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What is midPoint repository?

● MidPoint Repository keeps midPoint objects persistent.

● MidPoint can be restarted and its state is preserved.

● Objects don’t have to be in memory, if midPoint doesn’t work with 
them.

● Must support basic create/read/update/delete (CRUD) operations.

● For ages now, midPoint has been using an SQL database as a repository.
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Minimal repository

● addObject writes fullObject document under its OID (generated if necessary)

● getObject uses OID to retrieve the fullObject and deserializes it

● Add update and delete and we’re done! Or are we?
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Repository must be searchable

● Repository must support fast object retrieval by the OID.

● But what if we don’t know the OID?

● Repository must support efficient search for objects.

● Internal hard-coded searches vs custom searches

● All use midPoint Query API

● Iterative search for processing many results

● In some cases we want to search for containers.

● Searchable properties must be available outside an opaque fullObject.
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Not your DB for common information system

● MidPoint repository is still primarily “document” storage.

● MidPoint objects are the “documents” it stores.

● MidPoint objects are extensible.

● All the exploded columns are used only for object search, not for object 
retrieval.*

*There are exceptions, but let’s ignore them in this webinar.
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So instead of this...
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...we got to this
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What is fullObject anyway?

● Repository stores serialized form of the object.

● One of typical midPoint serializations (XML, JSON) is used but technically 
fullObject serialization is repository implementation detail!

● When inserting XML object to midPoint it’s deserialized first and then re-
serialized again in the repository (different formats can be used).

● Object is modified by the repository before it’s actually stored:

● Container IDs are generated, OID is generated if missing as well.

● Version number is set.
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How is object exploded?

● Repository does not maintain strict referential integrity between objects (blue lines).

● It only maintains referential integrity inside the single object (red lines).
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Looking back… (with very old picture)

● In 1.8 (Aug 2011)
XML repository

● In 2.0 (Jun 2012)
SQL repository (Hibernate)

● In 4.4 (Nov 2021)
SQL repository reborn
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Repository API vs implementation

● Other parts of midPoint depend only on the Repository API.

● Nothing in the midPoint depends on the implementation details.

● Repository implementation depends only on low-level base parts of 
midPoint, its schema, Prism, etc.

● This design allows for repository implementation switch.

● It may not be easy, but the boundaries are clear.
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Repository vs Model

● User rarely talks directly to the Repository API.

● Instead, Model API is used in most cases.

● For example, importing objects calls model, not repository directly.

● Repository API is quite low-level compared to the midPoint Model API.

● But Repository is not totally dumb either:

● Fills in missing infrastructure information in the object (IDs).

● Search uses Query API.

● Updates use Prism deltas.
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Why the new Native repository?
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Problems of the old repository

● Too many supported databases!

● We can hardly be experts on all of them

● The code has many annoying ifs

● Hibernate (object-relational mapping)

● It helped to support all the DBs, but...

● ORM is The Vietnam of Computer Science after all

● Generic support of multiple databases can’t use strength of any of them.

● SQL schema required some reorganization.

https://blogs.tedneward.com/post/the-vietnam-of-computer-science/
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More problems with the old repository!

● In modify-heavy deployments transaction serialization is an issue

● m_object table had all the fullObjects and was more contended

● Many generated queries are inefficient on larger deployments

● E.g. validity scanner or correlation queries using extensions/attributes

● Query interpreter generated HQL, final SQL often looked much worse

● Exists filter is tricky, translated as SQL JOIN, not EXISTS

● NOT EXISTS does not work properly in the old repository 

● DISTINCT is often required to remove duplicated results
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Between revolution and evolution

● It’s still an SQL database – but it’s PostgreSQL only

● It’s the most advanced open source RDBMS

● Hibernate (ORM/JPA) is gone

● Querydsl is used for direct SQL query generation

● Table structure uses PostgreSQL inheritance

● We can utilize Postgres types like JSONB and arrays
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Native repository anatomy
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Table structure comparision

● Old repository: ● New repository:
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Query example
<q:filter>
 <q:exists>
  <q:path>c:assignment</q:path>
   <q:filter>
    <q:or>
     <q:and>
      <q:greater>
       <q:path>c:activation/c:validFrom</q:path>
       <q:value xsi:type="xsd:dateTime">2021-01-01T00:00:00.000Z</q:value>
      </q:greater>
      <q:lessOrEqual>
       <q:path>c:activation/c:validFrom</q:path>
       <q:value xsi:type="xsd:dateTime">2021-06-01T00:00:00.000Z</q:value>
      </q:lessOrEqual>
     </q:and>
     <q:and>
      <q:greater>
       <q:path>c:activation/c:validTo</q:path>
       <q:value xsi:type="xsd:dateTime">2021-01-01T00:00:00.000Z</q:value>
      </q:greater>
      <q:lessOrEqual>
       <q:path>c:activation/c:validTo</q:path>
       <q:value xsi:type="xsd:dateTime">2021-06-01T00:00:00.000Z</q:value>
      </q:lessOrEqual>
     </q:and>
    </q:or>
   </q:filter>
  </q:exists>
 </q:filter>
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Query comparision

● Old repository:

SELECT
  ruser0_.oid AS col_0_0_,
  ruser0_2_.fullobject AS col_1_0_
FROM m_user ruser0_
  INNER JOIN m_focus ruser0_1_
    ON ruser0_.oid = ruser0_1_.oid
  INNER JOIN m_object ruser0_2_
    ON ruser0_.oid = ruser0_2_.oid
  LEFT OUTER JOIN m_assignment assignment1_
    ON ruser0_.oid = assignment1_.owner_oid
      AND ( assignment1_.assignmentowner =:1 )
WHERE assignment1_.validfrom >:2
  AND assignment1_.validfrom <=:3
  OR assignment1_.validto >:4
  AND assignment1_.validto <=:5
order by nlssort(ruser0_.oid,'NLS_SORT=BINARY_AI') asc
fetch first :6 rows only

● New repository:

select
  u.oid,
  u.fullObject
from m_user u

where exists (select 1
  from m_assignment a
  where u.oid = a.ownerOid
    and a.containerType = $1
    and (a.validFrom > $2
      and a.validFrom <= $3
      or a.validTo > $4
      and a.validTo <= $5))
order by u.oid asc
limit $6
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Schema files (docs/config/sql)

● Old repository (generic-old):

● Initialize and upgrade scripts

● Various DBs

…
oracle-4.4-all.sql
oracle-upgrade-4.0-4.4.sql
oracle-upgrade-4.3-4.4.sql
postgresql-4.4-all.sql
postgresql-upgrade-4.0-4.4.sql
postgresql-upgrade-4.3-4.4.sql
...

https://github.com/Evolveum/midpoint/tree/master/config/sql

● New repository (native-new):

● Initialize and upgrade scripts

● Single DB, various repo parts

postgres-new.sql 
postgres-new-audit.sql 
postgres-new-quartz.sql 
postgres-new-upgrade.sql 
postgres-new-upgrade-audit.sql

● Useful comments inside!

https://github.com/Evolveum/midpoint/tree/master/config/sql
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Repository, audit and scheduler tables (or DBs!)

● There are three distinct parts of the repository:

● The repository, or main repository, storing midPoint objects

● Audit tables for SQL audit trail

● Scheduler (Quartz) tables

● By default, MidPoint creates a single connection pool for all parts of the 
repository.

● Doesn’t require so many connections in total, better control.

● Each part can be separated in its own database, even separate servers.

● But main and audit repository must be PostgreSQL.
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List of connections with single connection pool

midpoint=# select pid, datname, usename, application_name, client_addr, backend_start, state
midpoint-# from pg_stat_activity
midpoint-# where client_addr is not null
midpoint-# order by datname, usename, backend_start;

 pid  | datname  | usename  | application_name | client_addr  |         backend_start         | state
------+----------+----------+------------------+--------------+-------------------------------+--------
 1501 | midpoint | midpoint | mp-repo          | 192.168.56.1 | 2022-01-11 21:52:23.210279+00 | idle
 1505 | midpoint | midpoint | mp-repo          | 192.168.56.1 | 2022-01-11 21:52:52.475241+00 | idle
 1507 | midpoint | midpoint | mp-repo          | 192.168.56.1 | 2022-01-11 21:52:52.564232+00 | idle

● New repository also sets nice application_name for the connection.
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List of connections with separate audit DB

midpoint=# select pid, datname, usename, application_name, client_addr, backend_start, state
midpoint-# from pg_stat_activity
midpoint-# where client_addr is not null
midpoint-# order by datname, usename, backend_start;

 pid  | datname  | usename  | application_name | client_addr  |         backend_start         | state
------+----------+----------+------------------+--------------+-------------------------------+--------
 1791 | midaudit | midaudit | mp-audit         | 192.168.56.1 | 2022-01-11 22:15:59.053225+00 | idle
 1792 | midaudit | midaudit | mp-audit         | 192.168.56.1 | 2022-01-11 22:15:59.185445+00 | idle
 1793 | midaudit | midaudit | mp-audit         | 192.168.56.1 | 2022-01-11 22:15:59.20636+00  | idle
 1794 | midaudit | midaudit | mp-audit         | 192.168.56.1 | 2022-01-11 22:15:59.222589+00 | idle
 1795 | midaudit | midaudit | mp-audit         | 192.168.56.1 | 2022-01-11 22:15:59.240416+00 | idle
 1796 | midaudit | midaudit | mp-audit         | 192.168.56.1 | 2022-01-11 22:15:59.257741+00 | idle
 1797 | midaudit | midaudit | mp-audit         | 192.168.56.1 | 2022-01-11 22:15:59.275098+00 | idle
 1798 | midaudit | midaudit | mp-audit         | 192.168.56.1 | 2022-01-11 22:15:59.289891+00 | idle
 1790 | midpoint | midpoint | mp-repo          | 192.168.56.1 | 2022-01-11 22:15:58.28119+00  | idle
 1802 | midpoint | midpoint | mp-repo          | 192.168.56.1 | 2022-01-11 22:16:26.895899+00 | idle
 1803 | midpoint | midpoint | mp-repo          | 192.168.56.1 | 2022-01-11 22:16:26.923571+00 | idle
 1804 | midpoint | midpoint | mp-repo          | 192.168.56.1 | 2022-01-11 22:16:26.983387+00 | idle
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New repository – main differences

● Works only with PostgreSQL – but utilizes more of its features.

● Scales better and produces more efficient queries.

● Uses PG inheritance for tables, more about schema on the next slide.

● Many filter interpretation improvements

● NOT EXISTS works properly

● Multi-value EQ support improvements, both left and right side

● Query conditions use subqueries (EXISTS) instead of JOIN, which does 
not require DISTINCT that much anymore.

● Single iterative search method is used, iterationMethod is ignored.
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New repository – SQL schema differences

● PG inheritance is used for object and container tables.

● Concrete object table (e.g. m_user) now contains all the columns and its 
data (with related containers and refs, of course), including fullObject.

● Different reference types are in separate tables, not in a single table.

● Extensions are stored in JSONB ext columns (inline).

● There are fewer tables, but they may be larger (but TOAST may help).

● Future may bring other storage options for extensions/attributes.

● Many simple multi-values are stored inline as arrays or JSONB.
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New repository – column type differences

● OID column is now UUID, not VARCHAR!

● UUID represents 16 bytes/128 bits label, only hexadecimal chars (and dashes) can appear 
in its string representation: https://en.wikipedia.org/wiki/Universally_unique_identifier

● TEXT is used instead of all limited VARCHAR columns, PG is fine with it.

● Custom enumeration types are used, much easier to read.

● Repeated URIs are stored in m_uri table (OK, harder to read).

select oid, objecttype, nameorig, administrativestatus, createchannelid from m_focus;
+------------------------------------+----------+------------------------------+--------------------+---------------+
|oid                                 |objecttype|nameorig                      |administrativestatus|createchannelid|
+------------------------------------+----------+------------------------------+--------------------+---------------+
|00000000-0000-0000-0000-000000000002|USER      |administrator                 |ENABLED             |1              |
|00000000-0000-0000-0000-000000000004|ROLE      |Superuser                     |                    |1              |
|00000000-0000-0000-0000-000000000600|SERVICE   |Internal                      |                    |1              |
|00000000-0000-0000-0000-000000000300|ARCHETYPE |System user                   |                    |1              |

https://en.wikipedia.org/wiki/Universally_unique_identifier
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Object items vs columns and tables

● Columns on object tables (e.g. m_user, including those defined in 
m_focus and m_object) are single-value items (properties or references) 
of the object itself.

● Multiple columns can cover single property (e.g. poly-string like 
nameOrig and nameNorm) or reference.

● Items of nested singleton containers are also inside object table, e.g. 
column createTimestamp for metadata/createTimestamp.

● Multi-value containers are stored in separate tables, e.g. m_assignment.

● Multi-value properties can be stored in array or JSONB columns (inline).
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New repository – serialized form differences

● Default serialized object form is unformatted JSON.

● This affects various fullObject columns (and delta in audit).

● No compression of serialized forms on the application side.

● Easier to access the uncompressed data via SQL.

● But the form is still considered an implementation detail. ;-)

● Postgres compresses the data transparently depending on the size 
threshold.

● It also stores the data „out of line“, if necessary, see TOAST for more.
https://www.postgresql.org/docs/current/storage-toast.html

https://www.postgresql.org/docs/current/storage-toast.html
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Special m_object columns

● version for optimistic locking concurrency control, it is stored in the prism 
object, but is managed strictly by repository which increments it during 
modifications

● cid_seq internal sequence for container IDs, assigned by the repository

● ext stores searchable indexed/extension attributes; can be implemented as 
indexed JSONB column or by additional tables (entity-attribute-value, EAV 
model)

● db_created/modified purely database managed columns, not accessible 
by the application

● objectType designates object type (read-only column)
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Describe m_user
midpoint=# \d m_user
         Column          |           Type           | Nullable | Default
-------------------------+--------------------------+----------+---------------------
 oid                     | uuid                     | not null |
 objecttype              | objecttype               | not null |
                                       generated always as ('USER'::objecttype) stored 
 nameorig                | text                     | not null |
 namenorm                | text                     | not null |
 fullobject              | bytea                    |          |
 tenantreftargetoid      | uuid                     |          | -- three cols per ref
 tenantreftargettype     | objecttype               |          |
 tenantrefrelationid     | integer                  |          |
 lifecyclestate          | text                     |          |
 cidseq                  | bigint                   | not null | 1
 version                 | integer                  | not null | 1
 policysituations        | integer[]                |          |
 subtypes                | text[]                   |          |
 fulltextinfo            | text                     |          |
 ext                     | jsonb                    |          |
...
 createchannelid         | integer                  |          |
 createtimestamp         | timestamp with time zone |          |
...
 db_created              | timestamp with time zone | not null | CURRENT_TIMESTAMP
 db_modified             | timestamp with time zone | not null | CURRENT_TIMESTAMP
 costcenter              | text                     |          | -- m_focus columns
 emailaddress            | text                     |          |
 photo                   | bytea                    |          |
...
 passwordcreatetimestamp | timestamp with time zone |          |
 passwordmodifytimestamp | timestamp with time zone |          |
 administrativestatus    | activationstatustype     |          |
...
 validitystatus          | timeintervalstatustype   |          |
 validfrom               | timestamp with time zone |          |

 validto                 | timestamp with time zone |          |
 validitychangetimestamp | timestamp with time zone |          |
 archivetimestamp        | timestamp with time zone |          |
 lockoutstatus           | lockoutstatustype        |          |
 additionalnameorig      | text                     |          | -- m_user
 additionalnamenorm      | text                     |          |
 employeenumber          | text                     |          |
...
 titleorig               | text                     |          |
 titlenorm               | text                     |          |
 organizations           | jsonb                    |          | -- polys
 organizationunits       | jsonb                    |          | -- polys
Indexes:
    "m_user_pkey" PRIMARY KEY, btree (oid)
    "m_user_employeenumber_idx" btree (employeenumber)
    "m_user_ext_idx" gin (ext)
    "m_user_ext_org_unit" btree ((ext ->> '14'::text)) -- custom index!
    "m_user_familynameorig_idx" btree (familynameorig)
    "m_user_fullnameorig_idx" btree (fullnameorig)
    "m_user_fulltextinfo_idx" gin (fulltextinfo gin_trgm_ops)
    "m_user_givennameorig_idx" btree (givennameorig)
    "m_user_namenorm_key" UNIQUE, btree (namenorm)
    "m_user_nameorig_idx" btree (nameorig)
    "m_user_organizations_idx" gin (organizations)
    "m_user_organizationunits_idx" gin (organizationunits)
    "m_user_policysituation_idx" gin (policysituations gin__int_ops)
    "m_user_subtypes_idx" gin (subtypes)
...
Foreign-key constraints: -- m_object_oid works as a unique OID pool
    "m_user_oid_fkey" FOREIGN KEY (oid) REFERENCES m_object_oid(oid)
...
Inherits: m_focus
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Select m_user

midpoint=# select oid, objecttype, nameorig,
substring(convert_from(fullobject, 'UTF8'), 1, 100) fullobject, -- making it readable in psql
pg_column_size(fullobject) fo_size, length(fullobject) fo_len,
ext, subtypes, emailaddress, length(photo) photo_len,
createtimestamp, effectiveStatus, validityStatus, db_modified
from m_user limit 1;
-[ RECORD 1 ]----+-------------------------------------------------------------------------------
oid              | 2018557c-4f30-4b31-8550-c61c05bdaecb
objecttype       | USER
nameorig         | n04881d
fullobject       | {"user":{"oid":"2018557c-4f30-4b31-8550-c61c05bdaecb","version":"8",
  "name":"n04881d","subtype":"default","extension":"givenNameAccented":"Michelle","familyName
fo_size          | 1551 -- obviously compressed
fo_len           | 3946
ext              | {"5": "2021-10-09T23:43:03.055Z", "7": "2021-10-09T23:43:03.055Z", "8": "a",
                    "12": "0", "13": "n", "14": "4347914", "15": "Michelle", "16": ["FARRELL"]}
subtypes         | {default} -- array
emailaddress     |
photo_len        |
createtimestamp  | 2021-10-10 05:08:38.357+00
effectivestatus  | ENABLED
validitystatus   |
db_modified      | 2021-10-10 05:08:38.88718+00
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Using and tuning Native repository
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Getting started

● Follow our document Using Native PostgreSQL Repository.
https://docs.evolveum.com/midpoint/reference/repository/native-postgresql/usage/

● Typical post-installation configuration

● Decide if you want audit and main repository together or separate.

● Use doc/config/config-native.xml as a starting point for config.xml.

● Examples are examples, use Repository Configuration document to finish 
your configuration.
https://docs.evolveum.com/midpoint/reference/repository/configuration/

https://docs.evolveum.com/midpoint/reference/repository/native-postgresql/usage/
https://docs.evolveum.com/midpoint/reference/repository/configuration/
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Default config.xml

<configuration>
  <midpoint>
    <webApplication>
      <importFolder>${midpoint.home}/import</importFolder>
    </webApplication>
    <repository>
      <!--
      Uncomment this section to use the new Native repository (and comment the rest).
      For more see: https://docs.evolveum.com/midpoint/reference/repository/configuration/
      Don't forget to switch Sql/Sqale audit service factory accordingly (lower in this config).
      <type>native</type>
      <jdbcUrl>jdbc:postgresql://localhost:5432/midpoint</jdbcUrl>
      <jdbcUsername>midpoint</jdbcUsername>
      <jdbcPassword>password</jdbcPassword>
      -->

      <!-- Old Generic repository configured for embedded H2 for quick start. -->
      <repositoryServiceFactoryClass>com.evolveum.midpoint.repo.sql.SqlRepositoryFactory</repositoryServiceFactoryClass>
      <baseDir>${midpoint.home}</baseDir>
      <asServer>true</asServer>
    </repository>
...



© 2022 Evolveum s.r.o. All rights reserved.

Default config.xml

...
<audit>
  <auditService>
    <auditServiceFactoryClass>com.evolveum.midpoint.audit.impl.LoggerAuditServiceFactory</auditServiceFactoryClass>
  </auditService>
  <auditService>
    <!-- Use SqlAuditServiceFactory for old generic repository and SqaleAuditServiceFactory for new Native one. -->
    <auditServiceFactoryClass>com.evolveum.midpoint.repo.sql.SqlAuditServiceFactory</auditServiceFactoryClass>
    <!--
    <auditServiceFactoryClass>com.evolveum.midpoint.repo.sqale.audit.SqaleAuditServiceFactory</auditServiceFactoryClass>
    -->
  </auditService>
</audit>
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config.xml for Native repository

<configuration>
  <midpoint>
    <webApplication>
      <importFolder>${midpoint.home}/import</importFolder>
    </webApplication>
    <repository>
      <type>native</type>
      <jdbcUrl>jdbc:postgresql://localhost:5432/midpoint</jdbcUrl>
      <jdbcUsername>midpoint</jdbcUsername>
      <jdbcPassword>password</jdbcPassword>
    </repository>
    <audit>
      <auditService>
         <auditServiceFactoryClass>com.evolveum.midpoint.audit.impl.LoggerAuditServiceFactory</auditServiceFactoryClass>
      </auditService>
      <auditService>
         <auditServiceFactoryClass>com.evolveum.midpoint.repo.sqale.audit.SqaleAuditServiceFactory</auditServiceFactoryClass>
      </auditService>
    </audit>
...
  </midpoint>
</configuration>
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Sizing the database server is… complicated

● Basic recommendations:
https://docs.evolveum.com/midpoint/install/system-requirements/#sizing-of-database-system

● Sizing is disk sizing, performance sizing (CPU, memory, IO)

● Virtualization may give some flexibility.

● Postgres configuration tweaks depending on the size:

● Default PG settings are very conservative – on the low-end.

● Use your PG experts if possible.

● Use some calculator as a starting point, for example:
https://pgtune.leopard.in.ua/ (use OLTP or Mixed as „DB Type“)

https://docs.evolveum.com/midpoint/install/system-requirements/#sizing-of-database-system
https://pgtune.leopard.in.ua/
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Using calculator from pgtune.leopard.in.ua
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Sizing the storage

● Use your current DB storage size info.

● Native repository should be a bit smaller.

● Don’t just use XML sizes, use actual database storage size.

● Indexes take a lot of room too.

● Often, audit tables take most of the space.

● That is also a good reason to use a separate audit database.
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Table and database size example

midpoint=# SELECT oid, table_schema, table_name, row_estimate, pg_size_pretty(total_bytes) AS total,
  pg_size_pretty(table_bytes) AS table, pg_size_pretty(toast_bytes) AS toast, pg_size_pretty(index_bytes) AS index
FROM (SELECT *, total_bytes - index_bytes - COALESCE(toast_bytes, 0) AS table_bytes
    FROM (SELECT c.oid, nspname AS table_schema, relname AS table_name, c.reltuples::bigint AS row_estimate,
      pg_total_relation_size(c.oid) AS total_bytes, pg_indexes_size(c.oid) AS index_bytes, pg_total_relation_size(reltoastrelid) AS toast_bytes
        FROM pg_class c LEFT JOIN pg_namespace n ON n.oid = c.relnamespace WHERE relkind = 'r') a ) b
WHERE table_schema = 'public'
ORDER BY total_bytes DESC limit 10;
  oid  | table_schema |       table_name        | row_estimate |  total  |  table  |   toast    |  index  
-------+--------------+-------------------------+--------------+---------+---------+------------+---------
 18526 | public       | ma_audit_delta_default  |    187152384 | 508 GB  | 260 GB  | 233 GB     | 15 GB
 17337 | public       | m_shadow                |     87694848 | 165 GB  | 146 GB  | 32 kB      | 19 GB
 17105 | public       | m_user                  |     27546152 | 77 GB   | 38 GB   | 27 GB      | 12 GB
 18156 | public       | m_assignment            |    127124184 | 33 GB   | 15 GB   | 8192 bytes | 18 GB
 17064 | public       | m_ref_projection        |     82952200 | 17 GB   | 6482 MB |            | 11 GB
 18509 | public       | ma_audit_event_default  |     19523042 | 12 GB   | 8260 MB | 8192 bytes | 3663 MB
 16877 | public       | m_object_oid            |    116446608 | 9427 MB | 4932 MB |            | 4495 MB
 17026 | public       | m_ref_role_membership   |     38737040 | 6271 MB | 2925 MB |            | 3346 MB
 17270 | public       | m_ref_object_parent_org |      9381595 | 1566 MB | 741 MB  |            | 825 MB
 17153 | public       | m_role                  |         5006 | 12 MB   | 11 MB   | 56 kB      | 1368 kB

midpoint=# SELECT pg_size_pretty(pg_database_size('midpoint'));
 pg_size_pretty 
----------------
 829 GB

Main repo 309 GB, 116M objects, each object takes ~27 KB on average. Not many assignments here, it can easily be over 100KB.
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Different view on DB object sizes

midpoint=# SELECT t.oid, CASE WHEN tft.relname IS NOT NULL THEN tft.relname || ' (TOAST)' ELSE t.relname END AS object,
    pg_size_pretty(pg_relation_size(t.oid)) AS size, t.relkind, t.reltuples::bigint as row_estimate, t.relname as object_name
FROM pg_class t
    INNER JOIN pg_namespace ns ON ns.oid = t.relnamespace
    LEFT JOIN pg_class tft ON tft.reltoastrelid = t.oid -- table for toast
    LEFT JOIN pg_namespace tftns ON tftns.oid = tft.relnamespace
WHERE 'public' IN (ns.nspname, tftns.nspname)
ORDER BY pg_relation_size(t.oid) DESC
LIMIT 15;
  oid  |                 object                   |  size   | relkind | row_estimate |               object_name
-------+------------------------------------------+---------+---------+--------------+-----------------------------------------
 18526 | ma_audit_delta_default                   | 260 GB  | r       |    187152384 | ma_audit_delta_default
 18531 | ma_audit_delta_default (TOAST)           | 229 GB  | t       |    168837440 | pg_toast_18526
 17337 | m_shadow                                 | 146 GB  | r       |     87694848 | m_shadow
 17105 | m_user                                   | 38 GB   | r       |     27546152 | m_user
 17114 | m_user (TOAST)                           | 26 GB   | t       |     12554565 | pg_toast_17105
 18156 | m_assignment                             | 15 GB   | r       |    127124184 | m_assignment
 18529 | ma_audit_delta_default_pkey              | 15 GB   | i       |    191936144 | ma_audit_delta_default_pkey
 17371 | m_shadow_primidval_objcls_resrefoid_key  | 9457 MB | i       |     87694848 | m_shadow_primidval_objcls_resrefoid_key
 18509 | ma_audit_event_default                   | 8257 MB | r       |     19523042 | ma_audit_event_default
 18163 | m_assignment_pkey                        | 6724 MB | i       |    127025472 | m_assignment_pkey
 17069 | m_ref_projection_pkey                    | 6541 MB | i       |     82952200 | m_ref_projection_pkey
 17064 | m_ref_projection                         | 6480 MB | r       |     82952200 | m_ref_projection
 16877 | m_object_oid                             | 4930 MB | r       |    116446608 | m_object_oid
 16881 | m_object_oid_pkey                        | 4495 MB | i       |    116521240 | m_object_oid_pkey
 17076 | m_ref_projection_targetoidrelationid_idx | 4456 MB | i       |     82952200 | m_ref_projection_targetoidrelationid_idx

https://docs.evolveum.com/midpoint/reference/repository/native-postgresql/db-maintenance/

https://docs.evolveum.com/midpoint/reference/repository/native-postgresql/db-maintenance/
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Indexing

● Indexes are great, but come at a price (example from our 309 GB DB):
midpoint=# SELECT pg_size_pretty(sum(pg_relation_size(t.oid)))
FROM pg_class t INNER JOIN pg_namespace ns ON ns.oid = t.relnamespace
WHERE ns.nspname = 'public' and t.relkind='i' and t.relname like 'm\_%';
 pg_size_pretty 
----------------
 68 GB -- that’s 22%

● Size is the least problem, but updates need to refresh indexes, they need 
to be vacuumed too, etc.

● Most important columns have B-tree indexes or other suitable indexes.

● Not all columns have indexes though… but they are still searchable.

● Identify slow queries for your cases and add indexes accordingly.
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Use pg_stat_statements to identify slow queries

-- list of selects using the most time, change order to get other avg/max/calls to top
-- NOTE: postgresql.conf must have (+restart): shared_preload_libraries = 'pg_stat_statements'
-- Also first, to see pg_stat_statements table: CREATE EXTENSION IF NOT EXISTS pg_stat_statements;
-- To reset collected statistics: select pg_stat_statements_reset();
select
    (total_exec_time / 1000 / 60)::numeric(20,4) as total_min, -- min as minutes here
    mean_exec_time::numeric(20,2) as avg_ms,
    max_exec_time::numeric(20,2) as max_ms,
    calls,
    (rows / calls)::numeric(20) as avg_rows,
    (100.0 * shared_blks_hit / nullif(shared_blks_hit + shared_blks_read, 0))::numeric(20,2) AS hit_percent,
    query
from pg_stat_statements
-- optional where to limit it to one database, if needed (e.g. shared/test DB)
-- where dbid = (select oid from pg_database where datname = 'midpoint')
order by 1 desc -- change order as necessary
limit 50;
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Extension indexing

● Extensions and shadow attributes are stored in JSONB columns.

● By default, ext column and attributes in m_shadow use only GIN index.

● This is fine for EQ filter which covers most of the cases.

● For other cases (comparison, substrings) index needs to be created:

● Applicable only to single-value extensions or attributes

● Use index on ext->'id' for non-string properties or ext->>'id' for strings.

● Consult m_ext_item table to find the id of the extension/attribute item.

● Use normal B-tree index for comparisons or trigram index for substrings.
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Extension indexing example

● Query filter:
<q:filter><q:substring>
  <q:matching>stringIgnoreCase</q:matching>
  <q:path>c:extension/string</q:path>
  <q:value xsi:type="xsd:string">VaLuE</q:value>
  <q:anchorEnd>true</q:anchorEnd>
</q:substring></q:filter>

● Select: 
select u.oid, u.fullObject from m_user u where u.ext->>'195' ilike $1 -- $1 = '%VaLuE'

● Good index: 
CREATE INDEX m_user_ext_string_trgm_idx ON m_user USING gin((ext->>'195') gin_trgm_ops);

● “How do I get that 195?”
select * from m_ext_item where itemname like '%#string';
|id |itemname                    |valuetype                              |holdertype|cardinality|
+---+----------------------------+---------------------------------------+----------+-----------+
|195|https://example.com/p#string|http://www.w3.org/2001/XMLSchema#string|EXTENSION |SCALAR     |
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Query API tips

● Experiment with Query playground

● Prefer concrete types queries

● User for users, not Focus or Object

● Generic queries are less efficient

● Limit result count, e.g.: <paging><maxSize>10</maxSize></paging>

● Native repository uses implicit limit 10,000 if none is provided for sanity

● Higher number can be provided explicitly with maxSize… but why?!

● Use iterative search mechanisms for queries with longer result lists
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Schema upgrade

● Custom procedure is used for schema changes:

● apply_change for main repository

● apply_audit_change for the audit schema

● Upgrade script can be re-run, it applies only the missing changes

● Schema version is now sequential and not semantic

● Upgrade script can be checked for version comments

● There is no automatic DB upgrade or check for the Native repository

● Simply run the upgrade scripts from the MP distribution you run
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Migration to Native PostgreSQL Repository

● Upgrade to 4.4 using original repository

● Upgrade possible from 4.0.4 (LTS to LTS) or 4.3.2

● Export existing data using Ninja

● Initialize native repository

● Change midPoint configuration for native repository

● Import previously exported data back to midPoint using Ninja

● Start midPoint with new configuration

● Audit migration with midPoint already up and running

● More in the next webinar!
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Breaking repository changes

● New repository does not support H2, you need to install the DB.

● H2 is unsupported and for testing only anyway.

● OID must be in UUID format – but this was always strongly encouraged!

● Group by filter is not supported (and probably meaningless).

● And will be removed from Query API.

● Audit/dashboards do not support SQL/HQL queries anymore (since 4.3).

● Now it uses Query API, just like the main Repository API.

● ...and that’s it! Ninja tool will take the care for the rest!
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Native audit, partitioning, migration
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SQL audit overview

● Designed as insert only, no updates!

● Previously, Audit API had reindex operation, this is gone now.

● Insert-only table is much more efficient, no VACUUM needed.

● Until the cleanup executes some delete that is, more on that later.

● It is, after all, an audit trail – but searchable.
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Audit tables

● Stores audit event records (containers since 4.2)
● Tables similar to the old repository, changes similar to 

those in the main repository

● Prefix changed to ma_ for clearer separation.

● No dependency on the main portion of the repo.

● E.g. channel is now TEXT, no reference to m_uri.

● All tables are partitionable by timestamp.

● Delete from ma_audit_event cascades to details.
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Separate audit database – config.xml

<configuration>
  <midpoint>
...
    <audit>
...
      <auditService>
        <auditServiceFactoryClass>
          com.evolveum.midpoint.repo.sqale.audit.SqaleAuditServiceFactory
        </auditServiceFactoryClass>
        <jdbcUrl>jdbc:postgresql://192.168.56.33:5432/midaudit</jdbcUrl>
        <jdbcUsername>midaudit</jdbcUsername>
        <jdbcPassword>password</jdbcPassword>
        <!-- specifying custom application name (available in connection list)
        <jdbcUrl>jdbc:postgresql://192.168.56.33:5432/midaudit?ApplicationName=audit</jdbcUrl>
        or tweaking connection pool
        <maxPoolSize>6</maxPoolSize>
        -->
      </auditService>
    </audit>
...
  </midpoint>
</configuration>
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SQL audit partitioning

● All three audit tables are partitionable by timestamp column.

● By default, only one *_default partition is created for each table.

● Run audit_create_monthly_partitions procedure to create partitions:

● Example, 10 years ahead: call audit_create_monthly_partitions(120);

● Or 5 years back (migration): call audit_create_monthly_partitions(-60);

● Currently, partitions are not created automatically.

● Partitions are not query performance solution!
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Partitioning for fast audit cleanup

● Partitions are solution for fast data cleanup (drop or detach partition).

● You probably want to remove auditRecords from cleanupPolicy in 
SystemConfiguration object.

● Using partitions as the sole cleanup mechanism also means that each 
partition (which is a table) is strictly insert-only.

● No VACUUM is needed.

● Drawback: Currently the partition management, including cleanup, is 
manual only.

https://docs.evolveum.com/midpoint/reference/repository/native-audit/#cleanup-task-vs-partitions

https://docs.evolveum.com/midpoint/reference/repository/native-audit/#cleanup-task-vs-partitions
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Audit migration example

● 1 mil. audit events migrated from Generic PG to Native PG

● Ninja supports audit migration in midPoint 4.4.1

● Use -z to zip the output files

● Run multiple ninjas in parallel for export with repoId filter. (~1000/s)

● Run ninja with multiple threads, e.g. -l 4, for import. (~400/s)

● Original size 5.0 GB with gzipped deltas, new size 3.9 GB with plain 
deltas (transparently compressed by PG).

https://docs.evolveum.com/midpoint/reference/repository/native-audit/#audit-migration-from-other-database
https://docs.evolveum.com/midpoint/reference/deployment/ninja/

https://docs.evolveum.com/midpoint/reference/repository/native-audit/#audit-migration-from-other-database
https://docs.evolveum.com/midpoint/reference/deployment/ninja/
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Conclusion
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Main takeaways

● There is this new Native PostgreSQL repository.

● It’s better. Consider using it.

● You still should test it in non-production environment first, of course.

● There is new SQL audit trail. It can be partitioned!

● Repository and Query API documentation was massively updated.
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Resources

● MidPoint Repository
https://docs.evolveum.com/midpoint/reference/repository/

● Native PostgreSQL Repository
https://docs.evolveum.com/midpoint/reference/repository/native-postgresql/
https://docs.evolveum.com/midpoint/reference/repository/native-postgresql/usage/

● Native PostgreSQL Audit Trail
https://docs.evolveum.com/midpoint/reference/repository/native-audit/

● Repository Database Support (Generic vs Native repo explanation)
https://docs.evolveum.com/midpoint/reference/repository/repository-database-support/

● Query API
https://docs.evolveum.com/midpoint/reference/concepts/query/query-api/

https://docs.evolveum.com/midpoint/reference/repository/
https://docs.evolveum.com/midpoint/reference/repository/native-postgresql/
https://docs.evolveum.com/midpoint/reference/repository/native-postgresql/usage/
https://docs.evolveum.com/midpoint/reference/repository/native-audit/
https://docs.evolveum.com/midpoint/reference/repository/repository-database-support/
https://docs.evolveum.com/midpoint/reference/concepts/query/query-api/
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MidScale

● Target: 

● Tens of millions of identities

● Key results:

● Improved scalability of midPoint

● Improved visibility, diagnostic and reliability of midPoint

● Improved performance and user experience of midPoint user interface

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under the NGI_TRUST grant agreement no 825618. 
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Webinars

● Upgrade Guide, January 27, 2022 by Anton Tkáčik

● Tasks, February 3, 2022 by Pavol Mederly

● Customizing GUI, February 10, 2022 by Katarína Bolemant

● Native reports, February 16, 2022 by Lukáš Škublík 



/Evolveum@Evolveum/Evolveum/Evolveum/Evolveum

Also follow us on our social media for further information!
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Thank you for your time!

See other talks at https://docs.evolveum.com

https://github.com/Evolveum/
https://www.youtube.com/Evolveum
https://www.linkedin.com/company/evolveum/
https://twitter.com/Evolveum
https://www.facebook.com/evolveum
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