaculty of Informatics and
Information Technologies, Slovak University of Tackogy in Bratislava in the field
of software engineering. His research interestsrdaegration of information systems,
integration patterns, messaging technologies, serdariented architectures, and
software engineering in general.

A.1 Publications
International conferences

Mederly, P., Lekavy, M., Zavodsky, M., & Navrat, P2009). Construction of
messaging-based enterprise integration solutioing Ud planning. InPreprint of the
Proceedings of the 4th IFIP TC2 Central and Eastdpean Conference on Software
Engineering Technique€EE-SET 2009, Krakow, Poland, October 12-14, 2(j§)2
37-50). Krakow: AGH University of Science and Teclugy.

Mederly, P., Lekavy, M., & Navrat, P. (2009). Serviadaptation using Al planning
techniques. InProceedings of the 2009 Fifth International Confere on Next
Generation Web Services PracticédWeSP 2009, 9-11 September 2009, Prague,
Czech Republi(pp. 56-59) Los Alamitos, California: IEEE Computer Society.

Mederly, P., & Navrat, P. (2010). Construction okssaging-based integration
solutions using constraint programming.Uecture Notes in Computer Science Vol.
6295: Advances in Databases and Information Systetdsh East European
Conference, ADBIS 2010 Novi Sad, Serbia, Septegther, 2010 Proceedindpp.
579-582). Springer.

Book chapters

Kisac, I, Kuzar, T., Mederly, P., Tvarozek, J., Kapk, I., & Habudova, N. (2009).
Software architectures. In: Bielikova, M., & Navr&. (eds.)Selected studies on
software and information systems 4. The EditioRedearch Texts in Informatics and
Information Technologies(pp. 73-113). Slovak University of Technology in
Bratislava. ISBN 978-80-227-3139-3. (in Slovak).

141

Appendix A: About the author

Habudova, N., Kisac, |, Kuzar, T., Mederly, P., 8anM., & Tvarozek, J. (2009).
Design patterns. In: Bielikova, M., & Navrat, Pdg¢e) Selected studies on software
and information systems 4. The Edition of Researehts in Informatics and
Information Technologie§p. 3-35). Slovak University of Technology in Bsdva.
ISBN 978-80-227-3139-3. (in Slovak).

Habudova, N., Kuzar, T., Mederly, P., Simko, M. afazek, J., & Kapustik, 1. (2009).
Software components. In: Bielikova, M., & Navrat, fds.)Selected studies on
software and information systems 4. The EditioRedearch Texts in Informatics and
Information Technologie@pp. 37-72). Slovak University of Technology in Bséava.
ISBN 978-80-227-3139-3. (in Slovak).

Regional and local conferences

Mederly, P., & Navrat, P. (2011). Pipes and FiltersProcess Manager: which
integration architecture is “better”?. atakon 201Xto appear) (in Slovak).

Mederly, P., & Navrat, P. (2010). Automated desinmessaging-based integration
solutions. In Datakon 2010: Proceedings of the Annual Databasenf€ence,
October 16-19, 2010, Mikulov, Czech Repulyip. 121-130). University of Ostrava.
(in Slovak).

Mederly, P. (2009). Towards automated system-lseelice compositions. IWIKT
2008, & Workshop on Intelligent and Knowledge Oriented HRedogies
Proceedinggpp. 101-104). Slovak University of Technology iraBslava.

Student research conferences

Mederly, P. (2011). A method for creating messagiaged integration solutions and
its evaluationInformation Sciences and Technologies Bulletinhef ACM Slovakia
3(2), 91-95.

Mederly, P. (2010). Semi-automated design of irgtgn solutions: How to manage
the data?. In6" Student Research Conference in Informatics andrrimition
Technologies Proceedingp. 241-248). Slovak University of Technology in
Bratislava.

Mederly, P. (2009a). Towards a model-driven apgdrox enterprise application
integration. In5" Student Research Conference in Informatics andrrimdtion
Technologies Proceeding$pp. 46-53). Slovak University of Technology in
Bratislava.

Other

Mederly, P., & Palos, G. (2008). Enterprise senices at Comenius University in
Bratislava. InProceedings of EUNIS 2008 VISION IT - Vision for ifil higher
education(p.129) University of Aarhus. Available at: http://eunis/d&pers/p98.pdf.

142

Appendix A: About the author

Mederly, P. (2010). Towards semi-automated designemterprise integration

solutions, In Bielikova, M., & Navrat, P. (edsWorkshop on the Web-Science,
Technologies and Engineering: 7th Spring 2010 Pedviéozur Smolenice Castle,
Slovakia April 18, 2010 Proceedin@sp. 75-76). Slovak University of Technology in
Bratislava.

143

Appendix B: Content of the attached electronic medi

Table 18.Content of the attached electronic media.

File or directory

Content

dissertation.pdf

Text of this dissertation.

mip Artifacts related to the ML/P method

- evaluation Detailed evaluation of the methodcepy of (Mederly and Lekavy, 2009)

ucp Artifacts related to the U/CP method

- grammar Grammar of the input language for U/CBlémentation prototype 3

- schemas XML schemas for U/CP implementation pypts 2 and 3

- - common.xsd - input language and common elements

- - design.xsd - language used for describing @iaolution design (output of the U/CP method)

- - sonic.xsd - language used to describe condestegn specific for Progress Sonic ESB (outpu
the first phase of code generation for ProgresscIe®B)

- scenarios Artifacts related to individual sceosrinput and output of the U/CP method.

145

of

