
MidPoint 4.4 – Native PostgreSQL Repository

Richard Richter / January 2022

Agenda

© 2022 Evolveum s.r.o. All rights reserved.

● What is midPoint Repository

● Why the new Native repository

● Native repository anatomy

● Using and tuning Native repository

● Native audit, partitioning, migration

© 2022 Evolveum s.r.o. All rights reserved.

What is midPoint repository?

● MidPoint Repository keeps midPoint objects persistent.

● MidPoint can be restarted and its state is preserved.

● Objects don’t have to be in memory, if midPoint doesn’t work with
them.

● Must support basic create/read/update/delete (CRUD) operations.

● For ages now, midPoint has been using an SQL database as a repository.

© 2022 Evolveum s.r.o. All rights reserved.

Minimal repository

● addObject writes fullObject document under its OID (generated if necessary)

● getObject uses OID to retrieve the fullObject and deserializes it

● Add update and delete and we’re done! Or are we?

© 2022 Evolveum s.r.o. All rights reserved.

Repository must be searchable

● Repository must support fast object retrieval by the OID.

● But what if we don’t know the OID?

● Repository must support efficient search for objects.

● Internal hard-coded searches vs custom searches

● All use midPoint Query API

● Iterative search for processing many results

● In some cases we want to search for containers.

● Searchable properties must be available outside an opaque fullObject.

© 2022 Evolveum s.r.o. All rights reserved.

Not your DB for common information system

● MidPoint repository is still primarily “document” storage.

● MidPoint objects are the “documents” it stores.

● MidPoint objects are extensible.

● All the exploded columns are used only for object search, not for object
retrieval.*

*There are exceptions, but let’s ignore them in this webinar.

© 2022 Evolveum s.r.o. All rights reserved.

So instead of this...

© 2022 Evolveum s.r.o. All rights reserved.

...we got to this

© 2022 Evolveum s.r.o. All rights reserved.

What is fullObject anyway?

● Repository stores serialized form of the object.

● One of typical midPoint serializations (XML, JSON) is used but technically
fullObject serialization is repository implementation detail!

● When inserting XML object to midPoint it’s deserialized first and then re-
serialized again in the repository (different formats can be used).

● Object is modified by the repository before it’s actually stored:

● Container IDs are generated, OID is generated if missing as well.

● Version number is set.

© 2022 Evolveum s.r.o. All rights reserved.

How is object exploded?

● Repository does not maintain strict referential integrity between objects (blue lines).

● It only maintains referential integrity inside the single object (red lines).

© 2022 Evolveum s.r.o. All rights reserved.

Looking back… (with very old picture)

● In 1.8 (Aug 2011)
XML repository

● In 2.0 (Jun 2012)
SQL repository (Hibernate)

● In 4.4 (Nov 2021)
SQL repository reborn

© 2022 Evolveum s.r.o. All rights reserved.

Repository API vs implementation

● Other parts of midPoint depend only on the Repository API.

● Nothing in the midPoint depends on the implementation details.

● Repository implementation depends only on low-level base parts of
midPoint, its schema, Prism, etc.

● This design allows for repository implementation switch.

● It may not be easy, but the boundaries are clear.

© 2022 Evolveum s.r.o. All rights reserved.

Repository vs Model

● User rarely talks directly to the Repository API.

● Instead, Model API is used in most cases.

● For example, importing objects calls model, not repository directly.

● Repository API is quite low-level compared to the midPoint Model API.

● But Repository is not totally dumb either:

● Fills in missing infrastructure information in the object (IDs).

● Search uses Query API.

● Updates use Prism deltas.

© 2022 Evolveum s.r.o. All rights reserved.

Why the new Native repository?

© 2022 Evolveum s.r.o. All rights reserved.

Problems of the old repository

● Too many supported databases!

● We can hardly be experts on all of them

● The code has many annoying ifs

● Hibernate (object-relational mapping)

● It helped to support all the DBs, but...

● ORM is The Vietnam of Computer Science after all

● Generic support of multiple databases can’t use strength of any of them.

● SQL schema required some reorganization.

https://blogs.tedneward.com/post/the-vietnam-of-computer-science/

© 2022 Evolveum s.r.o. All rights reserved.

More problems with the old repository!

● In modify-heavy deployments transaction serialization is an issue

● m_object table had all the fullObjects and was more contended

● Many generated queries are inefficient on larger deployments

● E.g. validity scanner or correlation queries using extensions/attributes

● Query interpreter generated HQL, final SQL often looked much worse

● Exists filter is tricky, translated as SQL JOIN, not EXISTS

● NOT EXISTS does not work properly in the old repository

● DISTINCT is often required to remove duplicated results

© 2022 Evolveum s.r.o. All rights reserved.

Between revolution and evolution

● It’s still an SQL database – but it’s PostgreSQL only

● It’s the most advanced open source RDBMS

● Hibernate (ORM/JPA) is gone

● Querydsl is used for direct SQL query generation

● Table structure uses PostgreSQL inheritance

● We can utilize Postgres types like JSONB and arrays

© 2022 Evolveum s.r.o. All rights reserved.

Native repository anatomy

© 2022 Evolveum s.r.o. All rights reserved.

Table structure comparision

● Old repository: ● New repository:

© 2022 Evolveum s.r.o. All rights reserved.

Query example
<q:filter>
 <q:exists>
 <q:path>c:assignment</q:path>
 <q:filter>
 <q:or>
 <q:and>
 <q:greater>
 <q:path>c:activation/c:validFrom</q:path>
 <q:value xsi:type="xsd:dateTime">2021-01-01T00:00:00.000Z</q:value>
 </q:greater>
 <q:lessOrEqual>
 <q:path>c:activation/c:validFrom</q:path>
 <q:value xsi:type="xsd:dateTime">2021-06-01T00:00:00.000Z</q:value>
 </q:lessOrEqual>
 </q:and>
 <q:and>
 <q:greater>
 <q:path>c:activation/c:validTo</q:path>
 <q:value xsi:type="xsd:dateTime">2021-01-01T00:00:00.000Z</q:value>
 </q:greater>
 <q:lessOrEqual>
 <q:path>c:activation/c:validTo</q:path>
 <q:value xsi:type="xsd:dateTime">2021-06-01T00:00:00.000Z</q:value>
 </q:lessOrEqual>
 </q:and>
 </q:or>
 </q:filter>
 </q:exists>
 </q:filter>

© 2022 Evolveum s.r.o. All rights reserved.

Query comparision

● Old repository:

SELECT
 ruser0_.oid AS col_0_0_,
 ruser0_2_.fullobject AS col_1_0_
FROM m_user ruser0_
 INNER JOIN m_focus ruser0_1_
 ON ruser0_.oid = ruser0_1_.oid
 INNER JOIN m_object ruser0_2_
 ON ruser0_.oid = ruser0_2_.oid
 LEFT OUTER JOIN m_assignment assignment1_
 ON ruser0_.oid = assignment1_.owner_oid
 AND (assignment1_.assignmentowner =:1)
WHERE assignment1_.validfrom >:2
 AND assignment1_.validfrom <=:3
 OR assignment1_.validto >:4
 AND assignment1_.validto <=:5
order by nlssort(ruser0_.oid,'NLS_SORT=BINARY_AI') asc
fetch first :6 rows only

● New repository:

select
 u.oid,
 u.fullObject
from m_user u

where exists (select 1
 from m_assignment a
 where u.oid = a.ownerOid
 and a.containerType = $1
 and (a.validFrom > $2
 and a.validFrom <= $3
 or a.validTo > $4
 and a.validTo <= $5))
order by u.oid asc
limit $6

© 2022 Evolveum s.r.o. All rights reserved.

Schema files (docs/config/sql)

● Old repository (generic-old):

● Initialize and upgrade scripts

● Various DBs

…
oracle-4.4-all.sql
oracle-upgrade-4.0-4.4.sql
oracle-upgrade-4.3-4.4.sql
postgresql-4.4-all.sql
postgresql-upgrade-4.0-4.4.sql
postgresql-upgrade-4.3-4.4.sql
...

https://github.com/Evolveum/midpoint/tree/master/config/sql

● New repository (native-new):

● Initialize and upgrade scripts

● Single DB, various repo parts

postgres-new.sql
postgres-new-audit.sql
postgres-new-quartz.sql
postgres-new-upgrade.sql
postgres-new-upgrade-audit.sql

● Useful comments inside!

https://github.com/Evolveum/midpoint/tree/master/config/sql

© 2022 Evolveum s.r.o. All rights reserved.

Repository, audit and scheduler tables (or DBs!)

● There are three distinct parts of the repository:

● The repository, or main repository, storing midPoint objects

● Audit tables for SQL audit trail

● Scheduler (Quartz) tables

● By default, MidPoint creates a single connection pool for all parts of the
repository.

● Doesn’t require so many connections in total, better control.

● Each part can be separated in its own database, even separate servers.

● But main and audit repository must be PostgreSQL.

© 2022 Evolveum s.r.o. All rights reserved.

List of connections with single connection pool

midpoint=# select pid, datname, usename, application_name, client_addr, backend_start, state
midpoint-# from pg_stat_activity
midpoint-# where client_addr is not null
midpoint-# order by datname, usename, backend_start;

 pid | datname | usename | application_name | client_addr | backend_start | state
------+----------+----------+------------------+--------------+-------------------------------+--------
 1501 | midpoint | midpoint | mp-repo | 192.168.56.1 | 2022-01-11 21:52:23.210279+00 | idle
 1505 | midpoint | midpoint | mp-repo | 192.168.56.1 | 2022-01-11 21:52:52.475241+00 | idle
 1507 | midpoint | midpoint | mp-repo | 192.168.56.1 | 2022-01-11 21:52:52.564232+00 | idle

● New repository also sets nice application_name for the connection.

© 2022 Evolveum s.r.o. All rights reserved.

List of connections with separate audit DB

midpoint=# select pid, datname, usename, application_name, client_addr, backend_start, state
midpoint-# from pg_stat_activity
midpoint-# where client_addr is not null
midpoint-# order by datname, usename, backend_start;

 pid | datname | usename | application_name | client_addr | backend_start | state
------+----------+----------+------------------+--------------+-------------------------------+--------
 1791 | midaudit | midaudit | mp-audit | 192.168.56.1 | 2022-01-11 22:15:59.053225+00 | idle
 1792 | midaudit | midaudit | mp-audit | 192.168.56.1 | 2022-01-11 22:15:59.185445+00 | idle
 1793 | midaudit | midaudit | mp-audit | 192.168.56.1 | 2022-01-11 22:15:59.20636+00 | idle
 1794 | midaudit | midaudit | mp-audit | 192.168.56.1 | 2022-01-11 22:15:59.222589+00 | idle
 1795 | midaudit | midaudit | mp-audit | 192.168.56.1 | 2022-01-11 22:15:59.240416+00 | idle
 1796 | midaudit | midaudit | mp-audit | 192.168.56.1 | 2022-01-11 22:15:59.257741+00 | idle
 1797 | midaudit | midaudit | mp-audit | 192.168.56.1 | 2022-01-11 22:15:59.275098+00 | idle
 1798 | midaudit | midaudit | mp-audit | 192.168.56.1 | 2022-01-11 22:15:59.289891+00 | idle
 1790 | midpoint | midpoint | mp-repo | 192.168.56.1 | 2022-01-11 22:15:58.28119+00 | idle
 1802 | midpoint | midpoint | mp-repo | 192.168.56.1 | 2022-01-11 22:16:26.895899+00 | idle
 1803 | midpoint | midpoint | mp-repo | 192.168.56.1 | 2022-01-11 22:16:26.923571+00 | idle
 1804 | midpoint | midpoint | mp-repo | 192.168.56.1 | 2022-01-11 22:16:26.983387+00 | idle

© 2022 Evolveum s.r.o. All rights reserved.

New repository – main differences

● Works only with PostgreSQL – but utilizes more of its features.

● Scales better and produces more efficient queries.

● Uses PG inheritance for tables, more about schema on the next slide.

● Many filter interpretation improvements

● NOT EXISTS works properly

● Multi-value EQ support improvements, both left and right side

● Query conditions use subqueries (EXISTS) instead of JOIN, which does
not require DISTINCT that much anymore.

● Single iterative search method is used, iterationMethod is ignored.

© 2022 Evolveum s.r.o. All rights reserved.

New repository – SQL schema differences

● PG inheritance is used for object and container tables.

● Concrete object table (e.g. m_user) now contains all the columns and its
data (with related containers and refs, of course), including fullObject.

● Different reference types are in separate tables, not in a single table.

● Extensions are stored in JSONB ext columns (inline).

● There are fewer tables, but they may be larger (but TOAST may help).

● Future may bring other storage options for extensions/attributes.

● Many simple multi-values are stored inline as arrays or JSONB.

© 2022 Evolveum s.r.o. All rights reserved.

New repository – column type differences

● OID column is now UUID, not VARCHAR!

● UUID represents 16 bytes/128 bits label, only hexadecimal chars (and dashes) can appear
in its string representation: https://en.wikipedia.org/wiki/Universally_unique_identifier

● TEXT is used instead of all limited VARCHAR columns, PG is fine with it.

● Custom enumeration types are used, much easier to read.

● Repeated URIs are stored in m_uri table (OK, harder to read).

select oid, objecttype, nameorig, administrativestatus, createchannelid from m_focus;
+------------------------------------+----------+------------------------------+--------------------+---------------+
|oid |objecttype|nameorig |administrativestatus|createchannelid|
+------------------------------------+----------+------------------------------+--------------------+---------------+
00000000-0000-0000-0000-000000000002	USER	administrator	ENABLED	1
00000000-0000-0000-0000-000000000004	ROLE	Superuser		1
00000000-0000-0000-0000-000000000600	SERVICE	Internal		1
00000000-0000-0000-0000-000000000300	ARCHETYPE	System user		1

https://en.wikipedia.org/wiki/Universally_unique_identifier

© 2022 Evolveum s.r.o. All rights reserved.

Object items vs columns and tables

● Columns on object tables (e.g. m_user, including those defined in
m_focus and m_object) are single-value items (properties or references)
of the object itself.

● Multiple columns can cover single property (e.g. poly-string like
nameOrig and nameNorm) or reference.

● Items of nested singleton containers are also inside object table, e.g.
column createTimestamp for metadata/createTimestamp.

● Multi-value containers are stored in separate tables, e.g. m_assignment.

● Multi-value properties can be stored in array or JSONB columns (inline).

© 2022 Evolveum s.r.o. All rights reserved.

New repository – serialized form differences

● Default serialized object form is unformatted JSON.

● This affects various fullObject columns (and delta in audit).

● No compression of serialized forms on the application side.

● Easier to access the uncompressed data via SQL.

● But the form is still considered an implementation detail. ;-)

● Postgres compresses the data transparently depending on the size
threshold.

● It also stores the data „out of line“, if necessary, see TOAST for more.
https://www.postgresql.org/docs/current/storage-toast.html

https://www.postgresql.org/docs/current/storage-toast.html

© 2022 Evolveum s.r.o. All rights reserved.

Special m_object columns

● version for optimistic locking concurrency control, it is stored in the prism
object, but is managed strictly by repository which increments it during
modifications

● cid_seq internal sequence for container IDs, assigned by the repository

● ext stores searchable indexed/extension attributes; can be implemented as
indexed JSONB column or by additional tables (entity-attribute-value, EAV
model)

● db_created/modified purely database managed columns, not accessible
by the application

● objectType designates object type (read-only column)

© 2022 Evolveum s.r.o. All rights reserved.

Describe m_user
midpoint=# \d m_user
 Column | Type | Nullable | Default
-------------------------+--------------------------+----------+---------------------
 oid | uuid | not null |
 objecttype | objecttype | not null |
 generated always as ('USER'::objecttype) stored
 nameorig | text | not null |
 namenorm | text | not null |
 fullobject | bytea | |
 tenantreftargetoid | uuid | | -- three cols per ref
 tenantreftargettype | objecttype | |
 tenantrefrelationid | integer | |
 lifecyclestate | text | |
 cidseq | bigint | not null | 1
 version | integer | not null | 1
 policysituations | integer[] | |
 subtypes | text[] | |
 fulltextinfo | text | |
 ext | jsonb | |
...
 createchannelid | integer | |
 createtimestamp | timestamp with time zone | |
...
 db_created | timestamp with time zone | not null | CURRENT_TIMESTAMP
 db_modified | timestamp with time zone | not null | CURRENT_TIMESTAMP
 costcenter | text | | -- m_focus columns
 emailaddress | text | |
 photo | bytea | |
...
 passwordcreatetimestamp | timestamp with time zone | |
 passwordmodifytimestamp | timestamp with time zone | |
 administrativestatus | activationstatustype | |
...
 validitystatus | timeintervalstatustype | |
 validfrom | timestamp with time zone | |

 validto | timestamp with time zone | |
 validitychangetimestamp | timestamp with time zone | |
 archivetimestamp | timestamp with time zone | |
 lockoutstatus | lockoutstatustype | |
 additionalnameorig | text | | -- m_user
 additionalnamenorm | text | |
 employeenumber | text | |
...
 titleorig | text | |
 titlenorm | text | |
 organizations | jsonb | | -- polys
 organizationunits | jsonb | | -- polys
Indexes:
 "m_user_pkey" PRIMARY KEY, btree (oid)
 "m_user_employeenumber_idx" btree (employeenumber)
 "m_user_ext_idx" gin (ext)
 "m_user_ext_org_unit" btree ((ext ->> '14'::text)) -- custom index!
 "m_user_familynameorig_idx" btree (familynameorig)
 "m_user_fullnameorig_idx" btree (fullnameorig)
 "m_user_fulltextinfo_idx" gin (fulltextinfo gin_trgm_ops)
 "m_user_givennameorig_idx" btree (givennameorig)
 "m_user_namenorm_key" UNIQUE, btree (namenorm)
 "m_user_nameorig_idx" btree (nameorig)
 "m_user_organizations_idx" gin (organizations)
 "m_user_organizationunits_idx" gin (organizationunits)
 "m_user_policysituation_idx" gin (policysituations gin__int_ops)
 "m_user_subtypes_idx" gin (subtypes)
...
Foreign-key constraints: -- m_object_oid works as a unique OID pool
 "m_user_oid_fkey" FOREIGN KEY (oid) REFERENCES m_object_oid(oid)
...
Inherits: m_focus

© 2022 Evolveum s.r.o. All rights reserved.

Select m_user

midpoint=# select oid, objecttype, nameorig,
substring(convert_from(fullobject, 'UTF8'), 1, 100) fullobject, -- making it readable in psql
pg_column_size(fullobject) fo_size, length(fullobject) fo_len,
ext, subtypes, emailaddress, length(photo) photo_len,
createtimestamp, effectiveStatus, validityStatus, db_modified
from m_user limit 1;
-[RECORD 1]----+---
oid | 2018557c-4f30-4b31-8550-c61c05bdaecb
objecttype | USER
nameorig | n04881d
fullobject | {"user":{"oid":"2018557c-4f30-4b31-8550-c61c05bdaecb","version":"8",
 "name":"n04881d","subtype":"default","extension":"givenNameAccented":"Michelle","familyName
fo_size | 1551 -- obviously compressed
fo_len | 3946
ext | {"5": "2021-10-09T23:43:03.055Z", "7": "2021-10-09T23:43:03.055Z", "8": "a",
 "12": "0", "13": "n", "14": "4347914", "15": "Michelle", "16": ["FARRELL"]}
subtypes | {default} -- array
emailaddress |
photo_len |
createtimestamp | 2021-10-10 05:08:38.357+00
effectivestatus | ENABLED
validitystatus |
db_modified | 2021-10-10 05:08:38.88718+00

© 2022 Evolveum s.r.o. All rights reserved.

Using and tuning Native repository

© 2022 Evolveum s.r.o. All rights reserved.

Getting started

● Follow our document Using Native PostgreSQL Repository.
https://docs.evolveum.com/midpoint/reference/repository/native-postgresql/usage/

● Typical post-installation configuration

● Decide if you want audit and main repository together or separate.

● Use doc/config/config-native.xml as a starting point for config.xml.

● Examples are examples, use Repository Configuration document to finish
your configuration.
https://docs.evolveum.com/midpoint/reference/repository/configuration/

https://docs.evolveum.com/midpoint/reference/repository/native-postgresql/usage/
https://docs.evolveum.com/midpoint/reference/repository/configuration/

© 2022 Evolveum s.r.o. All rights reserved.

Default config.xml

<configuration>
 <midpoint>
 <webApplication>
 <importFolder>${midpoint.home}/import</importFolder>
 </webApplication>
 <repository>
 <!--
 Uncomment this section to use the new Native repository (and comment the rest).
 For more see: https://docs.evolveum.com/midpoint/reference/repository/configuration/
 Don't forget to switch Sql/Sqale audit service factory accordingly (lower in this config).
 <type>native</type>
 <jdbcUrl>jdbc:postgresql://localhost:5432/midpoint</jdbcUrl>
 <jdbcUsername>midpoint</jdbcUsername>
 <jdbcPassword>password</jdbcPassword>
 -->

 <!-- Old Generic repository configured for embedded H2 for quick start. -->
 <repositoryServiceFactoryClass>com.evolveum.midpoint.repo.sql.SqlRepositoryFactory</repositoryServiceFactoryClass>
 <baseDir>${midpoint.home}</baseDir>
 <asServer>true</asServer>
 </repository>
...

© 2022 Evolveum s.r.o. All rights reserved.

Default config.xml

...
<audit>
 <auditService>
 <auditServiceFactoryClass>com.evolveum.midpoint.audit.impl.LoggerAuditServiceFactory</auditServiceFactoryClass>
 </auditService>
 <auditService>
 <!-- Use SqlAuditServiceFactory for old generic repository and SqaleAuditServiceFactory for new Native one. -->
 <auditServiceFactoryClass>com.evolveum.midpoint.repo.sql.SqlAuditServiceFactory</auditServiceFactoryClass>
 <!--
 <auditServiceFactoryClass>com.evolveum.midpoint.repo.sqale.audit.SqaleAuditServiceFactory</auditServiceFactoryClass>
 -->
 </auditService>
</audit>

© 2022 Evolveum s.r.o. All rights reserved.

config.xml for Native repository

<configuration>
 <midpoint>
 <webApplication>
 <importFolder>${midpoint.home}/import</importFolder>
 </webApplication>
 <repository>
 <type>native</type>
 <jdbcUrl>jdbc:postgresql://localhost:5432/midpoint</jdbcUrl>
 <jdbcUsername>midpoint</jdbcUsername>
 <jdbcPassword>password</jdbcPassword>
 </repository>
 <audit>
 <auditService>
 <auditServiceFactoryClass>com.evolveum.midpoint.audit.impl.LoggerAuditServiceFactory</auditServiceFactoryClass>
 </auditService>
 <auditService>
 <auditServiceFactoryClass>com.evolveum.midpoint.repo.sqale.audit.SqaleAuditServiceFactory</auditServiceFactoryClass>
 </auditService>
 </audit>
...
 </midpoint>
</configuration>

© 2022 Evolveum s.r.o. All rights reserved.

Sizing the database server is… complicated

● Basic recommendations:
https://docs.evolveum.com/midpoint/install/system-requirements/#sizing-of-database-system

● Sizing is disk sizing, performance sizing (CPU, memory, IO)

● Virtualization may give some flexibility.

● Postgres configuration tweaks depending on the size:

● Default PG settings are very conservative – on the low-end.

● Use your PG experts if possible.

● Use some calculator as a starting point, for example:
https://pgtune.leopard.in.ua/ (use OLTP or Mixed as „DB Type“)

https://docs.evolveum.com/midpoint/install/system-requirements/#sizing-of-database-system
https://pgtune.leopard.in.ua/

© 2022 Evolveum s.r.o. All rights reserved.

Using calculator from pgtune.leopard.in.ua

© 2022 Evolveum s.r.o. All rights reserved.

Sizing the storage

● Use your current DB storage size info.

● Native repository should be a bit smaller.

● Don’t just use XML sizes, use actual database storage size.

● Indexes take a lot of room too.

● Often, audit tables take most of the space.

● That is also a good reason to use a separate audit database.

© 2022 Evolveum s.r.o. All rights reserved.

Table and database size example

midpoint=# SELECT oid, table_schema, table_name, row_estimate, pg_size_pretty(total_bytes) AS total,
 pg_size_pretty(table_bytes) AS table, pg_size_pretty(toast_bytes) AS toast, pg_size_pretty(index_bytes) AS index
FROM (SELECT *, total_bytes - index_bytes - COALESCE(toast_bytes, 0) AS table_bytes
 FROM (SELECT c.oid, nspname AS table_schema, relname AS table_name, c.reltuples::bigint AS row_estimate,
 pg_total_relation_size(c.oid) AS total_bytes, pg_indexes_size(c.oid) AS index_bytes, pg_total_relation_size(reltoastrelid) AS toast_bytes
 FROM pg_class c LEFT JOIN pg_namespace n ON n.oid = c.relnamespace WHERE relkind = 'r') a) b
WHERE table_schema = 'public'
ORDER BY total_bytes DESC limit 10;
 oid | table_schema | table_name | row_estimate | total | table | toast | index
-------+--------------+-------------------------+--------------+---------+---------+------------+---------
 18526 | public | ma_audit_delta_default | 187152384 | 508 GB | 260 GB | 233 GB | 15 GB
 17337 | public | m_shadow | 87694848 | 165 GB | 146 GB | 32 kB | 19 GB
 17105 | public | m_user | 27546152 | 77 GB | 38 GB | 27 GB | 12 GB
 18156 | public | m_assignment | 127124184 | 33 GB | 15 GB | 8192 bytes | 18 GB
 17064 | public | m_ref_projection | 82952200 | 17 GB | 6482 MB | | 11 GB
 18509 | public | ma_audit_event_default | 19523042 | 12 GB | 8260 MB | 8192 bytes | 3663 MB
 16877 | public | m_object_oid | 116446608 | 9427 MB | 4932 MB | | 4495 MB
 17026 | public | m_ref_role_membership | 38737040 | 6271 MB | 2925 MB | | 3346 MB
 17270 | public | m_ref_object_parent_org | 9381595 | 1566 MB | 741 MB | | 825 MB
 17153 | public | m_role | 5006 | 12 MB | 11 MB | 56 kB | 1368 kB

midpoint=# SELECT pg_size_pretty(pg_database_size('midpoint'));
 pg_size_pretty

 829 GB

Main repo 309 GB, 116M objects, each object takes ~27 KB on average. Not many assignments here, it can easily be over 100KB.

© 2022 Evolveum s.r.o. All rights reserved.

Different view on DB object sizes

midpoint=# SELECT t.oid, CASE WHEN tft.relname IS NOT NULL THEN tft.relname || ' (TOAST)' ELSE t.relname END AS object,
 pg_size_pretty(pg_relation_size(t.oid)) AS size, t.relkind, t.reltuples::bigint as row_estimate, t.relname as object_name
FROM pg_class t
 INNER JOIN pg_namespace ns ON ns.oid = t.relnamespace
 LEFT JOIN pg_class tft ON tft.reltoastrelid = t.oid -- table for toast
 LEFT JOIN pg_namespace tftns ON tftns.oid = tft.relnamespace
WHERE 'public' IN (ns.nspname, tftns.nspname)
ORDER BY pg_relation_size(t.oid) DESC
LIMIT 15;
 oid | object | size | relkind | row_estimate | object_name
-------+--+---------+---------+--------------+---
 18526 | ma_audit_delta_default | 260 GB | r | 187152384 | ma_audit_delta_default
 18531 | ma_audit_delta_default (TOAST) | 229 GB | t | 168837440 | pg_toast_18526
 17337 | m_shadow | 146 GB | r | 87694848 | m_shadow
 17105 | m_user | 38 GB | r | 27546152 | m_user
 17114 | m_user (TOAST) | 26 GB | t | 12554565 | pg_toast_17105
 18156 | m_assignment | 15 GB | r | 127124184 | m_assignment
 18529 | ma_audit_delta_default_pkey | 15 GB | i | 191936144 | ma_audit_delta_default_pkey
 17371 | m_shadow_primidval_objcls_resrefoid_key | 9457 MB | i | 87694848 | m_shadow_primidval_objcls_resrefoid_key
 18509 | ma_audit_event_default | 8257 MB | r | 19523042 | ma_audit_event_default
 18163 | m_assignment_pkey | 6724 MB | i | 127025472 | m_assignment_pkey
 17069 | m_ref_projection_pkey | 6541 MB | i | 82952200 | m_ref_projection_pkey
 17064 | m_ref_projection | 6480 MB | r | 82952200 | m_ref_projection
 16877 | m_object_oid | 4930 MB | r | 116446608 | m_object_oid
 16881 | m_object_oid_pkey | 4495 MB | i | 116521240 | m_object_oid_pkey
 17076 | m_ref_projection_targetoidrelationid_idx | 4456 MB | i | 82952200 | m_ref_projection_targetoidrelationid_idx

https://docs.evolveum.com/midpoint/reference/repository/native-postgresql/db-maintenance/

https://docs.evolveum.com/midpoint/reference/repository/native-postgresql/db-maintenance/

© 2022 Evolveum s.r.o. All rights reserved.

Indexing

● Indexes are great, but come at a price (example from our 309 GB DB):
midpoint=# SELECT pg_size_pretty(sum(pg_relation_size(t.oid)))
FROM pg_class t INNER JOIN pg_namespace ns ON ns.oid = t.relnamespace
WHERE ns.nspname = 'public' and t.relkind='i' and t.relname like 'm_%';
 pg_size_pretty

 68 GB -- that’s 22%

● Size is the least problem, but updates need to refresh indexes, they need
to be vacuumed too, etc.

● Most important columns have B-tree indexes or other suitable indexes.

● Not all columns have indexes though… but they are still searchable.

● Identify slow queries for your cases and add indexes accordingly.

© 2022 Evolveum s.r.o. All rights reserved.

Use pg_stat_statements to identify slow queries

-- list of selects using the most time, change order to get other avg/max/calls to top
-- NOTE: postgresql.conf must have (+restart): shared_preload_libraries = 'pg_stat_statements'
-- Also first, to see pg_stat_statements table: CREATE EXTENSION IF NOT EXISTS pg_stat_statements;
-- To reset collected statistics: select pg_stat_statements_reset();
select
 (total_exec_time / 1000 / 60)::numeric(20,4) as total_min, -- min as minutes here
 mean_exec_time::numeric(20,2) as avg_ms,
 max_exec_time::numeric(20,2) as max_ms,
 calls,
 (rows / calls)::numeric(20) as avg_rows,
 (100.0 * shared_blks_hit / nullif(shared_blks_hit + shared_blks_read, 0))::numeric(20,2) AS hit_percent,
 query
from pg_stat_statements
-- optional where to limit it to one database, if needed (e.g. shared/test DB)
-- where dbid = (select oid from pg_database where datname = 'midpoint')
order by 1 desc -- change order as necessary
limit 50;

© 2022 Evolveum s.r.o. All rights reserved.

Extension indexing

● Extensions and shadow attributes are stored in JSONB columns.

● By default, ext column and attributes in m_shadow use only GIN index.

● This is fine for EQ filter which covers most of the cases.

● For other cases (comparison, substrings) index needs to be created:

● Applicable only to single-value extensions or attributes

● Use index on ext->'id' for non-string properties or ext->>'id' for strings.

● Consult m_ext_item table to find the id of the extension/attribute item.

● Use normal B-tree index for comparisons or trigram index for substrings.

© 2022 Evolveum s.r.o. All rights reserved.

Extension indexing example

● Query filter:
<q:filter><q:substring>
 <q:matching>stringIgnoreCase</q:matching>
 <q:path>c:extension/string</q:path>
 <q:value xsi:type="xsd:string">VaLuE</q:value>
 <q:anchorEnd>true</q:anchorEnd>
</q:substring></q:filter>

● Select:
select u.oid, u.fullObject from m_user u where u.ext->>'195' ilike $1 -- $1 = '%VaLuE'

● Good index:
CREATE INDEX m_user_ext_string_trgm_idx ON m_user USING gin((ext->>'195') gin_trgm_ops);

● “How do I get that 195?”
select * from m_ext_item where itemname like '%#string';
|id |itemname |valuetype |holdertype|cardinality|
+---+----------------------------+---------------------------------------+----------+-----------+
|195|https://example.com/p#string|http://www.w3.org/2001/XMLSchema#string|EXTENSION |SCALAR |

© 2022 Evolveum s.r.o. All rights reserved.

Query API tips

● Experiment with Query playground

● Prefer concrete types queries

● User for users, not Focus or Object

● Generic queries are less efficient

● Limit result count, e.g.: <paging><maxSize>10</maxSize></paging>

● Native repository uses implicit limit 10,000 if none is provided for sanity

● Higher number can be provided explicitly with maxSize… but why?!

● Use iterative search mechanisms for queries with longer result lists

© 2022 Evolveum s.r.o. All rights reserved.

Schema upgrade

● Custom procedure is used for schema changes:

● apply_change for main repository

● apply_audit_change for the audit schema

● Upgrade script can be re-run, it applies only the missing changes

● Schema version is now sequential and not semantic

● Upgrade script can be checked for version comments

● There is no automatic DB upgrade or check for the Native repository

● Simply run the upgrade scripts from the MP distribution you run

© 2022 Evolveum s.r.o. All rights reserved.

Migration to Native PostgreSQL Repository

● Upgrade to 4.4 using original repository

● Upgrade possible from 4.0.4 (LTS to LTS) or 4.3.2

● Export existing data using Ninja

● Initialize native repository

● Change midPoint configuration for native repository

● Import previously exported data back to midPoint using Ninja

● Start midPoint with new configuration

● Audit migration with midPoint already up and running

● More in the next webinar!

© 2022 Evolveum s.r.o. All rights reserved.

Breaking repository changes

● New repository does not support H2, you need to install the DB.

● H2 is unsupported and for testing only anyway.

● OID must be in UUID format – but this was always strongly encouraged!

● Group by filter is not supported (and probably meaningless).

● And will be removed from Query API.

● Audit/dashboards do not support SQL/HQL queries anymore (since 4.3).

● Now it uses Query API, just like the main Repository API.

● ...and that’s it! Ninja tool will take the care for the rest!

© 2022 Evolveum s.r.o. All rights reserved.

Native audit, partitioning, migration

© 2022 Evolveum s.r.o. All rights reserved.

SQL audit overview

● Designed as insert only, no updates!

● Previously, Audit API had reindex operation, this is gone now.

● Insert-only table is much more efficient, no VACUUM needed.

● Until the cleanup executes some delete that is, more on that later.

● It is, after all, an audit trail – but searchable.

© 2022 Evolveum s.r.o. All rights reserved.

Audit tables

● Stores audit event records (containers since 4.2)
● Tables similar to the old repository, changes similar to

those in the main repository

● Prefix changed to ma_ for clearer separation.

● No dependency on the main portion of the repo.

● E.g. channel is now TEXT, no reference to m_uri.

● All tables are partitionable by timestamp.

● Delete from ma_audit_event cascades to details.

© 2022 Evolveum s.r.o. All rights reserved.

Separate audit database – config.xml

<configuration>
 <midpoint>
...
 <audit>
...
 <auditService>
 <auditServiceFactoryClass>
 com.evolveum.midpoint.repo.sqale.audit.SqaleAuditServiceFactory
 </auditServiceFactoryClass>
 <jdbcUrl>jdbc:postgresql://192.168.56.33:5432/midaudit</jdbcUrl>
 <jdbcUsername>midaudit</jdbcUsername>
 <jdbcPassword>password</jdbcPassword>
 <!-- specifying custom application name (available in connection list)
 <jdbcUrl>jdbc:postgresql://192.168.56.33:5432/midaudit?ApplicationName=audit</jdbcUrl>
 or tweaking connection pool
 <maxPoolSize>6</maxPoolSize>
 -->
 </auditService>
 </audit>
...
 </midpoint>
</configuration>

© 2022 Evolveum s.r.o. All rights reserved.

SQL audit partitioning

● All three audit tables are partitionable by timestamp column.

● By default, only one *_default partition is created for each table.

● Run audit_create_monthly_partitions procedure to create partitions:

● Example, 10 years ahead: call audit_create_monthly_partitions(120);

● Or 5 years back (migration): call audit_create_monthly_partitions(-60);

● Currently, partitions are not created automatically.

● Partitions are not query performance solution!

© 2022 Evolveum s.r.o. All rights reserved.

Partitioning for fast audit cleanup

● Partitions are solution for fast data cleanup (drop or detach partition).

● You probably want to remove auditRecords from cleanupPolicy in
SystemConfiguration object.

● Using partitions as the sole cleanup mechanism also means that each
partition (which is a table) is strictly insert-only.

● No VACUUM is needed.

● Drawback: Currently the partition management, including cleanup, is
manual only.

https://docs.evolveum.com/midpoint/reference/repository/native-audit/#cleanup-task-vs-partitions

https://docs.evolveum.com/midpoint/reference/repository/native-audit/#cleanup-task-vs-partitions

© 2022 Evolveum s.r.o. All rights reserved.

Audit migration example

● 1 mil. audit events migrated from Generic PG to Native PG

● Ninja supports audit migration in midPoint 4.4.1

● Use -z to zip the output files

● Run multiple ninjas in parallel for export with repoId filter. (~1000/s)

● Run ninja with multiple threads, e.g. -l 4, for import. (~400/s)

● Original size 5.0 GB with gzipped deltas, new size 3.9 GB with plain
deltas (transparently compressed by PG).

https://docs.evolveum.com/midpoint/reference/repository/native-audit/#audit-migration-from-other-database
https://docs.evolveum.com/midpoint/reference/deployment/ninja/

https://docs.evolveum.com/midpoint/reference/repository/native-audit/#audit-migration-from-other-database
https://docs.evolveum.com/midpoint/reference/deployment/ninja/

© 2022 Evolveum s.r.o. All rights reserved.

Conclusion

© 2022 Evolveum s.r.o. All rights reserved.

Main takeaways

● There is this new Native PostgreSQL repository.

● It’s better. Consider using it.

● You still should test it in non-production environment first, of course.

● There is new SQL audit trail. It can be partitioned!

● Repository and Query API documentation was massively updated.

© 2022 Evolveum s.r.o. All rights reserved.

Resources

● MidPoint Repository
https://docs.evolveum.com/midpoint/reference/repository/

● Native PostgreSQL Repository
https://docs.evolveum.com/midpoint/reference/repository/native-postgresql/
https://docs.evolveum.com/midpoint/reference/repository/native-postgresql/usage/

● Native PostgreSQL Audit Trail
https://docs.evolveum.com/midpoint/reference/repository/native-audit/

● Repository Database Support (Generic vs Native repo explanation)
https://docs.evolveum.com/midpoint/reference/repository/repository-database-support/

● Query API
https://docs.evolveum.com/midpoint/reference/concepts/query/query-api/

https://docs.evolveum.com/midpoint/reference/repository/
https://docs.evolveum.com/midpoint/reference/repository/native-postgresql/
https://docs.evolveum.com/midpoint/reference/repository/native-postgresql/usage/
https://docs.evolveum.com/midpoint/reference/repository/native-audit/
https://docs.evolveum.com/midpoint/reference/repository/repository-database-support/
https://docs.evolveum.com/midpoint/reference/concepts/query/query-api/

© 2022 Evolveum s.r.o. All rights reserved.

MidScale

● Target:

● Tens of millions of identities

● Key results:

● Improved scalability of midPoint

● Improved visibility, diagnostic and reliability of midPoint

● Improved performance and user experience of midPoint user interface

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under the NGI_TRUST grant agreement no 825618.

© 2022 Evolveum s.r.o. All rights reserved.

Webinars

● Upgrade Guide, January 27, 2022 by Anton Tkáčik

● Tasks, February 3, 2022 by Pavol Mederly

● Customizing GUI, February 10, 2022 by Katarína Bolemant

● Native reports, February 16, 2022 by Lukáš Škublík

/Evolveum@Evolveum/Evolveum/Evolveum/Evolveum

Also follow us on our social media for further information!

© 2022 Evolveum s.r.o. All rights reserved.

Thank you for your time!

See other talks at https://docs.evolveum.com

https://github.com/Evolveum/
https://www.youtube.com/Evolveum
https://www.linkedin.com/company/evolveum/
https://twitter.com/Evolveum
https://www.facebook.com/evolveum

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64

